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Abstract Monocytes exhibit direct and indirect antitu-

mour activities and may be potentially useful for various

forms of adoptive cellular immunotherapy of cancer.

However, blood is a limited source of them. This study

explored whether monocytes can be obtained from bone

marrow haematopoietic CD34? stem cells of colon cancer

patients, using previously described protocol of expansion

and differentiation to monocytes of cord blood-derived

CD34? haematopoietic progenitors. Data show that in two-

step cultures, the yield of cells was increased approxi-

mately 200-fold, and among these cells, up to 60 % of

CD14? monocytes were found. They consisted of two

subpopulations: CD14??CD16? and CD14?CD16-, at

approximately 1:1 ratio, that differed in HLA-DR expres-

sion, being higher on the former. No differences in

expression of costimulatory molecules were observed, as

CD80 was not detected, while CD86 expression was

comparable. These CD14? monocytes showed the ability

to present recall antigens (PPD, Candida albicans) and

neoantigens expressed on tumour cells and tumour-derived

microvesicles (TMV) to autologous CD3? T cells isolated

from the peripheral blood. Monocytes also efficiently

presented the immunodominant HER-2/neu369–377 peptide

(KIFGSLAFL), resulting in the generation of specific

cytotoxic CD8? T lymphocytes (CTL). The CD14??CD16?

subset exhibited enhanced cytotoxicity, though nonsignif-

icant, towards tumour cells in vitro. These observations

indicate that generation of monocytes from CD34? stem

cells of cancer patients is feasible. To our knowledge, it

is the first demonstration of such approach that may open

a way to obtain autologous monocytes for alternative

forms of adaptive and adoptive cellular immunotherapy

of cancer.

Keywords Cancer patients � Bone marrow � CD34? stem

cells � Monocyte subpopulations � Tumour cells

Introduction

Monocytes/macrophages are important players in the host

response to the growing tumour, with both enhancing and

inhibitory capacities [1–3]. Despite the former, they are

still regarded as potential cells that can be used for cellular

forms of cancer immunotherapy. Blood monocytes isolated

by cytapheresis have been used as a source of effector

cytotoxic cells with rather disappointing results [4]. Such

strategies require large numbers of monocytes, sometimes

their activation, and are based on their direct cytotoxic

activity. It is well established that peripheral blood (PB)

monocytes exhibit significant cytotoxicity in vitro, which is

mediated by some cytokines, for example, surface bound

tumour necrosis factor (TNF), and release of reactive

nitrogen and oxygen intermediates (RNI and ROI, respec-

tively) [5–7]. Furthermore, PB monocytes can also act as

antigen-presenting cells (APC) [8] which may be useful for
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presentation of tumour-associated antigens (TAA) for the

generation of cytotoxic T lymphocytes used in adoptive

immunotherapy [9]. Along this way, microvesicles (MV)

that are shed by many cells of the body, in particular these

rapidly proliferating, are playing an important role in cell

to cell communication [10]. We have previously shown

that tumour-derived MV (TMV) carry some determinants

of the tumour cells and transfer them to monocytes [11]. It

is also known that TMV express TAA [12]. Therefore,

TMV may be a useful source of neoantigens to be pre-

sented to cytotoxic T cells.

Among two main subpopulations of PB monocytes,

CD14??CD16- and CD14?CD16?? [13], the latter pos-

sess an enhanced antitumour activity, as judged by an

increased production of TNF, interleukin (IL)-12, ROI and

cytotoxic activity in vitro [14]. However, CD14?CD16??

cells are the minor population consisting of approximately

5–10 % of total monocytes [13, 15, 16], and nonprolifer-

ating cells may be very limited in numbers that are required

for adoptive immunotherapy of cancer [4]. We have pre-

viously described the protocol for generation of monocytes

from cord blood (CB) haematopoietic CD34? progenitors

which may give rise to potentially unlimited numbers of

monocytes, as up to 1000-fold increase in cells in com-

parison with the initial inoculum was obtained, and among

them up to 60 % of CD14? cells consisting of two novel

subsets CD14??CD16? and CD14?CD16- were found.

They differed not only in the CD14 but also in other

determinants expression and functional activity [17].

In the present study, the attempts were undertaken to

obtain monocytes from bone marrow (BM) haematopoietic

CD34? stem cells of patients with colon cancer and to

determine their immunophenotype and some functional

activities. This paper shows that monocytes with similar

characteristics as CB CD34? cell-derived monocytes,

consisting of CD14??CD16? and CD14?CD16- subsets,

can be generated and exhibited APC capacity and cyto-

toxicity against tumour cells.

Materials and methods

Bone marrow biopsy and isolation of CD34? cells

Bone marrow from patients with colorectal cancer (Duke’s

C stage) was obtained by needle aspiration from the iliac

crest, after written consents from the patients. The 15

patients (6 females and 9 males) with mean age

66 ± 14 years, before surgery and without any previous or

current treatment were studied. Aspirates were suspended

in saline, and mononuclear cells from them and from

peripheral blood (PBMC) were isolated accordingly by

standard density-gradient centrifugation (Lymphocyte

Separation Medium 1077, PAA Laboratories GmbH,

Pasching, Austria). Then the CD34? cells were isolated

from PBMC using the EasySep Human CD34 Positive

Selection Kit (StemCell Technologies, Vancouver, Canada),

based on magnetic cell sorting. The mean number of

CD34? cells recovered was 1.6 9 105 ± 1.4 9 105. The

study was approved by the local Jagiellonian University

Ethical Committee (No. KBET/86/B/2007 and KBET/193/

B/2011).

Generation of monocytes

CD34? cells were expanded and differentiated to mono-

cytes in two-step cultures in the expansion and differenti-

ation media, each step 7–10 days, as previously described

[17].

Immunophenotyping

The following anti-human monoclonal antibodies (mAbs)

were used: anti-CD14 allophycocyanin (APC)-conjugated,

anti-CD16 and anti-HLA-DR, both phycoerythrin (PE)-

conjugated, anti-CD80 and anti-CD86, both fluorescein

isothiocyanate (FITC)-conjugated (all from BD Pharmin-

gen, San Diego, CA). In parallel, staining with appropriate

isotype-matched mouse immunoglobulins (BD Pharmin-

gen) were used as negative controls. After incubation for

30 min at 4 �C with mAbs or isotype controls, the cells

were washed, resuspended in 0.3 ml of PBS containing

0.1 % sodium azide and analysed by flow cytometry

(FACS Canto, BD Biosciences Immunocytometry Sys-

tems, San Jose, CA) using FACS DiVa v. 5.1 software. List

mode data for 20,000 events were acquired, and statistical

analysis was performed according to the fluorescence

intensity of cells stained with appropriate isotype controls.

Isolation of monocytes and their subpopulations

Cells cultured in the differentiation medium were har-

vested, washed, and suspended at the concentration of

10 9 106/ml. After staining with anti-CD14 APC and anti-

CD16 PE-conjugated mAbs, the cells were sorted using a

100 lm nozzle tip in FACS Aria II (BD Biosciences) into

CD14? monocytes (total population) and CD14??CD16?

and CD14?CD16- subpopulations. Sorted cells were col-

lected into polystyrene Falcon 2057 tubes (BD Biosci-

ences) precoated with foetal bovine serum (FBS, Gibco,

Paisley, UK), to avoid plastic charging and cell attachment

to the wall. The cells were washed and suspended in RPMI

1640 medium (Sigma, St. Louis, MO), supplemented with

gentamycin (50 lg/ml), glutamine (2 mM) and 5 % FBS

(all from Gibco).
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Isolation of T lymphocytes

The CD3? cells were isolated from PBMC (obtained as

above) using the EasySep Human CD3 Positive Selection

Kit (StemCell Technologies) based on magnetic cell sort-

ing. Isolated CD3? lymphocytes were suspended in Serum

Free Type Cell Freezing Medium (Bambanker, Lympho-

tec, Tokyo, Japan) and stored at -80 �C until use.

Tumour cell lines and tumour-derived microvesicles

(TMV)

Human pancreatic carcinoma (HPC-4) cell line established

in this laboratory [18] and DeTa (colon carcinoma) were

cultured and passaged as previously described [19], except

that FBS was deprived of MV by centrifugation at

50,0009g for 1 h. TMV from HPC-4 cells (TMVHPC) were

obtained as previously described [11]. Briefly, supernatants

from well-grown cell cultures were collected and spun

down at 2,0009g for 20 min to remove cell debris. Then

supernatants were again pelleted (RC28S centrifuge,

Sorvall, Newton, CT) at 50,0009g for 1 h at 4 �C. Pellets

were washed several times in RPMI 1640 to remove FBS

and finally resuspended in serum-free RPMI 1640 medium.

Quantification of TMV protein concentration was evalu-

ated by the Bradford method (BioRad, Hercules, CA). The

cells and TMVHPC were tested for the presence of HER-2/

neu using APC-labelled anti-HER-2/neu mAb (BD Bio-

sciences) and flow cytometry analysis (FACS Canto).

Antigen presentation

The CD34? cell-derived CD14? monocytes (1 9 104/well)

isolated by FACS sorting were cultured for 2 h in the

presence of recall antigens: purified protein derivative

(PPD, 25 lg/ml; Statenserum Institute, Copenhagen, Den-

mark) or Candida albicans (BioRad, Marnes-la-Coqunetté,

France), or c-irradiated (20 Gy) HPC-4 cells, or TMVHPC

(5 lg/ml final concentration) or specific TAA antigen–

HER2/neu immunodominant peptide KIFGSLAFL (5 lg/

ml) in flat-bottom 96-well plates (Sarstedt, Numbrecht,

Germany) in RPMI 1640 medium supplemented with

L-glutamine (2 mM), 10 % human AB serum and genta-

mycin (50 lg/ml, all from Gibco). Then, autologous T

cells, after thawing and washing three times in RPMI 1640

medium, were added (1 9 105/well). T lymphocytes alone

or with the appropriate stimulus and unstimulated cultures

were used in parallel as negative controls. Cells were

cultured in triplicates for 6 days at 37 �C in 5 % CO2

atmosphere, with a 6 h terminal pulse of [3H]-thymidine

(1 lCi/well). Index of proliferation was calculated

according to the formula: cpm of 3H-thymidine incorpo-

ration in the stimulated culture/cpm of appropriate negative

control cultures. BM monocytes were generated, and T

lymphocytes were isolated only from the patients whose

PBMC proliferated in response to specified stimulants.

Detection of HER-2/neu-specific cytotoxic CD8? T

cells (CTL)

For the detection of HER-2/neu-specific CTL, only patients

positive for HLA-A2 antigens were selected. Expression of

HLA-A2 was determined by patients’ blood lymphocytes

staining, using PE-conjugated mouse anti-human HLA-A2

mAb or PE-conjugated isotype-matched mouse immuno-

globulins (both BD Pharmingen) as a negative control,

followed by lysis of erythrocytes (FACS Lysing Solution,

BD Biosciences) and flow cytometry analysis (FACS

Canto). Patients positive for HLA-A2 expression were

further tested for the presence of CTL specific to the

immunodominant HER-2/neu369–377 epitope. For this pur-

pose, whole blood samples were stained with PE-labelled

HLA-A*0201 pentamer complex (ProImmune Ltd., Oxford,

UK), folded around the HER-2/neu369–377-specific epitope.

As a negative control, staining with HLA-A*0201 negative

control pentamer (ProImmune) was used. The cells were

incubated with indicated pentamers for 30 min. at 20 �C

followed by washing and staining with peridinin chloro-

phyll protein complex (PerCP)-conjugated anti-CD3 and

FITC-conjugated anti-CD8 mAb (BD Pharmingen) for

30 min. at 4 �C in the dark. Then, the cells were washed

and erythrocytes were lysed (FACS Lysing Solution). After

additional washing, cells were analysed by flow cytometry

(FACS Canto). Data from a minimum 50,000 CD3? cells

were collected, and detection of more than 0.2 % HER-2/

neu pentamer-stained CD3? CD8? cells above the back-

ground was considered positive.

Generation of HER-2/neu-specific CTL

To check the ability of patients BM CD34? cell-derived

monocytes to induce HER-2/neu-specific CTL, the cells

from patients positive for primed HER-2/neu369–377 CTL

were used. T cells were isolated and stored, as described

above, until monocytes were generated. After thawing, T

cells (5 9 105/well) were cultured with 5 9 104 BM stem

cell-derived autologous CD14? monocytes, in the presence

of HER-2/neu369–377 peptide (KIFGSLAFL; 5 lg/ml, Pro-

Immune) in RPMI 1640 medium, supplemented with

L-glutamine (2 mM), 10 % human AB serum and genta-

mycin (50 lg/ml, all from Gibco). After 7 days of culture,

the level of HER-2/neu369–377-specific CTL was deter-

mined by pentamer staining and flow cytometry analysis,

as described above.
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Determination of cytotoxic activity

Cytotoxicity of monocytes and their subpopulations

towards HPC-4 and DeTa cells was determined as previ-

ously described [6]. Briefly, monocytes (5 9 104/well),

tumour cells (2 9 104/well) or their mixtures were cultured

in RPMI 1640 medium for 24 h. Then, the culture medium

was removed and 100 ll per well of MTT (2 mg/ml; 1, 3-

[4,5-dimetylthiazol-2-yl]-2,5-diphenyltetrazolium bromide,

Sigma) dye solution was added for 4 h. Formed formazan

was extracted with isopropyl alcohol (Fluka Chemie AG,

Buchs, Switzerland), containing 0.04 N HCL and its con-

tent determined by spectrophotometrical measurement of

absorbance using two different wavelengths: 570 and

630 nm. The percentage of cytotoxicity was calculated

according to the formula previously described [20]:
�
1� OD monocytesþ tumour cellsð Þ
�OD monocytes aloneð Þ=OD tumour cells aloneð Þ

�
� 100

Statistical analysis

Nonparametric one-way ANOVA test with the Microcal

Origin software v. 5.0 (Northampton, MA) was used for

analysis. The differences were considered significant at

p \ 0.05.

Results

Immunophenotype of CD34? cell-derived monocytes

Following culture of CD34? cells in the expansion and dif-

ferentiation media, the number of cells increased approxi-

mately 200-fold (range 75–440) (Fig. 1a) with up to 60 %

of CD14? cells at day 20 (Fig. 1b). Among them,

CD14??CD16? and CD14?CD16- subsets in approximately

1:1 proportion were observed (Fig. 2a). Then, the expression

of costimulatory molecules on these subsets was determined.

The CD80 was not detected, CD86 was comparable on both

subsets, while significantly higher HLA-DR expression on

CD14??CD16? monocytes was observed (Fig. 2b, c).

Determination of HER-2/neu expression on HPC-4

cells and TMVHPC

In order to check whether tumour cells and their TMV used

exhibit TAA, expression of HER-2/neu was analysed by

flow cytometry. Figure 3a shows that almost all HPC-4

cells expressed HER-2/neu. In contrast, its expression on

TMVHPC was markedly lower when compared to the cells

they originated from (Fig. 3b). Furthermore, both HPC-4

cells and to a lesser extend TMVHPC expressed MUC-1 and

contained HER-2/neu, MAGE-1,3 and MUC-1 mRNA

(data not shown). We concluded that both the cells and

their TMV may be used as a source of TAA.

Proliferation of T lymphocytes in response to recall

antigens or TAA

First, to validate the occurrence of T lymphocytes priming,

we studied the response of patients’ PBMC to recall anti-

gens (PPD, Candida), c-irradiated HPC-4 cells or TMVHPC.

For further studies, only T lymphocytes and BM CD34?

cells from patients whose PBMC responded to the stimu-

lants were used. PBMC from 8 control subjects did not

respond to HPC-4 and TMVHPC (data not shown). The

autologous T lymphocytes isolated from PB of cancer

patients were added to CD34? cell-derived CD14?

monocytes and preexposed to recall antigens, c-irradiated

HPC-4 cells, and TMVHPC. Figure 4 shows that patients’ T

lymphocytes responded to recall antigens when cultured

with autologous monocytes. The cells also proliferated

following stimulation with HER-2/neu-positive HPC-4

cells or TMVHPC. T lymphocytes alone cultured in the

presence of stimulants did not proliferate. It was concluded

that CD34? cell-derived monocytes from cancer patients

are able to present recall antigens and TAA to autologous T

cells.
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Generation of HER-2/neu369–377-specific CTL

As the HER-2/neu-derived peptides, naturally processed as

TAA, are recognized by tumour-specific, HLA-A2-

restricted CTL in colorectal cancer [21], in the next set of

experiments we evaluated the proliferative response of T

cells stimulated with HER2/neu369–377 immunodominant

peptide in the presence of patients’ BM CD34? cell-

derived monocytes as APC. For this part of study, only

patients positive for HLA-A2 expression and for the

occurrence of primed CTL specific to the immunodominant

HER-2/neu369–377 epitope in the blood were selected. This

group contained four patients whose level of HER-2/

neu-specific CTL in the blood exceeded 0.2 % (range

0.25–1.2 %). T cells isolated from these patients were

cultured with population of autologous CD14? BM CD34?

cell-derived monocytes and stimulated with HER-2/

neu369–377 peptide (KIFGSLAFL). After 7 days of culture,

proliferation index increased (Fig. 5a). Simultaneously, the

level of peptide-specific CTL was determined by flow

cytometry (Fig. 5b) and found to be significantly increased

in cultures of monocytes with T cells, as compared to

PBMC (Fig. 5c). This indicates that BM CD34? cell-

derived CD14? monocytes induced propagation of HER2/

neu-specific CTL.

Cytotoxicity

The total population of monocytes (CD14? cells), used at

different doses, exhibited substantial spontaneous cytotoxicity
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towards HPC-4 and DeTa cancer cells (Fig. 6). The CD14??

CD16? monocytes showed slightly higher cytotoxic/cytostatic

activity in comparison with total population of monocytes

or their CD14?CD16- subset, though the differences were

statistically not significant.

Discussion

The present observations clearly demonstrate the feasibility

of in vitro generation of monocytes from BM CD34?

haematopoietic stem cells of colon cancer patients. This

model study was limited to a few patients and a small

volume of BM aspirates that were available. We have used

the protocol that was elaborated for production of mono-

cytes from CB haematopoietic CD34? stem cells, which

enabled up to 1000-fold increase in cultured cells among

which up to 60 % were CD14? monocytes, and included

the two-step cultures of the expansion and differentiation.

These monocytes consisted of novel CD14??CD16? and

CD14?CD16- subpopulations with the ratio 1:2 and were

clearly different from PB monocytes subsets by phenotype

and functions [17]. The use of BM CD34? cells from

cancer patients also led to the production of up to 60 %

CD14? monocytes containing these subsets, however,

occurring at the ratio 1:1. The reason for the differences in

the ratios of the monocyte subsets generated from BM and

CB CD34? cells are unknown but may be due to the initial

kinetic state of these cells or their level of lineage com-

mitment [22]. These subsets showed similar expression of

costimulatory molecule CD86, the lack of CD80 and an

enhanced expression of HLA-DR detected mostly on

CD14??CD16? monocytes. The latter finding is similar to

this CB monocyte subset, which shows an increased allo-

stimulatory capacity [17] and PB CD14?CD16?? sub-

population [14]. The increased expression of HLA-DR may
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Fig. 5 Generation of HER-2/neu-specific CD8? T cells in cultures of

BM CD34? cell-derived monocytes with autologous T cells from

colon cancer patients, stimulated with HER-2/neu peptide. a Prolif-

eration index of T cells in cultures with autologous BM CD34? cell-

derived monocytes from colon cancer patients stimulated with

HER-2/neu peptide (KIFGSLAFL). b Flow cytometry analysis of

the level of HER2/neu-specific CTL propagated in the presence of

BM CD34? cell-derived monocytes. T cells from HLA-A2-positive

patients were cultured with autologous BM CD34? cell-derived CD14?

monocytes in the presence of KIFGSLAFL peptide for 7 days, and after

staining with PE-conjugated HLA-A*0201 HER-2/neu369–377 pentamer

and anti-CD3 and anti-CD8 mAbs were analysed by FACS. CD8? T

lymphocytes were gated according to morphological (P1) and

phenotype marker characteristics (P2). Statistics was set according

to staining with HLA-A*0201-negative control pentamer. Data from

one representative analysis is shown. The initial level of HER-2/

neu369–377-specific CTL detected in PBMC of this patient was 0.25 %

(not shown). c The cumulative data of the initial levels of HER-2/

neu369–377-specific CTL detected in PBMC of HLA-A2-positive

patients and at the end of culture. Data from four performed

experiments are shown. * denotes significant difference from PBMC
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imply the higher potential of this subset to act as APC.

However, due to a small number of cells available, antigen-

presenting ability in respect to recall antigens and TAA

was studied only for the total population of obtained

monocytes. For determination of APC activity, patients

were selected on the basis of their PBMC response to these

antigens. The response of autologous T cells cultured with

monocytes to recall antigens was observed, which is sim-

ilar to PB monocytes [8]. Furthermore, such cultures

stimulated with tumour cells or TMV that express HER-2/

neu and possibly other neoantigens also responded. How-

ever, no proliferation was observed in cultures with the

addition of patients’ plasma, which is known to contain

TMV. This may be due to the relatively small concentra-

tion of TMV in the plasma [23]. Also, no response of T

cells cultured with autologous CB CD34? cell-derived

monocytes, used as control, to the stimuli employed was

detected, though these cultures were responding to poly-

clonal stimulation with anti-CD3 mAb (data not shown).

This may indicate that nonprimed CB T lymphocytes did

not proliferate in response to TAA. It is also supported by

the finding that patients, but not healthy donors PBMC,

responded to HPC-4 cells or TMVHPC (data not shown).

We wish to suggest that response of patients’ T lympho-

cytes to HPC-4 cells and TMVHPC is driven by TAA which

are expressed on their surface. Our data indicate that HER-

2/neu-specific CTL are detected in the blood of colon

cancer patients. These CTL were propagated in response to

the immunodominant HER-2/neu369–377 peptide presented

by patients’ autologous BM CD34? cell-derived mono-

cytes. This observation indicates that BM CD34? cell-

derived monocytes are potent APC and can be used for

expansion of TAA-specific CTL; however, the protocol for

more effective yield of expanded CTL needs to be further

elaborated as the increase in HER-2/neu369–377 CTL num-

ber in our study was not impressive when compared to

other studies using dendritic cells for stimulation with

tumour-derived peptides [24, 25]. It should be noted that

we used for their generation short-term cultures and low

initial numbers of T cells, which were available for the

study. In addition, we are aware of the fact that these cells

were determined only phenotypically and no functional

studies of CTL were performed, as the number of CTL

obtained was very low. These limited observations were

initiated only to proof the feasibility of this approach.

The question may arise, whether monocytes obtained

from BM-derived CD34? cells of healthy donors behave

differently or in the same way as those from cancer

patients. Due to ethical reasons, such controls were not

introduced into our study. However, the data obtained from

CB CD34? cell-derived monocytes suggest that the

absence of the response in their cultures with autologous T

cells is rather due to the lack of priming the latter and not to

the inability of monocytes to act as APC. This observation

also indirectly indicates the specificity of the response of

patients’ T cells.

It is known that human PB monocytes express sponta-

neous cytotoxicity towards tumour cells in vitro, which

is thought to be associated with their production of

TNF, ROI, RNI [6, 14, 26]. Among PB monocytes,

CD14?CD16?? subset (nonclassical monocytes) [13]

exhibits a higher cytotoxicity towards tumour cells [14].

The present data indicate that CD14? monocytes generated

from BM stem cells of colon cancer patients also show

substantial cytotoxicity, which was rather associated

(nonsignificantly) with CD14??CD16? subset. This makes

this subset similar to PB CD14?CD16?? subpopulation

[14]. Therefore, we cannot assign cytotoxicity of generated

monocytes to any particular subset. However, we wish to

suggest that in general, BM CD34? cell-derived monocytes

of cancer patients possess a higher cytotoxic/cytostatic

activity, around 40 %, while such monocytes generated

from CB around 20 % [27].

In summary, the data presented provide evidence that it

is possible to generate monocytes from BM haematopoietic

CD34? stem cells of cancer patients, which show the

ability to effectively present TAA or HER-2/neu369–377

dominant peptide and to act as cytotoxic cells against

tumour cells in vitro. It may open the way for generation,

potentially on large scale, autologous monocytes that can

be used in various forms of adaptive and adoptive cellular

immunotherapy of cancer.
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