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Abstract
Purpose: To evaluate the ability of coronary computed tomography angiography (CCTA) with model-based iterative 
reconstruction (MBIR) algorithm in detecting significant coronary artery stenosis compared with invasive coronary 
angiography (ICA). 

Material and methods: We retrospectively identified 55 patients who underwent CCTA using the MBIR algorithm with 
evidence of at least one significant stenosis (≥ 50%) and an ICA within three months. Patients were stratified based on 
calcium score; stenoses were classified by type and by coronary segment involved. Dose-length-product was compared 
with the literature data obtained with previous reconstruction algorithms. Coronary artery stenosis was estimated on 
ICAs based on a qualitative method.

Results: CCTA data were confirmed by ICA in 89% of subjects, and in 73% and 94% of patients with CS < 400 and 
≥ 400, respectively. ICA confirmed 81% of calcific stenoses, 91% of mixed, and 67% of soft plaques. Both the dose 
exposure of patients with prospective acquisition (34) and the exposure of the whole population were significantly 
lower than the standard of reference (p < 0.001 and p = 0.007).

Conclusions: CCTA with MBIR is valuable in detecting significant coronary artery stenosis with a solid reduction of 
radiation dose. Diagnostic performance was influenced by plaque composition, being lower compared with ICA for 
patients with lower CAC score and soft plaques; the visualisation of an intraluminal hypodensity could cause false 
positives, particularly in D1 and MO segments.
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Introduction
In the last 20 years computed tomography (CT) has as-
sumed a primary diagnostic role with an ever-expanding 
range of possibilities. The wide use of this method has 
brought about the need to reduce exposure to ionising 
radiation, in line with the principle underlying radiation 
protection, as expressed by the acronym ALARA (as low 

as reasonably achievable). Recent technological advanc-
es have focused on one of the factors influencing image 
quality; namely, the dose/noise ratio. It is in this context 
that reconstruction software takes on a major role. Indeed, 
thanks to more and more evolved algorithms and math-
ematical models, the noise, and therefore the dose, have 
been significantly reduced [1]. The evolution of these al-
gorithms has seen the transition from the “filtered back 
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projection” (FBP) to the first hybrid iterative construction 
models (HIR) to reach the last step of this evolutionary 
scale as represented by the most recent model-based ite-
rative reconstruction (MBIR) algorithms [2]. The last of 
these models critically reduces noise, increases the con-
trast resolution, and maintains densitometric homogene-
ity, allowing acquisitions at very low doses [3-9]. Increas-
ing attention to dose exposure is further confirmed by the 
recent directive EURATOM 2013/59, which, for the first 
time in the European legislative framework of radiopro-
tection, makes communication of the radiation dose to 
the patient compulsory.

Therefore, the increase in diagnostic investigations 
based on ionising radiation places great emphasis on 
evaluation and monitoring of the dose absorbed by each 
patient over time. A field of application of MBIR algo-
rithms is cardiovascular imaging, in particular coronary 
CT angiography (CCTA) [10]. In recent years, several 
studies have investigated the effects of low-dose images 
acquired with the new MBIR techniques, comparing them 
with the HIR and the older FBP reconstructions, and no 
qualitative and quantitative differences were reported in 
terms of attenuation, noise, and image contrast/noise ratio 
[11-14]. Moreover, MBIR dose reduction systems have re-
duced patient exposure while maintaining high quality of 
the images [15-18]. Few studies, however, have evaluated 
how MBIR influences the quantitative estimate of coro-
nary stenosis [1,19]. 

The aim of our study was to assess the diagnostic abil-
ity of CCTA compared to conventional invasive coronary 
angiography (ICA) in the detection of significant coro-
nary stenosis (50% or greater) with MBIR. 

Material and methods
The study was approved by the Institutional Review Board, 
and the requirement of informed consent to conduct this 
retrospective and observational study was waived.

We retrospectively identified all adult patients (aged 
> 18 years) who had performed a CCTA with evidence 
of at least one significant stenosis (≥ 50%) and an ICA 
within three months of CCTA, in the period from April 
2016 to April 2018. The research was carried out through 
access to the radiological information system (PolaRIS, 
Carestream Health, Rochester, NY, USA) and the image 
archiving and transmission system PACS (Carestream 
PACS, Carestream Health, Rochester, NY, USA). Patients 
were enrolled as shown in Figure 1.

Fifty-five patients (42 males and 13 females with an av-
erage age of 64.4 ± 9.9 years and an average BMI of 27.7 kg/
m2) presented with our inclusion criteria. Patients were 
divided into two groups based on Agatston’s calcium 
score (CS) (< 400 vs. ≥ 400), while all identified signif-
icant stenoses were classified by type (calcified, mixed, 
and soft). Notably, calcification was identified for density 
greater than 220 HU [20,21]; plaques with 50% or greater 

calcium were defined as calcified, and less than that as 
mixed [20,22]. Moreover, each stenosis was classified by 
the coronary segment involved, in accordance with the 
16-segment coronary tree model of the AHA [23], with 
the addition of venous graft segments and arterial graft 
for patients with by-pass. The CCTAs were performed 
on a tomograph (Philips Brilliance iCT 256-Slice Scan-
ner, Philips Healthcare, Amsterdam, The Netherlands), 
and images reconstructed with MBIR (Iterative Model 
Reconstruction IMR, Philips. Healthcare), using voltage 
based on BMI and automatic current modulation. Table 1 
shows the main technical parameters of scanning; of par-
ticular interest are the average voltage of 100 Kv and the 
average current, which was 194.9 mAs for all patients, 
but which became 110.9 mAs when only the 34 patients 
who performed CCTAs with prospective acquisition were 
considered. The extent of each stenosis was calculated us-
ing data reconstruction software (IntelliSpace Portal 8.0, 
Philips Healthcare, Amsterdam, The Netherlands) as the 
area reduction on coronary axial images by two radiolo-
gists with more than 10 years of experience in cardiac im-
aging. If a coronary segment had more than one stenosis, 
only the most significant one was considered.

ICA angiograms were carried out in the cardiac an-
giography suite (Artis Zee Floor, Siemens, Erlangen, 
Germany) by three interventional cardiologists with 
more than 15 years of experience; all investigations were 
performed by trans-femoral arterial catheterisation, and 
a minimum of eight projections were obtained. From 
the angiographic images, the stenoses identified were 

424 CCTA from April 2016 
to April 2018 

197 CCTA with at least one 
stenosis ≥ 50%

55 ICA within 3 months 
from CCTA 

227 CCTA without stenosis 
≥ 50% 

142 no ICA performed after 
3 months from CCTA

Figure 1. Flow chart of the study population selection

Table 1. Scan parameters

CCTA with prospective scan mode 34

Beam collimation 256 × 0.625 mm 

Slice thickness 0.9 mm

Reconstruction increment 0.3 mm

Rotation time 270 s

Tube voltage 100 kVp (80-120)

Tube current 194.9 mAs (70-539)

Tube current in prospective CCTA 110.9 mAs (70-273)

Field of view 18 cm

CCTA – coronary computed tomography angiography, ICA – invasive coronary angiography
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qualitatively evaluated, without specific quantitative or 
semi-quantitative software. The estimate of the vessel di-
ameter reduction was, therefore, provided on the basis of 
the operator’s experience. 

The prevalence of CCTA diagnoses confirmed by ICA 
was calculated in the groups and subgroups defined by the 
collected variables (Figure 2). 

The radiation dose measured in the sample was eval-
uated from the dose report of each CCTA using the dose-
length product (DLP) and the effective dose (ED). DLP 
was compared by means of the Wilcoxon signed-rank test 
with a review [18] evaluating the dose reduction associ-
ated with the HIR algorithms in the CCTAs. An alpha of 
0.05 was used as the cut-off for significance, and the anal-
yses were conducted on Stata 13 (StataCorp, 2013, College 
Station, TX).

Results
Of the 55 patients, 38 subjects had suspected acute coro-
nary artery disease without prior cardiovascular events, 
while 17 patients had already undergone previous coro-
nary interventions (six by-pass, nine angioplasties on na-
tive coronary, and two on venous grafts).

The number of stenoses identified on CCTA and ICA, 
in the groups and subgroups under examination, is re-
ported in Table 2. CCTA stenoses confirmed by ICA were 
considered as CCTA true positives (TP), while the uncon-
firmed stenoses were false positives (FP).

The patient-based analysis showed that CCTA data 
were confirmed by ICA in 89% of subjects with at least 
one significant stenosis, and in 73% and 94% of patients 
with CS < 400 and ≥ 400, respectively. CS was not cal-
culated in the 17 patients with previous revascularisation 
coronary interventions, so they were excluded. In the ste-
nosis-based analysis, CCTA identified 129 stenoses and 
ICA confirmed 81% of them. ICA also confirmed 81% 
of calcified, 91% of mixed, and 67% of the soft stenoses 
(Figure 3).

Table 3 shows TP and FP stenosis and the correct diag-
nosis rate of CCTA based on the coronary segment stenosis.

The median DLP (mGy·cm) and ED (mSv) were 187.4 
and 2.6, respectively, in the entire population, but 125.4 and 
1.8 when considering only the 34 patients with prospective 
acquisition. The Wilcoxon signed-rank test showed that 
both the dose exposure of patients with prospective acquisi-
tion and the exposure of the population as a whole were sig-
nificantly lower than the DLP value of 240.8 ± 11.0 reported 

Patients Calcium score
≥ 400

< 400 

Groups Subgroups

Stenosis
Soft

Calcified

Mixed

Coronary segment [12]

Plaque type

Figure 2. Graphic representation of the groups and subgroups for which  
the prevalence of confirmed diagnoses was to be calculated

Table 2. Group and subgroup populations; in the second column the num-
ber of patients with at least one significant stenosis and the number of sig-
nificant stenoses identified by coronary computed tomography angiography 
(CCTA) and confirmed (TP) by invasive coronary angiography (ICA). In the 
third column the unconfirmed CCTA data (FP) by ICA

CCTA ≥ 50% ICA ≥ 50% 
(TP)

ICA < 50% 
(FP)

Patients 55 49 6

Patients with CS < 400 22 16 6

Patients with CS ≥ 400 16 15 1

Stenoses 129 105 24

Calcified stenoses 53 43 10

Mixed stenoses 46 42 4

Soft stenoses 30 20 10

Figure 3. Histogram with percentage of coronary computed tomography angiography diagnoses confirmed by invasive coronary angiography. A) Patient- 
based analysis with at least one significant stenosis. B) Significant stenosis-based analysis
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in the literature (18), which was our standard of reference, 
with a p < 0.001 and p = 0.007, respectively (Figure 4).

Discussion
New technical advantages have significantly increased  
the ability to image the heart and coronary arteries, sup-
porting the clinical utility of CCTA to analyse the coro-

nary artery anatomy [24] and identify coronary artery ste-
nosis [23]. Nowadays the main goal is to exclude coronary 
stenosis in subjects with low and intermediate pre-test 
probability of coronary disease, with atypical symptoms 
and/or unclear or inconclusive cardiologic investigations. 
Other indications are the follow-up of patients already 
treated with by-pass or coronary stents and in cases of 
suspected anomaly of coronary origin. CCTA is further 
indicated in candidate patients for cardiac surgery for val-
vular or aorta pathology [23,25-27]. The procedure has 
now been standardised [23,28].

Regarding the evaluation of coronary arteries, tech-
nological progress is proceeding along two parallel paths: 
on the one hand, the aim is to improve recognition of ste-
nosis, quantify it correctly and, thanks to the estimate of 
the flow reserve [29], to evaluate its haemodynamic sig-
nificance; on the other hand, research is oriented towards 
finding new strategies to reduce the dose, a goal that in-
volves the previously mentioned iterative reconstructions. 
The final objective is a more widespread use of CCTA. 

An important feature of CCTA is its high sensitivity  
(> 90%) and high negative predictive value (NPV > 98%) 
for the diagnosis of significant stenosis. The positive pre-
dictive value (PPV) reported in the main multicentre 
studies ranges from 64% to 86% to 91% [30-36]. These 
data support the main clinical indication of CCTA, which 
is to exclude the presence of significant stenosis in pa-
tients with pre-test probability of low or intermediate cor-
onary disease.

Although the design of our study does not allow us to 
provide an evaluation of sensitivity, specificity, PPV, and 
NPV of CCTA in the detection of significant stenosis, it 
does provide us with the percentage of correct diagnoses 
of CCTA as compared with ICA, which we can, howev-
er, consider to be a substitute for the PPV. In accordance 
with data published in the literature [31-36], our results 
suggest that CCTA with MBIR may be considered reliable, 
showing a correct diagnosis rate of 89% for patients with 
at least one significant stenosis and 81% for total stenoses 
(Figures 5 and 6).

Furthermore, calcifications estimated by the calcium 
score (CS) represent a problem for the assessment of the 
vessel lumen. Calcium on the coronary wall tends to appear 
much larger than its real size (blooming effect). When the 
calcifications have high density and/or dimensions, they 
tend to obscure the vessel lumen [37], making assessment 
of the degree of stenosis difficult if not impossible. Recent 
data from the literature suggest that among the solutions 
to this problem, model-based iterative reconstruction tech-
niques have been shown to improve image analysis for the 
morphological characterisation of coronary plaques, such 
as volume and composition, and consequently improve the 
evaluation of the degree of stenosis [38-40]. Our data seem 
to confirm this indication; in fact, we observed a higher 
percentage of correct diagnoses for patients with high cor-
onary calcium burden (CS ≥ 400) and for calcified or mixed 

Table 3. Number of total stenoses divided per segment using the 16-seg-
ment coronary artery classification of the AHA with the arterial and venous 
graft segment addiction. The number of asterisks (*) indicates the number 
of intra-stent stenoses by segment

Coronary segments TP FP %

Proximal RCA 8 3 72.7

Middle RCA 9 1 90.0

Distal RCA 5 1 83.3

rPDA 3 2 60.0

LMCA 4 1 80.0

Proximal LAD 26**** 4 86.7

Middle LAD 13** 2 86.7

Distal LAD 3 1 75.0

D1 5 4 55.6

D2 0 0 0.0

Proximal CFx 12** 1 92.3

MO 3 4 42.9

Distal CFx 3 0 100.0

PL 1 0 100.0

lPDA 0 0 0.0

Ramus intermedius 4 0 100.0

Venous graft 3** 0 100.0

Arterial graft 3 0 100.0

Total number of stenoses 105 24 81.4
RCA – right coronary artery, rPDA – right postero-descending artery, LMCA – left main coronary 
artery, LAD – left anterior descendent artery, D – diagonal branch, Cfx – circumflex artery,  
MO – obtuse marginal branch, PL – postero-lateral branch, lPDA – left postero-descending artery

Figure 4. Box plot. Dose-length-product (DLP) distribution of the two pop-
ulations (patients with prospective acquisition and the entire population) 
compared with our literature reference (red line)
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Figure 5. Coronary computed tomography angiography (CCTA) shows significant stenosis (arrows) in the proximal segment of left anterior descendent (LAD) 
branch confirmed by invasive coronary angiography (ICA). A) Curved multiplanar reformatted image of CCTA. B) CCTA 3-D volume rendering. C) True axial 
and longitudinal CT reconstruction of LAD at stenotic level. D) Fluoroscopic image during ICA

A B

C

D

Figure 6. Patient with venous-graft by-pass. Coronary computed tomography angiography shows intra-stent hypodensity (arrows) in the venous graft 
confirmed by invasive coronary angiography (ICA). A) Curved multiplanar reformatted image with true axial sections of the vessel at stenotic level.  
B) Magnification of A. C) Fluoroscopic image during ICA

A B

C

stenosis compared to the remaining subgroups. The use of 
MBIR algorithms for reducing blooming artefacts in the 
presence of coronary calcium has been demonstrated to 
reduce both the image noise and calcium scores compared 
to previous FBP [19,41]. 

Furthermore, in our experience, the presence of intra-
luminar hypodense bands of artefactual meaning, lacking 
in ICA evidence, and erroneously interpreted as signifi-

cant plaques was connected to the low percentage (67%) 
of CCTA correct diagnoses of the soft plaques, which is 
an expression of a high number of FP. This artefact could 
be related to both the low dose and vessel geometry and/
or turbulent flow in those coronary tracts, but further data 
are needed to better understand this phenomenon.

Broadly speaking, a diverse group of factors may affect 
the detection of non-calcified plaques in CCTA by radio-
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logists or even by computer-aided detection (CAD) sys-
tems [42], including the small calibre of coronary vessels, 
the image noise and limited spatial resolution of CT, and 
the intrinsic low contrast of the soft plaques. Nevertheless, 
most discrepancies between CCTA and ICA are proba-
bly due to the inferior temporal and spatial resolution of 
CCTA compared with ICA [43].

The 16-segment coronary tree model of the AHA [23] 
represents the basis for visual evaluation of significant 
coronary stenosis in segments with a lumen diameter  
≥ 1.5 mm. The data in Table 3 show that the segments 
most affected by significant stenosis are proximal and 
middle left anterior descendent (LAD) branch with 87% 
of correct diagnoses, the right coronary artery (RCA) 
with 73% for proximal tract, 90% for middle tract, and 
83% for distal tract, and proximal segment of Circum-
flex branch (CFx) with 92%. The number of stenoses on 
the other coronary segments, on the graft, and intra-stent 
is too small to make an evaluation in this setting. How-
ever, it should be noted that in the first diagonal (D1) 
and marginal obtuse (MO) segments, the high number 
of FP allows us to point out a low percentage of correct 
diagnoses: 56% and 46%, respectively. The retrospective 
analysis of CT images shows that the interpretation er-
ror mainly involves the proximal tract of these segments, 
which present a low attenuation band misinterpreted as 
stenosis (Figure 7).

The retrospective design of the study allows us to iden-
tify eight significant stenoses in the ICA but not recognised 
by CCTA, which we can consider as CT false negatives 
(FN). These were one stenosis on distal LAD segment, 
one on D1, one on second diagonal (D2) segment, one on 
acute marginal branch, one on distal RCA segment, two 
on posterolateral (PL) segment, and one on MO segment. 
These findings are of epidemiological interest but have 
no statistical value that goes beyond the aim of the study.  
We only stress that these FNs are mainly affected by distal 
segments and with a lumen diameter of < 1.5 mm.

In many studies, ICA remains the established gold 
standard for the diagnosis of coronary disease [30]. How-
ever, in some cases, ICA is not a good choice for the risk 
of non-negligible complications, such as arrhythmia, myo-
cardial infarction, stroke, and access site problems. The 
examination also exposes the patient to greater amounts 
of ionising radiation. The issue concerning the radiation 
dose during CCTA is relevant in light of the potential sto-
chastic cancer risk associated with radiation exposure for 
medical purposes. The literature tells us that the ED for 
a standard ICA test is on average > 10 mS while for CCTA 
it is constantly < 10 mS and with the most recent tech-
nologies even < 1 mS [44,45]. Finally, we underline that 
almost a third of ICAs report findings of normal coronary 
artery [46,47].

In our experience, the MBIR reconstruction algorithm 
has been shown to reduce the radiation dose delivered 
to the patient, especially when combined with other dose 
reduction strategies, such as prospective acquisition. 

ED was estimated by multiplying DLP with the con-
version coefficient (ED/DLP) of 0.014 mSv/mGy ∙ cm. 
ED/DLP value of 0.026 or 0.028 mSv/mGy ∙ cm is actually 
the most accurate for the radiation dose estimate associ-
ated with cardiac CT compared to that used for chest CT 
scan (0.014 or 0.017 mSv/mGy ∙ cm). However, the latter 
conversion factor is commonly used in many studies of 
cardiac CT. This discrepancy could lead to errors in com-
paring the ED between different studies and so we used 
only DLP to compare the radiological exposure in our 
population with what is reported in the literature [18,25].

Our study has some limitations, such as its retrospec-
tive design with a limited population. Furthermore, we 
did not evaluate and stratify patients according to clinical 
symptoms, clinical pre-test probability of coronary dis-
ease, risk factors, or previous cardiovascular events be-
cause our exclusive interest was to evaluate the diagnostic 
capacity of IMR regardless of the type of patient perform-
ing the CCTA. We compared CCTA and ICA, but both 
methods have different approaches to estimate the extent 
of the stenosis, the latter using visual estimation of the 
vessel diameter reduction. Physician visual assessment of 
stenosis severity is the standard clinical practice to sup-
port decisions for coronary revascularisation; moreover, it 
has been demonstrated to be more accurate in predicting 
physiology than quantitative coronary angiography [48].

Figure 7. Curved multiplanar reformatted image of coronary computed to-
mography angiography shows D1 segment and magnification. At the origin 
of the branch, immediately after the emergence from left anterior descend-
ent (LAD) branch, we can see the full thickness hypodense band misinter-
preted as a significant stenosis (FP) and denied by the subsequent invasive 
coronary angiography
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To make the methods more comparable, we decided to 
consider only the most significant stenosis per segment, 
even if a segment had more than one. We also analysed 
only the patients who were positive at CT, so we cannot 
express an opinion concerning sensitivity, specificity, PPV, 
and NPV of the method.

Conclusions
CCTA with MBIR has shown promising results for the 
detection of significant coronary stenosis with a solid dose 

reduction above all in the prospective acquisition modal-
ity. Performance is influenced by plaque composition, be-
ing lower in the case of patients with CS < 400 and soft 
plaques. The visualisation of an intraluminal hypodensity 
could cause false positive results, as in D1 and MO seg-
ments.
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