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Abstract: We characterized γ-cystathionase, rhodanese and 3-mercaptopyruvate 

sulfurtransferase activities in various regions of human brain (the cortex, thalamus, 

hypothalamus, hippocampus, cerebellum and subcortical nuclei) and human gliomas with II 

to IV grade of malignancy (according to the WHO classification). The human brain regions, 

as compared to human liver, showed low γ-cystathionase activity. The activity of rhodanese 

was also much lower and it did not vary significantly between the investigated brain regions. 

The activity of 3-mercaptopyruvate sulfurtransferase was the highest in the thalamus, 

hypothalamus and subcortical nuclei and essentially the same level of sulfane sulfur was 

found in all the investigated brain regions. The investigations demonstrated that the level of 

sulfane sulfur in gliomas with the highest grades was high in comparison to various human 

brain regions, and was correlated with a decreased activity of γ-cystathionase,  

3-mercaptopyruvate sulfurtransferase and rhodanese. This can suggest sulfane sulfur 

accumulation and points to its importance for malignant cell proliferation and tumor growth. 

In gliomas with the highest grades of malignancy, despite decreased levels of total free 

cysteine and total free glutathione, a high ratio of GSH/GSSG was maintained, which is 

important for the process of malignant cells proliferation. A high level of sulfane sulfur and 

high GSH/GSSG ratio could result in the elevated hydrogen sulfide levels. Because of the 
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disappearance of γ-cystathionase activity in high-grade gliomas, it seems to be possible that 

3-mercaptopyruvate sulfurtransferase could participate in hydrogen sulfide production. The 

results confirm sulfur dependence of malignant brain tumors. 

Keywords: cysteine; γ-cystathionase; glioma; human brain; hydrogen sulfide;  

3-mercaptopyruvate sulfurtransferase; rhodanese; sulfane sulfur 

 

1. Introduction 

L-Cysteine desulfuration, a source of sulfane sulfur-containing compounds, has not been extensively 

investigated in the human brain. Sulfane sulfur is involved in the detoxification of cyanide and inorganic 

sulfide, the incorporation of sulfur in iron-sulfur centers of redox proteins, enzyme activity regulation 

through a mechanism that involves the incorporation of sulfur, sulfuration of tRNA; it also has an 

antioxidant potential and may affect the toxic function of exogenous xenobiotics or drugs (not reviewed 

here, but see [1,2]). Sulfane sulfur atoms are easily ejected as elemental sulfur, transferred to another 

sulfur atom or reduced to H2S by thiols [1,3–5].  

The objective of the present study was to investigate L-cysteine desulfuration (Scheme 1) in various 

regions of human brain and in human gliomas of various grades of malignancy, through the estimation 

of the activity of enzymes participating in the formation and metabolism of sulfane sulfur compounds, 

i.e., cystathionine γ-lyase (CTH, EC 4.4.1.1), 3-mercaptopyruvate sulfurtransferase (MPST, EC 2.8.1.2), 

rhodanese (thiosulfate sulfurtransferase, EC 2.8.1.1), and through the determination of the level of 

sulfane sulfur, cysteine, glutathione and cystathionine.  

Scheme 1. L-Cysteine desulfuration pathways.  

 
CBS (Cystathionine β-synthase), CTH (Cystathionine γ-lyase), MPST (3-Mercaptopyruvate 
sulfurtransferase), CAT (Cysteine aminotransferase), CDO (Cysteine dioxygenase), SQOR 
(Sulfide:quinone oxidoreductase), ETHE1 (Persulfide dioxygenase), SUOX (Sulfite oxidase), TrxR 
(Thioredoxin reductase). Based on Jurkowska et al. [6]. 
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Human gliomas are the most common primary central nervous system neoplasms. Like many human 

cancer cell lines (breast, lung, colon, kidney, bladder, melanoma, glioblastoma, etc.) and primary tumors, 

gliomas have absolute requirements for methionine [7,8]. Methionine, an essential amino acid, 

participates in protein synthesis, is required for the formation of the polyamines spermine and spermidine, 

is the major source of methyl groups for methylation of DNA and other molecules, and serves as a 

precursor of cysteine and glutathione. The biochemical mechanism for methionine dependency has been 

studied extensively, but the fundamental mechanism remains unclear. Tumor cells cultured in the 

absence of methionine are known to have a reduced transmethylation capacity. Methionine depletion 

induces a decrease in glutathione levels and some studies indicate that antitumor activity of methionine 

and homocysteine-free diet is better than that of a methionine-deficient, homocysteine-containing diet [9].  

We have previously described the sulfane sulfur dependency of astrocytoma U373 cells [10,11] and 

prostate cancer PC-3 cells [12] proliferation. The inhibition of the proliferation was accompanied by an 

increase in the level of sulfane sulfur and in the expression and activity of MPST and γ-cystathionase. 

An opposite effect was observed for mouse astrocytes—a decreased cell proliferation accompanied by 

a decreased MPST activity was correlated with a decreased sulfane sulfur level [10]. This metabolic 

difference opens interesting perspectives for nutritional strategies in anticancer therapy.  

2. Results and Discussion 

Despite the rising interest in H2S biochemistry, fundamental questions remain regarding H2S 

formation, conversions and regulation of these processes in human brain. H2S biogenesis is the apparent 

by product of three enzymes, MPST, cystathionine β-synthase (CBS) and CTH. Hence, different 

pathways for H2S generation might be operational in different cell types reflecting the tissue distribution 

of the individual enzymes and under normal conditions versus cancerous conditions.  

2.1. MPST, Rhodanese and γ-Cystathionase Activities and the Level of Sulfane Sulfur in Human  

Brain Regions 

In a comparison of the values of the specific activity of MPST, rhodanese and CST in all the investigated 

brain regions, MPST was demonstrated to show the highest specific activity. The highest value of the 

activity of MPST was found in the thalamus and it was significantly higher than the value determined in 

the hypothalamus (Table 1). There were no significant differences between the values determined in the 

other investigated human brain regions and they oscillated between 600–700 nmol·mg−1·min−1. All the 

values of MPST activity determined in the brain regions were at least 10 times lower than the value 

determined in human liver homogenates. Similarly, rhodanese activity was about 15 times lower in human 

brain regions as compared to human liver and its value oscillated between 139 ± 50 nmol·mg−1·min−1 in 

the parietal cortex and 222 ± 63 nmol·mg−1·min−1 in the thalamus, with no statistically confirmed 

differences between the two regions. CTH has very low specific activity in the brain; nevertheless, CTH 

activity in human brain is still many times higher than that observed in mouse brain—the presence of 

CTH transcript was confirmed predominantly in neuronal cells in the human brain regions, indicating 

the potential role of the enzyme in the synthesis of cysteine and/or H2S in neuronal cells [13]. The 

difference between CTH activity in human brain regions and human liver was not as huge as in case of 

MPST or rhodanese. It was only about 2–3 times higher in the liver. The value of CTH activity was the 
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highest in the cerebellum, hypothalamus, parietal cortex, and the lowest in the thalamus and 

hippocampus. The value in the thalamus was significantly lower in comparison to the cerebellum, 

hypothalamus and parietal cortex. The level of sulfane sulfur was less than two times lower in 

comparison to the value determined in liver homogenates. Essentially the same level of sulfane sulfur 

was found in all the investigated brain regions (Table 1). This may suggest sulfane sulfur homeostasis 

that can be important for function of some proteins/enzymes [1,14]. However, the difference of the level 

of sulfane sulfur between the thalamus and hippocampus was confirmed by statistical analyses.  

Table 1. The activity of MPST, rhodanese and γ-cystathionase and the level of sulfane sulfur 

in various regions of human brain. 

Brain Regions 
MPST Rhodanese CTH ** Sulfane Sulfur 

nmol·mg−1·min−1 nmol·mg−1 

Cerebellum 639 ± 103 212 ± 44 0.7 ± 0.2 * 191 ± 41 
Hypothalamus 745 ± 119 200 ± 54 0.7 ± 0.3 * 221 ± 53 

Thalamus 841 ± 142 * 222 ± 63 0.4 ± 0.1 * 209 ± 44 * 
Nuclei subcortical 732 ± 170 179 ± 68 0.6 ± 0.4 197 ± 40 

Hippocampus 671 ± 205 177 ± 67 0.4 ± 0.3 225 ± 63 
Frontal cortex 627 ± 181 144 ± 35 0.5 ± 0.4 231 ± 49 
Parietal cortex 574 ± 142 139 ± 50 0.7 ± 0.3 * 228 ± 70 

Liver 7224 ± 2782 3031 ± 1128 1.2 ± 0.8 393 ± 133 

Mann-Whitney * p < 0.05 for: MPST Thalamus vs. Hypothalamus, CTH: Thalamus vs. Cerebellum, 

Hypothalamus, Parietal cortex, Sulfane sulfur: Thalamus vs. Hippocampus; ** Data originating from [15]. 

2.2. MPST, Rhodanese and Cystathionase Activities and Sulfane Sulfur Level in Human Brain Gliomas 

The activity of MPST was investigated in homogenates of gliomas of various grades of malignancy. 

The activity seemed to decrease along with the grade of malignancy (Figure 1).  

Figure 1. The activity of MPST in human brain gliomas of various grades of malignancy. 

 

The highest values in homogenates of gliomas with the second and II/III grade of malignancy were 

comparable to those found in human brain regions (Table 1). In gliomas with the fourth grade of 

malignancy, the activity of MPST was absent. Similarly, gliomas with the III/IV and IV grade of 
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malignancy showed a much lower rhodanese (Figure 2) and CTH activity (Figure 3) than the lower grade 

gliomas. Interestingly, gliomas with an average grade of malignancy showed the highest values of 

MPST, rhodanese and CTH activity.  

Figure 2. The activity of rhodanese in human brain gliomas of various grades of malignancy. 

 

Figure 3. The activity of CTH in human brain gliomas of various grades of malignancy. 

 
The value for NA was not presented because slices were not sufficiently large to determine it along 
with all other determinations.  

Although MPST and CTH activities were the lowest in glioma IV homogenate, the level of sulfane 

sulfur was not (Figure 4). There were no significant differences between sulfane sulfur content in 

homogenates of gliomas with different grade of malignancy—the level was rather stable and it seemed 

to be even higher in III/IV and IV grades. These observations became more apparent when we compared 

the mean values of MPST, rhodanese and cystathionase activity, and sulfane sulfur level in human brain 

and gliomas (Table 2). Despite lower MPST and CTH activity, two sulfane sulfur-generating enzymes, 

its level remained high.  
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Figure 4. The level of sulfane sulfur in human brain gliomas of various grades of malignancy. 

 

Table 2 presents the mean value of MPST, rhodanese and cystathionase activity, and sulfane sulfur 

level in human brain and gliomas. The average CTH and rhodanese activities in gliomas were more than 

two times lower in comparison to the average values in human brain. However, the level of sulfane sulfur 

was not diminished; malignant cells with multiple defects in sulfur metabolism are known to require 

sulfane sulfur for proliferation in vitro [10,16,17]. Increasing evidence suggests that the mechanism of 

anticancer action of garlic compounds, precursors of sulfane sulfur, may involve modulation of signal 

transduction pathways [18,19]. 

Table 2. The mean value of MPST, rhodanese and cystathionase activity, and sulfane sulfur 

level in human brain and gliomas. 

Tissues 
MPST Rhodanese CTH Sulfane Sulfur 

nmol·mg−1·min−1 nmol·mg−1 

Brain 689 ± 151 146 ± 54 559 ± 356 214 ± 51 
Glioma 442 ± 118 63 ± 28 210 ± 200 250 ± 90 

Values determined in all brain homogenates and values determined in all glioma homogenates were combined 

to calculate the mean value.  

2.3. Cysteine, Glutathione and Cystathionine Levels in Human Brain Gliomas 

We used the RP-HPLC method described by Bronowicka-Adamska et al. [15] for a simultaneous 

separation and quantitation of the dinitrophenyl derivative of cysteine and cystine, reduced (GSH) and 

oxidized glutathione (GSSG), and cystathionine in brain samples. The highest concentration of cysteine 

was noted in the thalamus, hypothalamus and subcortical nuclei. The highest level of cysteine in the 

thalamus corresponded with the highest level of GSH and the highest ratio of GSH to GSSG. GSH, as a 

reductant, plays a fundamental role in the detoxification of reactive oxygen species, which is critical to 

the normal function of the central nervous system and its altered levels have been reported in several 

pathologies, such as cancer [20–23]. Simultaneous determinations of GSH and GSSG levels in 

homogenates of gliomas allowed for determining the GSH/GSSG ratio, which reflects tissue redox 

status. Despite a slightly decreased level of total free cysteine (Figure 3) and glutathione, a high ratio of 

GSH/GSSG was maintained in gliomas with the highest grades, which can be important for the process 
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of malignant cells proliferation. A changed profile of CTH activity (Figure 3) and cystathionine levels 

(Figure 5) was correlated—both of them decreased with the increase of the grade of gliomas malignancy. 

This suggests a decreased activity of cystathionine-β-synthase, generating cystathionine. In general, an 

average cystathionine level in higher grade gliomas (II/III, III/IV and IV) seemed to be higher in 

comparison to low grade gliomas (II).  

Figure 5. The level of total free cysteine, total free glutathione, cystathionine, and the ratio 

of GSH/GSSG in human gliomas. 

Data are expressed as the mean values ± S.D. (or as the mean value only if the number of samples was 
not sufficient). Empty sites mean that not enough tissue was available to perform all the determinations. 

Some authors stated previously [15] that cystathionine levels varied greatly between particular human 

brain regions—the level in the human thalamus (55 ± 15 nmol/mg) was about 11 times higher than in 

the cerebellum (4.7 ± 2.3 nmol/mg). It should be noted that the lowest activity of CTH detected in the 

thalamus (Table 1) is correlated with the highest level of cystathionine. Similarly, the highest activity of 

CTH detected in the cerebellum (Table 1) is correlated with the lowest level of cystathionine.  

Numerous studies focused on the potential antitumor activity of methionine restriction that exploits 

metabolic differences between neoplastic and normal cells [8]. In patients with brain tumors, the 

evaluation of tumor size is based on the differential incorporation of methionine, higher within the tumor 

than in the surrounding healthy tissues [24]. The application of the micro-XANES technique allowed 

finding high accumulation of reduced sulfur (S2−) in cancer cells of malignant gliomas. The results 

indicated higher accumulation of this form of sulfur in glioma of IV grade of malignancy in comparison 

with the samples of II grade neoplasms [25]. The results presented in this paper allow for confirming 

desirability of dietary methionine restriction in the treatment of gliomas and suggest further 

investigations aiming at confirming whether availability of other than methionine precursors of sulfane 

sulfur would affect inhibition of proliferation of gliomas, which—as it has been demonstrated in the 

present paper—accumulate sulfane sulfur.  
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3. Experimental Section 

3.1. Chemicals 

L-Glutathione reduced (GSH), glutathione oxidized form (GSSG), L-cysteine, L-cystine, cystathionine 

(CTN), DL-homoserine (HSer), 1-fluoro-2,4-dinitrobenzene (DNFB), bathophenanthroline-disulfonic 

acid disodium salt (BPDS), acetonitrile, pyridoxal phosphate (PLP), β-nicotinamide adenine dinucleotide 

reduced disodium salt hydrate (NADH), L-lactic dehydrogenase (LDH), DL-propargylglycine (PPG), 

pyridoxal phosphate (PLP), dithiothreitol (DTT), N-ethylmaleimide, sodium carbonate, Folin-Ciocalteau 

reagent, sodium 3-mercaptopyruvate, potassium hydroxide, sodium chloride, ferric nitrate nonahydrate, 

sodium thiosulfate pentahydrate, sodium sulfide, PTFE filter were obtained from Sigma Chemical Co. 

(St. Louis, MO, USA). Trifluoroacetic acid (TFA), 2-mercaptoethanol and EDTA-Na2·2H2O were 

purchased from Fluka Chemie GmbH (Buchs, Switzerland). Potassium hydrogen carbonate, potassium 

hydroxide, copper (II) sulfate pentahydrate, potassium sodium tartrate tetrahydrate, sodium dihydrogen 

phosphate dihydrate, nitric acid (V), potassium dihydrogen phosphate, ammonia solution, sodium 

hydroxide, ethanol and 70% perchloric acid (PCA) were from Polish Chemical Reagents SA (Gliwice, 

Poland). Potassium cyanide were obtained from Merck (Darmstadt, Germany) and N-methyl-L-lysine 

from Bachem (Bubendorf, Switzerland). All the chemicals and HPLC solvents were gradient grade. 

Water was deionized by passing through an EASY pure RF compact ultrapure water system. 

3.2. Human Tissues 

3.2.1. Sections of Normal Human Brain Obtained Postmortem 

Post mortem brain and liver sections collected during autopsies performed at the Department of 

Pathomorphology and Department of Forensic Medicine, Jagiellonian University Medical College, 

Cracow, Poland, were used in this experiment if the examination performed by the attending pathologist 

within 12–24 h of death confirmed that they were macroscopically unchanged (conditions accepted by 

scientific research [26–29]. Sections of human brain (1–2 g) of the following regions: the hypothalamus 

(Hypothalamus), thalamus (Thalamus), hippocampus (Hippocampus), frontal cortex (Frontal cortex), 

parietal cortex (Parietal cortex), cerebellum (Cerebellum), subcortical nuclei (Nuclei basales) were 

collected from patients between 20 and 60 years of age. All the sections were isolated, placed in liquid 

nitrogen and stored at −76 °C until used in biochemical experiments. The experimental protocol  

(number KBET/199/B/2000) was approved by the Bioethical Commission, Jagiellonian University 

Medical College. 

3.2.2. Sections of Gliomas Obtained Intraoperatively 

Sections of gliomas characterized by various grades of malignancy according to the World Health 

Organization (WHO) originating from patients between 20 and 60 years of age were collected 

intraoperatively at the Department of Neurosurgery in cooperation with the Department of Neuropathology, 

Institute of Neurology, Jagiellonian University (Table 3). All the sections of normal human brains were 

isolated, placed in liquid nitrogen and stored at −76 °C until used in biochemical experiments. 
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Table 3. The tissue sections of human brain gliomas with different grades of glioma malignancy. 

No. Tissue WHO Grade Number of Sections 

1 Gliosis (around hemangioblastoma) NA 1 section 
2 Diffuse astrocytoma (fibrillary) WHO II 1 section 
3 Diffuse astrocytoma (gemistocytic) WHO II 1 section 
4 Diffuse astrocytoma (fibrillary) WHO II 1 section 
5 Diffuse astrocytoma WHO II 1 section 
6 Oligodendroglioma WHO II 1 section 
7 Oligoastrocytoma WHO II/III 1 section 
8 Diffuse astrocytoma WHO II/III 1 section 
9 Anaplastic oligodendroglioma WHO III 1 section 

10 Anaplastic astrocytoma WHO III 2 section 
11 Anaplastic astrocytoma/Glioblastoma WHO III/IV 4 section 
12 Glioblastoma WHO IV 5 section 

NA = not applicable; gliosis zone (non-neoplastic) surrounding a hemangioblastoma—WHO does determine 

the grade in this case. 

3.3. Tissue Homogenates 

For determinations of enzymes activity and level of sulfane sulfur, the sections of normal human 

brain and gliomas were weighed and homogenized in ice-cold 0.1 M phosphate buffer pH 7.5 (1 g/5 mL) 

for 1 min at 8000–9500 rpm using a blender homogenizer. The homogenates were centrifuged at 1600 g 

for 10 min. After centrifugation, the supernatants were used for the determination of the enzymes activity 

(CTH, MPST, rhodanese) and the level of sulfane sulfur and protein content.  

For the RP-HPLC method, the tissues were weighed and homogenized at 8000–9500 rpm in ice-cold 

10% PCA/1 mM BPDS (1 g/3 mL) (1 g tissue/3 mL solution). The homogenates were centrifuged for 

10 min at 4 °C at 1400 g. The supernatants were used for assays immediately or stored at −80 °C until 

HPLC analysis. The tissues were homogenized using an Ultra-Turrax T 25 (Janke & Kunkel  

IKA-Labortechnik Company, Staufen, Germany). The homogenates were centrifuged using a MPW 375 

centrifuge (MPW MED Instruments, Warszawa, Poland) or Hettich Universal 16 centrifuge (Hettich 

AG, Kloten, Switzerland).  

3.4. Enzyme Assay 

The MPST activity was assayed according to the method of [30] following a procedure described in 

our earlier paper [31]. The enzyme activity was expressed as nmoles of pyruvate produced during 1 min 

incubation at 37 °C per 1 mg of protein. The rhodanese activity was assayed by Sőrbo’s method, 

following a procedure described in [31]. The enzyme activity was expressed as nmoles of SCN− formed 

during 1 min incubation at 20 °C per 1 mg of protein. The γ-cystathionase activity (CTH) was determined 

according to Matsuo and Greenberg [32] with the modification described by Czubak et al. [33]. The 

activity of cystathionine was expressed as nmoles of 2-ketobutyrate formed during 1 min incubation at 

37 °C per 1 mg of protein.  
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3.5. Sulfane Sulfur and Protein 

Sulfane sulfur was assayed by the method of Wood [34], based on cold cyanolysis and colorimetric 

detection of ferric thiocyanate complex ion. Protein was determined by the method of Lowry [35] using 

crystalline bovine serum albumin as a standard.  

3.6. RP-HPLC (Reverse Phase High Performance Liquid Chromatography) 

The RP-HPLC method of Dominick et al. [36] with modifications [15,37] was used to determine the 

levels of such metabolites as cysteine, cystine, cystathionine, reduced (GSH) and oxidized glutathione 

(GSSG) in incubation mixtures. The samples were separated on a 4.6 mm × 250 mm Luna C18 (5 µm) 

column with a Phenomenex Security Guard column filled with the same packing material. The 

chromatographic system consisted of LC-10 Atvp Shimadzu pumps, four channel degassers, a column 

oven and a Shimadzu SIL-10 Advp autosampler. Chromatographic peaks were measured by a Shimadzu 

SPD-M10Avp-diode array detector. A mobile phase consisting of solvent A (water/0.1% TFA) and 

solvent B (acetonitrile/0.1% TFA) was used to elute the samples. The samples were eluted with 20% B 

after injection, followed with a 35-min linear gradient to 55% B and 10 min isocratic period at 55% B, 

then a 15-min linear gradient to 100% B and 10-min isocratic period. The column was then re-equilibrated 

to the initial conditions for 15 min. All the HPLC solvents were HPLC gradient grade. The samples were 

filtered through a 0.20 µm PTFE filter. Analyses of 20 µL of the samples were performed at a flow rate 

of 1.0 mL/min at 20 °C with diode array detection at 365 nm. 

3.6.1. Standard Curves 

Stock solutions were prepared for standard curves as follows: 2.4 µM Nε-methyllysine, 1.2 µM  

L-cysteine, 1.2 µM L-cystine, 1.2 µM GSH, 1.2 µM GSSG, and 2,2 µM cystathionine. All the stock 

solutions were prepared in 10% PCA/1 mM BPDS except for Nε-methyllysine, which was prepared in 

water. Standard curves were generated in the supernatant obtained from the cells in the range from 13 

to 75 nmol of each compound per mL. 

3.6.2. Sample Preparation 

The incubation mixture was prepared by taking 100 μL supernatant, 20 μL Nε-methyl-L-lysine  

(2.4 µM solution in proportion 1:10), 40 μL 10% PCA/1 mM BPDS, 96 μL 2 M KOH-2.4 M KHCO3, 

200 μL 1% DNFB. The sample was derivatized overnight at room temperature in the dark. Prior to 

injection, the sample was acidified with 30 μL 70% PCA and clarified by centrifugation at 5600 g  

for 2 min.  

3.7. Statistical Analysis 

All the data of the RT-HPLC experiments represent the average of three to seven determinations. 

Values in Tables were summarized as mean ± standard deviation of the mean. The significance of the 

differences between mean values was calculated using the Student’s t Test. Statistical analysis of 

differences between brain regions was performed using the Mann-Whitney test. 
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4. Conclusions 

Since biochemical changes may be related to the growth rate of cancer cells, they can be thought of 

as markers of tumor cell proliferation. Elevated levels of cystathionine are found in urine of patients 

with neuroblastoma due to the specific block in transsulfuration resulting from the absence of CST in 

the malignant tissue [38]. Human gliomas with high grade of malignancy are characterized by a 

relatively high level of sulfane sulfur and a lower activity of MPST, rhodanese and CTH in comparison 

to normal brain regions, high levels of cystathionine and high ratios of GSH/GSSG in comparison to 

gliomas with low grade of malignancy.  
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