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Abstract
In the paper two important theorems about complete affine spheres are generalized to the
case of statistical structures on abstract manifolds. The assumption about constant sectional
curvature is replaced by the assumption that the curvature satisfies some inequalities.
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1 Introduction

In the paper we refer to the following well-known theorems of affine differential geometry

Theorem 1.1 (W. Blaschke, A. Deicke, E. Calabi) Let f : M → Rn+1 be an elliptic affine
sphere whose Blaschke metric is complete. Then the induced structure on M is trivial, that
is, the induced affine connection is the Levi–Civita connection of the Blaschke metric. Con-
sequently, the affine sphere is an ellipsoid.

Theorem 1.2 (E. Calabi) Let f : M → Rn+1 be a hyperbolic or parabolic affine sphere
whose Blaschke metric is complete. Then the Ricci tensor of the metric is negative semi-
definite.

The above theorems deal with affine spheres which constitute one of the most important
categories studied in the classical affine differential geometry. Themystery of affine spheres is
that although they are defined so naturally and analogously to the Riemannian case (i.e. affine
lines determined by the affine normal vector fieldmeet at one point or are parallel), they are, as
the whole class, unknown. On the other hand, they have exceptionally nice properties. Many
particular examples of affine spheres are known; thewhole class is divided into subclasses (for
instance, elliptic, hyperbolic and parabolic), but it is not seen what a satisfactory description
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of the whole class might look like. Therefore, it is a way of studying the class to impose
additional geometric conditions on a sphere and to prove that it lies in a better-known class of
manifolds equipped with some geometric structure. The underlying Riemannian geometry is
the first candidate here. In the above theorems the additional condition is the completeness
of the Blaschke metric.

The aim of this paper is to generalize Theorems 1.1 and 1.2 to the case of statistical mani-
folds and to the case where a curvature, which is constant on affine spheres, is only bounded.
Statistical manifolds are generalizations of affine hypersurfaces in the sense that the structure
on the so-called equiaffine hypersurfaces is a statistical structure but statistical structures are
not, in general, realized on affine hypersurfaces, even locally. Conjugate symmetric statistical
structures are as important in the geometry of statistical structures as affine spheres in the
theory of affine hypersurfaces. Within the two geometries they can be characterized by the
same condition. The condition is that the curvature tensor of the affine connection of these
structures has the same symmetries as the Riemannian curvature tensor, see Sect. 2 or [6].

We shall prove, in particular, the following result.

Theorem 1.3 Let (g,∇) be a trace-free conjugate symmetric statistical structure on a man-
ifold M. Assume that g is complete on M. If the sectional ∇-curvature is bounded from
below and above on M then the Ricci tensor of g is bounded from below and above on M. If
the sectional ∇-curvature is non-negative everywhere then the statistical structure is trivial,
that is, ∇ = ∇̂. If the sectional ∇-curvature is bounded from 0 by a positive constant then,
additionally, M is compact and its first fundamental group is finite.

More precise and more general formulations of this theorem give Theorems 3.1 and 4.1. The
meaning of the generalization can be explained as follows. The induced structure on an affine
sphere is a conjugate symmetric trace-free statistical structure. But the statistical connection
on an affine sphere is projectively flat and its sectional∇-curvature is constant. In the theorems
we propose the projective flatness is not needed, which means that the statistical structure
can be non-realizable on any Blaschke hypersurface even locally. Moreover, the assumption
about the constant curvature is replaced by the assumption that the curvature satisfies some
inequalities. Since the notion of the sectional ∇-curvature is relatively new, see [1,6], the
theorems proved in this paper show that the notion is meaningful.

In the proof of the first part of Theorem 1.3 we use the same main tool as in Calabi’s
theorems, that is, a theorem on weak solutions of differential inequalities for the Laplacian
of non-negative functions on complete Riemannian manifolds. In fact, we shall use only a
particular version of this theorem. Note that the crucial step in the proof of Theorem 3.1
is an estimation obtained in Lemma 3.2. In the case of affine spheres (Theorem 1.2) the
corresponding part of the proof is trivial.

An inspiration for the study of the problems this paper deals with was [4] where the first
attempt to a generalization of Theorem 1.1 was made. Let us quote one of Noguchi’s results
which in the language of this paper can be displayed as follows.

Theorem 1.4 ([4, Theorem 4.1]) Let (g,∇) be a trace-free conjugate symmetric statistical
structure on a manifold M. Assume that the sectional∇-curvature is point-wise constant and
non-negative on M and g is complete. Then the structure is trivial, that is, ∇ = ∇̂.

We now know that if a statistical structure is conjugate symmetric, then Schur’s lemma
holds for the sectional ∇-curvature, see Sect. 2.2 or [6]. It implies that in the above theorem
the statistical structure can be locally realized on an affine sphere if n ≥ 3. But the theorems
we discuss here are of global nature and it means that Theorem 1.4 is more general than
Theorem 1.1.
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2 Preliminaries

2.1 Definitions of statistical structures

We shall shortly recall basic notions of statistical geometry. For details we refer to [6]. Let g
be a positive definite Riemannian tensor field on a manifold M . Denote by ∇̂ the Levi–Civita
connection for g. A statistical structure is a pair (g,∇), where ∇ is a torsion-free connection
such that the following Codazzi condition is satisfied

(∇X g)(Y , Z) = (∇Y g)(X , Z) (1)

for all X , Y , Z ∈ TxM , x ∈ M . A connection∇ satisfying (1) is called a statistical connection
for g.

For any connection ∇ one defines its conjugate (dual) connection ∇ relative to g by the
formula

g(∇XY , Z) + g(Y ,∇X Z) = Xg(Y , Z). (2)

It is known that the pairs (g,∇) and (g,∇) are simultaneously statistical structures. From
now on we assume that ∇ is a statistical connection for g. We have

g(R(X , Y )Z ,W ) = −g(R(X , Y )W , Z), (3)

where R and R are the curvature tensors for ∇ and ∇, respectively. Denote by Ric and Ric
the corresponding Ricci tensors. Note that in general, these Ricci tensors are not necessarily
symmetric. The curvature and theRicci tensor of ∇̂ will be denoted by R̂ and ̂Ric, respectively.
The function

ρ = tr gRic(·, ·) (4)

is the scalar curvature of (g,∇). Similarly, one can define the scalar curvature ρ for (g,∇)

but, by (3), ρ = ρ. We also have the usual scalar curvature ρ̂ for g.
Denote by K the difference tensor between ∇ and ∇̂, that is,

∇XY = ∇̂XY + KXY . (5)

Then
∇XY = ∇̂XY − KXY . (6)

K (X , Y ) will stand for KXY . Since ∇ and ∇̂ are without torsion, K as a (1, 2)-tensor is
symmetric. We have (∇X g)(Y , Z) = (KXg)(Y , Z) = −g(KXY , Z) − g(Y , KX Z). It is
now clear that the symmetry of ∇g and K implies the symmetry of KX relative to g for
each X . The converse also holds. Namely, if KX is symmetric relative to g then we have
(∇X g)(Y , Z) = −2g(KXY , Z).

We define the statistical cubic form A by

A(X , Y , Z) = g(KXY , Z). (7)

It is clear that a statistical structure can be defined equivalently as a pair (g, K ), where K
is a symmetric tensor field of type (1, 2) which is also symmetric relative to g, or as a pair
(g, A), where A is a symmetric cubic form.

A statistical structure is trace-free if tr gK (·, ·) = 0 (equivalently, tr g A(X , ·, ·) = 0 for
every X ; equivalently, tr KX = 0 for every X ). The trace-freeness is also equivalent to the
condition that ∇νg = 0, where νg is the volume form determined by g. In affine differential
geometry the trace-freeness is called the apolarity. The assumption about the trace-freeness
of a statistical structure is essential in all the theorems mentioned in the Introduction.
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2.2 Relations between curvature tensors of statistical structures

It is known that

R(X , Y ) = R̂(X , Y ) + (∇̂X K )Y − (∇̂Y K )X + [KX , KY ]. (8)

Writing the same equality for ∇ and adding both equalities, we get

R(X , Y ) + R(X , Y ) = 2R̂(X , Y ) + 2[KX , KY ]. (9)

In particular, if R = R then

R(X , Y ) = R̂(X , Y ) + [KX , KY ], (10)

which can be shortly written as
R = R̂ + [K , K ]. (11)

Using (9) and assuming that a given statistical structure is trace-free, one gets, see [6],

Ric(Y , Z) + Ric(Y , Z) = 2̂Ric(Y , Z) − 2g(KY , KZ ). (12)

In particular, if (g,∇) is trace-free then

2̂Ric(X , X) ≥ Ric(X , X) + Ric(X , X). (13)

If, moreover, R = R then
̂Ric ≥ Ric. (14)

The following lemma follows from formulas (3) and (8).

Lemma 2.1 Let (g,∇) be a statistical structure. The following conditions are equivalent

(1) R = R,
(2) ∇̂K is symmetric (equiv. ∇̂A is symmetric),
(3) g(R(X , Y )Z ,W ) is skew symmetric relative to Z ,W.

Note that ∇̂K in (2) stands for the (1, 3)-tensor field defined by the formula ∇̂K (X , Y , Z)

= (∇̂X K )(Y , Z). Of course the same deals with ∇̂A. A statistical structure satisfying (2) in
the above lemma was called in [2] conjugate symmetric. We shall adopt this definition.

Note that the condition R = R implies the symmetry of Ric.
Taking now the trace relative to g on both sides of (12) and taking into account that ρ = ρ,

we get
ρ̂ = ρ + ‖K‖2 = ρ + ‖A‖2 (15)

for a trace-free statistical structure.

2.3 Sectional∇-curvature

The notion of a sectional ∇-curvature was first introduced in [6]. Namely, the tensor field

R = 1

2
(R + R) (16)

is a Riemannian curvature tensor. In particular, it satisfies the condition

g(R(X , Y )Z ,W ) = −g(R(X , Y )W , Z).
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In general, this condition is not satisfied by the curvature tensor R. In the case where a given
statistical structure is conjugate symmetric the curvature tensor R satisfies this condition. In
[6] we defined the sectional ∇-curvature by

k(π) = g(R(e1, e2)e2, e1) (17)

for a vector planeπ ∈ TxM , x ∈ M and e1, e2 any orthonormal basis ofπ . It is a well-defined
notion.

In general, Schur’s lemma does not hold for the sectional ∇-curvature. But, if a statistical
structure is conjugate symmetric (in this caseR = R), then some type of the second Bianchi
identity holds and, consequently, Schur’s lemma holds, see [6].

2.4 Statistical structures on affine hypersurfaces

The theory of affine hypersurfaces in Rn+1 is a natural source of statistical structures. For
the theory we refer to [3] or [5]. We recall here only some selected facts.

Let f : M → Rn+1 be a locally strongly convex hypersurface. For simplicity assume that
M is connected and orientable. Let ξ be a transversal vector field on M . We have the induced
volume form νξ on M defined as follows

νξ (X1, . . . , Xn) = det(f∗X1, . . . , f∗Xn, ξ).

We also have the induced connection ∇ and the second fundamental form g defined by the
Gauss formula

DX f∗Y = f∗∇XY + g(X , Y )ξ,

where D is the standard flat connection on Rn+1. Since the hypersurface is locally strongly
convex, the second fundamental form g is definite. By multiplying ξ by −1 if necessary, we
can assume that g is positive definite. A transversal vector field is called equiaffine if∇νξ = 0.
This condition is equivalent to the fact that∇g is symmetric, i.e. (g,∇) is a statistical structure.
It means, in particular, that for a statistical structure obtained on a hypersurface by a choice
of an equiaffine transversal vector field, the Ricci tensor of ∇ is automatically symmetric. A
hypersurface equipped with an equiaffine transversal vector field, and the induced structure
is called an equiaffine hypersurface.

Recall now the notion of the shape operator. Having a fixed equiaffine transversal vector
field ξ and differentiating it, we get the Weingarten formula

DX ξ = −f∗SX .

The tensor field S is called the shape operator for ξ . If R is the curvature tensor for the
induced connection ∇, then

R(X , Y )Z = g(Y , Z)SX − g(X , Z)SY . (18)

This is the Gauss equation for R. The Gauss equation for the dual structure is the following

R(X , Y )Z = g(Y ,SZ)X − g(X ,SZ)Y . (19)

It follows that the dual connection is projectively flat if n > 2. The dual connection is
also projectively flat for two-dimensional surfaces equipped with an equiaffine transversal
vector field, that is, ∇Ric is symmetric. The form g(SX , Y ) is symmetric for any equiaffine
transversal vector field.
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We have the volume form νg determined by g on M . In general, this volume form is
not covariant constant relative to ∇. The starting point of the classical affine differential
geometry is the theorem saying that there is a unique equiaffine transversal vector field ξ

such that νξ = νg . This unique transversal vector field is called the affine normal vector field
or theBlaschke affine normal. The second fundamental form for the affine normal is called the
Blaschke metric. A non-degenerate hypersurface endowed with the affine Blaschke normal is
called a Blaschke hypersurface. The induced statistical structure is trace-free on a Blaschke
hypersurface. If the affine lines determined by the affine normal vector field meet at one point
or are parallel, then the hypersurface is called an affine sphere. In the first case the sphere
is called proper in the second one improper. The class of affine spheres is very large. There
exist many conditions characterizing affine spheres. For instance, a Blaschke hypersurface is
an affine sphere if and only if R = R. Therefore, conjugate symmetric statistical manifolds
can be regarded as generalizations of affine spheres. For connected affine spheres the shape
operator S is a constant multiple of the identity, i.e. S = κ id for some constant κ .

If we choose a positive definite Blaschke metric on a connected locally strongly convex
affine sphere, then we call the sphere elliptic if κ > 0, parabolic if κ = 0 and hyperbolic if
κ < 0.

2.5 Conjugate symmetric statistical structures non-realizable on affine spheres

Aswehave alreadymentioned, if∇ is a connection on a hypersurface induced by an equiaffine
transversal vector field then the conjugate connection ∇ is projectively flat. Therefore, the
projective flatness of the conjugate connection is a necessary condition for (g,∇) to be
realizable as the induced structure on a hypersurface equipped with an equiaffine transversal
vector field. In fact, one of the fundamental theorems in affine differential geometry (see,
e.g. [5]) says, roughly speaking, that it is also a sufficient condition for the local realizability
of a Ricci symmetric statistical structure, but we will not need it in this paper. Note also
that if (g,∇) is a conjugate symmetric statistical structure then ∇ and ∇ are simultaneously
projectively flat. Indeed, it is obvious for n > 2. If n = 2 we can argue as follows. It suffices
to prove that if ∇ is projectively flat then so is ∇. Since R = R, ∇ is Ricci symmetric. By
the fundamental theorem mentioned above, (g,∇) can be locally realized on an equiaffine
surface in R3. By Lemma 12.5 from [6] the surface is an equiaffine sphere, that is, the shape
operator is locally a constant multiple of the identity, and hence, ∇ is projectively flat. It
follows that if (g,∇) is conjugate symmetric then it is locally realizable on an equiaffine
hypersurface if only if ∇ or ∇ is projectively flat.

We shall now consider trace-free conjugate symmetric statistical structures. The following
fact was observed in [6], see Proposition 4.1 there. If (g,∇) is the induced statistical structure
on an affine sphere, the metric g is not of constant sectional curvature and α �= 1,−1 is a real
number, then ∇α := ∇̂ +αK is not projectively flat and therefore it cannot be realized (even
locally) on any affine sphere. Of course, (g,∇α) is again a statistical conjugate symmetric
structure (by 2) of Lemma 2.1) and since the initial structure was trace-free (because an affine
sphere is endowed with the Blaschke structure), (g,∇α) is trace-free as well. Note also that
there are very few affine spheres whose Blaschke metric has constant sectional curvature,
see [3], which means that the assumption that g is not of constant sectional curvature is not
restrictive.

The following example shows another easy way of producing conjugate symmetric trace-
free statistical structures which are non-realizable (even locally) on affine spheres.
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Let M = Rn , where n ≥ 4, be equipped with the standard flat metric tensor field g. Let
x1, . . . , xn be the canonical coordinate system and e1, . . . , en be the canonical orthonormal
frame. Define the cubic form A = (Ai jk) on M , where Ai jk = A(ei , e j , ek), by

Ai jk = 0 if at least two of indices i,j,k are equal,
Ai jk ∈ R+ if the indices i,j,k are mutually distinct.

(20)

Then ∇̂K = 0 and, consequently, R = R. Observe now that the connection ∇ = ∇̂ − K ,
where g(K (X , Y ), Z) = A(X , Y , Z), is not projectively flat, and therefore, (g,∇) cannot be
realized on any Blaschke hypersurface, even locally. Indeed, suppose that ∇ is projectively
flat. Then we must have g(R(ei , e j )e j , el) = 0 for i �= j and l �= i, j . On the other hand,
by (8), we have

g(R(ei , e j )e j , el) = g([Kei , Kej ]e j , el) = −g(Kej Kei e j , el)

= −g(K (ei , e j ), K (e j , el)) = −
n

∑

s=1

Ai js A jls .

By (20) it is clear that the function −∑n
s=1 Ai js A jls is negative if n ≥ 4.

Another version of this example (with ∇̂K �= 0) is given by the symmetric Ai jk , where

Ai jk = 0 if at least two of indices i, j, k are equal,

(Ai jk)x = x1 + · · · +̂(xi ) + · · · + ̂(x j ) + · · · +̂(xk) + · · · + xn for i < j < k,
(21)

wherê(xl) means that the coordinate xl was removed from the sum. One can easily check
that ∇̂A is symmetric. Indeed, we want to check that ∂l Ai jk = ∂i Al jk for l �= i . It is sufficient
to assume that j �= k. Consider the cases: (a) l = j or l = k, (b) i = j or i = k, l �= j ,
l �= k, (c) i �= j , i �= k, l �= j , l �= k. In cases (a) and (b) both sides of the required equality
vanish. In the last case, where all indices are mutually distinct, on both sides of the required
equality we get 1.

In the same manner as in the previous example, one sees that ∇ is not projectively flat on
(R+)n if n ≥ 4.

The considerations of this subsection show that the class of conjugate symmetric trace-free
statistical manifolds is much larger than the class of affine spheres, even in the local setting.

3 Curvature bounded conjugate symmetric trace-free statistical
structures

Let n = dim M and (g,∇) be a statistical structure on M . From now on we assume that the
structure is trace-free and conjugate symmetric. Assume moreover that

H2 ≤ k(π) ≤ H1, (22)

for every vector plane π ⊂ TxM and x ∈ M . Denote by ε the difference H1 − H2 and set

H3 = H2 − n − 2

2
ε.

The quantities H1, H2 and ε can be functions on M (not satisfying any smoothness assump-
tions), but in the main theorem of this section, that is, in Theorem 3.1, H3 must be a real
number. The condition (22) can be written as
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H1 − ε ≤ k(π) ≤ H1 (23)

or

H3 + n − 2

2
ε ≤ k(π) ≤ H3 + n

2
ε. (24)

Theorem 3.1 Let (g,∇) be a trace-free conjugate symmetric statistical structure on an n-
dimensional manifold M. Assume that (M, g) is complete and the sectional ∇-curvature k
satisfies the inequalities (24) on M,where H3 is a non-positive number and ε is a non-negative
function on M. Then the Ricci tensor ̂Ric of g satisfies the inequalities

(n − 1)H3 + (n − 1)(n − 2)

2
ε ≤ ̂Ric ≤ −(n − 1)2H3 + (n − 1)n

2
ε. (25)

The scalar curvature ρ̂ of g satisfies the inequalities

n(n − 1)H3 + n(n − 1)(n − 2)

2
ε ≤ ρ̂ ≤ n2(n − 1)

2
ε. (26)

Proof In what follows the scalar multiplication g will be also denoted by 〈 , 〉. The following
lemma is crucial in the following proof. �
Lemma 3.2 Let V be any unit vector of TpM. Denote by TV the (0, 4)-tensor given by

TV (X , Y , Z ,W ) = −〈KV X , R(Y , Z)W 〉 − 2〈KVW , R(Y , Z)X〉. (27)

Assume that

H3 + n − 2

2
ε ≤ k(π) ≤ H3 + n

2
ε (28)

for some H3 ∈ R, ε ∈ R+ and for all vector planes π ⊂ TpM. Then

〈T ′
V , AV 〉 ≥ (n + 1)H3ψV , (29)

where

AV (X , Z) = A(V , X , Z), (30)

T ′
V (X , Z) = tr gTV (X , ·, Z , ·) (31)

and
ψV = 〈AV , AV 〉. (32)

Proof of Lemma 3.2 Let e1, . . . , en be an orthonormal eigenbasis of KV and KV ei = λi ei
for i = 1, . . . , n. Then ψV = λ21 + · · · + λ2n . We have

〈T ′
V , AV 〉 = −

∑

i, j,k

[〈KV e j , R(ei , ek)ei 〉〈KV e j , ek〉 + 2〈KV ei , R(ei , ek)e j 〉〈KV e j , ek〉
]

=
∑

i, j

(λ2j − 2λiλ j )ki j ,

where ki j = k(ei ∧ e j ). Since ki j = k ji and kii = 0, we obtain

〈T ′
V , AV 〉 = (λ21k11 + · · · + λ21k1n) + · · · + (λ2nkn1 + · · · + λ2nknn) − 4

∑

i< j

λiλ j ki j

=
∑

i< j

(λ j − λi )
2ki j − 2

∑

i< j

λiλ j ki j . (33)

In the last term we now replace λn by −λ1 − · · · − λn−1. We get
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−
∑

i< j

λiλ j ki j = −λ1λ2k12 − · · · − λ1(−λ1 − · · · − λn−1)k1n

− λ2λ3k23 − · · · − λ2(−λ1 − · · · − λn−1)k2n

· · ·
− λn−1(−λ1 − · · · − λn−1)kn−1,n

= λ1λ2(−k12 + k1n) + · · · + λ1λn−1(−k1,n−1 + k1n) + λ21k1n

+ λ1λ2k2n+λ2λ3(−k23+k2n) + · · · + λ2λn−1(−k2,n−1 + k2n) + λ22k2n

· · ·
+ λn−1λ1kn−1,n + · · · + λn−1λn−2kn−1,n + λ2n−1kn−1,n

=
∑

i< j≤n−1

λiλ j (kin + k jn − ki j ) +
n−1
∑

i=1

λ2i kin .

Thus, using the assumption (22) and the condition λn = −λ1 − · · · − λn−1, we get

〈T ′
V AV 〉 ≥

∑

i< j≤n

(λi − λ j )
2H2 + 2

n−1
∑

i=1

λ2i H2 + 2
∑

i< j≤n−1

λiλ j (kin + k jn − ki j )

=
∑

i< j≤n−1

(

λ2i + λ2j − 2λiλ j

)

H2 +
n−1
∑

i=1

(λi − λn)
2H2

+2
n−1
∑

i=1

λ2i H2 + 2
∑

i< j≤n−1

λiλ j (kin + k jn − ki j )

=
∑

j< j≤n−1

(

λ2i + λ2j

)

H2 + 2
∑

i< j≤n−1

λiλ j (kin + k jn − ki j − H2)

+
n−1
∑

i=1

λ2i H2 + (n − 1)λ2nH2 − 2
n−1
∑

i=1

λiλnH2 + 2
n−1
∑

i=1

λ2i H2

= (n − 2)
n−1
∑

i=1

λ2i H2 + 3
n−1
∑

i=1

λ2i H2 + 2
∑

i< j≤n−1

λiλ j (kin + k jn − ki j − H2)

+(n − 1)λ2nH2 + 2λ2nH2

= (n + 1)
n−1
∑

i=1

λ2i H2 + 2
∑

i< j≤n−1

λiλ j (kin + k jn − ki j − H2) + (n + 1)λ2nH2

= (n + 1)ψV H2 + 2
∑

i< j≤n−1

λiλ j (kin + k jn − ki j − H2).

Therefore, it is sufficient to prove

(n + 1)ψV (H2 − H3) + 2
∑

i< j≤n−1

λiλ j (kin + k jn − ki j − H2) ≥ 0. (34)

The left-hand side of this inequality can be written and then estimated as follows

(n + 1)(λ21 + · · · + λ2n−1)(H2 − H3) + nλ2n(H2 − H3)

+ (λ1 + · · · + λn−1)
2(H2 − H3)
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+ 2
∑

1≤i< j≤n−1

λiλ j (kin + k jn − ki j − H2)

≥ (n + 1)(λ21 + · · · + λ2n−1)(H2 − H3) + (λ21 + · · · + λ2n−1)(H2 − H3)

+ 2
∑

1≤i< j≤n−1

λiλ j (H2 − H3)

+ 2
∑

1≤i< j≤n−1

λiλ j (kin + k jn − ki j − H2)

≥ n + 2

n − 2
(H2 − H3)(n − 2)(λ21 + · · · + λ2n−1)

+ 2
∑

1≤i< j≤n−1

λiλ j (kin + k jn − ki j − H3). (35)

In the last computations we have again used the fact that λ2n = (λ1 + · · · + λn−1)
2 as well as

the assumption that H2 − H3 ≥ 0.
Assume now that n ≥ 4. Observe that for i < j ≤ n − 1 we have

kin + k jn − ki j − H3 ≥ 0.

Indeed, we have kin + k jn − ki j − H3 ≥ 2H2 − H1 − H3 = ( n2 − 2)ε ≥ 0 for n ≥ 4.
Moreover,

n + 2

n − 2
(H2 − H3) ≥ kin + k jn − ki j − H3.

Namely, since H1 = H3 + n
2 ε and H2 = H3 + n−2

2 ε, we have

kin + k jn − ki j − H3 ≤ 2H1 − H2 − H3 = n + 2

2
ε

=
(

n + 2

n − 2

)(

n − 2

2
ε

)

= n + 2

n − 2
(H2 − H3).

We now can make farther estimations in (35) as follows

n + 2

n − 2
(H2 − H3)(n − 2)(λ21 + · · · + λ2n−1) + 2

∑

i< j≤n−1

λiλ j (kin + k jn − ki j − H3)

≥ (n − 2)(λ21 + · · · + λ2n−1)(kin + k jn − ki j − H3)

+2
∑

i< j≤n−1

λiλ j (kin + k jn − ki j − H3)

=
∑

i< j≤n−1

(λi + λ j )
2(kin + k jn − ki j − H3) ≥ 0.

The lemma is proved for n ≥ 4. Consider now the case n = 3. By the trace-freeness we can
assume that λ1λ2 ≥ 0. We compute and estimate the left-hand side of (34) as follows

2(λ21 + λ22 + λ23)ε + 2λ1λ2(k13 + k23 − k12 − H2)

≥ 2(λ21 + λ22 + λ23)ε + 2λ1λ2(2H2 − H1 − H2)

= 2(λ21 + λ22 + λ23)ε − 2λ1λ2ε

= (λ1 − λ2)
2ε + (λ21 + λ22 + λ23)ε ≥ 0.
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Finally consider the case n = 2. In this case we have H2 = H3, λ2 = −λ1 and ψV = 2λ21.
Going back to (33) we get

〈T ′
V , AV 〉 = 6λ21k12 ≥ 3ψV H3.

The proof of Lemma 3.2 is completed. �
It is well known that for any tensor field s the following formula holds

�(g(s, s)) = 2g(�s, s) + 2g(∇̂s, ∇̂s), (36)

where �s is defined by

�s =
n

∑

i=1

∇̂2
ei ei s, (37)

for any orthonormal frame ei . More precisely, if, in particular, s is a tensor field of type (0, k),
then

�s(X1, . . . , Xk) =
n

∑

i=1

(∇̂ei (∇̂s))(ei , X1, . . . , Xk),

where ∇̂s is a (0, k + 1)-tensor field given by ∇̂s(X0, X1, . . . , Xk) = (∇̂X0s)(X1, . . . , Xk).
We shall now compute �ψ for

ψ = g(A, A). (38)

Let p ∈ M , X , Y , Z ∈ TpM and e1, . . . , en be an orthonormal basis of TpM . Extend all these
vectors along ∇̂-geodesics starting at p and denote the obtained vector fields by the same
letters X , Y , X , e1, . . . , en , respectively. Of course, ∇̂X = ∇̂Y = ∇̂Z = 0, ∇̂e1 = 0,…,
∇̂en = 0 at p. The frame field e1, . . . , en is orthonormal. Since ∇̂A is symmetric, one gets
at p

n
∑

i=1

(∇̂2
ei ei A)(X , Y , Z) =

n
∑

i=1

(∇̂ei (∇̂A))(ei , X , Y , Z) =
n

∑

i=1

∇̂ei ((∇̂ei A)(X , Y , Z))

=
n

∑

i=1

∇̂ei ((∇̂X A)(ei , Y , Z)) =
n

∑

i=1

(∇̂ei (∇̂X A))(ei , Y , Z))

=
n

∑

i=1

(R̂(ei , X)A)(ei , Y , Z) +
n

∑

i=1

(∇̂X (∇̂ei A))(ei , Y , Z))

=
n

∑

i=1

(R̂(ei , X)A)(ei , Y , Z) +
n

∑

i=1

∇̂X ((∇̂A)(Y , Z , ei , ei )).

Thus,
(�A)(X , Y , Z) = tr g(R̂(·, X)A)(·, Y , Z). (39)

Since R̂ = R − [K , K ], we have
(�A)(X , Y , Z) = tr g(R(·, X)A)(·, Y , Z) − tr g([K·, KX ]A)(·.Y , Z). (40)

For estimating the second term on the right-hand side, we shall use the following inequality
proved, in fact, on p. 84 in [5].

123



698 Annals of Global Analysis and Geometry (2019) 55:687–702

Proposition 3.3 For a trace-free statistical structure, we have

g(F, A) ≥ n + 1

n(n − 1)
(g(A, A))2, (41)

where
F(X , Y , Z) = −tr g([K·, KX ]A)(·, Y , Z). (42)

We shall now estimate the first term on the right-hand side of (40). Set

A′(X , Y , Z) = tr g(R(·, X)A)(·, Y , Z). (43)

We have

g(A′, A) =
∑

i, j,k,l

(R(ei , ek)A)(ei , e j , el)A(ek, e j , el)

= −
∑

i, j,k,l

[

A(R(ei , ek)ei , e j , el)A(ek, e j , el)

+ A(ei , R(ei , ek)e j , el)A(ek, e j , el)
]

−
∑

i, j,k,l

A(ei , e j , R(ei , ek)el)A(ek, e j , el). (44)

In the last term we interchange the indices j and l. Since A is symmetric, we get

g(A′, A) = −
∑

i, j,k,l

[

A(R(ei , ek)ei , e j , el)A(ek, e j , el)

+ 2A(ei , R(ei , ek)e j , el)A(ek, e j , el)
]

. (45)

For a fixed index l we have

−
∑

i, j,k

[

A(R(ei , ek)ei , e j , el)A(ek, e j , el)

+ 2A(ei , R(ei , ek)e j , el)A(ek, e j , el)
]

= −
∑

i, j,k

[

Ael (R(ei , ek)ei , e j )Ael (ek, e j )

+ 2Ael (ei , R(ei , ek)e j )Ael (ek, e j )
]

. (46)

Let Pl stands for the right-hand side of (46). We have g(A′, A) = ∑n
l=1 Pl and ψ

= g(A, A) = ∑n
l=1 ψel , where ψel = g(Ael , Ael ) as in Lemma 3.2. We now regard el

as V in Lemma 3.2 and we get
Pl ≥ (n + 1)ψel H3. (47)

Hence,
g(A′, A) ≥ (n + 1)ψH3. (48)

By (36), (48), (40) and Proposition 3.3 we get

�ψ ≥ 2(n + 1)ψH3 + 2(n + 1)

n(n − 1)
ψ2. (49)

We shall now cite a theorem onweak solutions of differential inequalities for the Laplacian
of non-negative functions. The following version of this theorem, proved in [3], is sufficient
for our purposes.
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Theorem 3.4 Let (M, g) be a complete Riemannian manifold with Ricci tensor bounded
from below. Suppose that ψ is a non-negative continuous function and a weak solution of the
differential inequality

�ψ ≥ b0ψ
k − b1ψ

k−1 − · · · − bk−1ψ − bk, (50)

where k > 1 is an integer and b0 > 0, b1 ≥ 0,…, bk ≥ 0. Let N be the largest root of the
polynomial equation

b0ψ
k − b1ψ

k−1 − · · · − bk−1ψ − bk = 0. (51)

Then
ψ(p) ≤ N (52)

for all p ∈ M.

We have, see (14),
̂Ric ≥ Ric ≥ (n − 1)H2, (53)

that is, ̂Ric is bounded from below. Since H3 ≤ 0, by Theorem 3.4 and (49) we have

ψ ≤ −n(n − 1)H3. (54)

Let X be a unit vector. Using (12) we now obtain

̂Ric(X , X) = Ric(X , X) + g(KX , KX ) ≤ Ric(X , X) + g(K , K ) = Ric(X , X) + ψ

≤ (n − 1)H1 − n(n − 1)H3 = −(n − 1)2H3 + (n − 1)n

2
ε.

Combining this with (53), one gets the following estimation of the Ricci tensor ̂Ric

(n − 1)H3 + (n − 1)(n − 2)

2
ε ≤ ̂Ric ≤ −(n − 1)2H3 + (n − 1)n

2
ε. (55)

In order to estimate the scalar curvature ρ̂, we use (15) and (54). We get

n(n − 1)H3 + (n − 1)(n − 2)n

2
ε ≤ ρ̂ ≤ n(n − 1)(H1 − H3) = n2(n − 1)

2
ε. (56)

The proof of Theorem 3.1 is completed. �
Theorem 3.1 can be obviously formulated as follows

Theorem 3.5 Let (g,∇) be a trace-free conjugate symmetric statistical structure on an n-
dimensional manifold M. Assume that (M, g) is complete and the sectional ∇-curvature k
satisfies the inequality (22) on M, where H1 = H3 + n

2 ε, H2 = H1 − ε, H3 is a non-positive
number and ε is a non-negative function on M. Then the Ricci tensor ̂Ric of g satisfies the
inequalities

(n − 1)H2 ≤ ̂Ric ≤ (n − 1)

[

(1 − n)H1 + n2

2
ε

]

. (57)

The scalar curvature ρ̂ of g satisfies the inequalities

n(n − 1)H2 ≤ ρ̂ ≤ n2(n − 1)

2
ε. (58)

Remark 3.6 The estimation of the Ricci tensor ̂Ric from below in the above theorems is easy,
and it follows from (13). The estimation of the Ricci tensor ̂Ric from the above is not optimal
in Theorems 3.1, 3.5. Namely, in the case of a hyperbolic sphere, that is, in the case where
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H1 = H2 = H3 < 0, Theorem 3.1 gives the estimation ̂Ric ≤ −(n − 1)2H3. (It should be
̂Ric ≤ 0.) The estimation of the scalar curvature in Theorems 3.1, 3.5 is optimal and, in the
above proof, it is not deduced from the estimation of the Ricci tensor.

4 Conjugate symmetric trace-free statistical structures with
non-negative sectional∇-curvature

We shall prove

Theorem 4.1 Let (M, g) be a complete Riemannian manifold with a conjugate symmetric
trace-free statistical structure (g,∇). If the sectional∇-curvature is non-negative on M, then
the statistical structure is trivial, i.e. ∇ = ∇̂.

This theorem can be deduced from the considerations of the previous section, but it can
be proved in an easier way, as it is shown below. Namely, consider the non-negative function
ϕ on M given by

ϕx = max
U∈Ux

A(U ,U ,U ), (59)

where Ux is the unit hypersphere in TxM , x ∈ M . The function ϕ is continuous and non-
negative on M . Let p ∈ M be a fixed point and V ∈ Up be a vector for which A(U ,U ,U )

attains its maximum on Up . One observes (see, e.g. [6] the proof of Theorem 5.6) that V is
an eigenvector of KV and if e1 = V , e2, . . . , en is an orthonormal eigenbasis of KV with
corresponding eigenvalues λ1, . . . , λn then

λ1 − 2λi ≥ 0 (60)

for i = 2, . . . , n. Extend V = e1 and e2, . . . , en by ∇̂-parallel transport along ∇̂-geodesics
starting at p. We obtain a smooth orthonormal frame field. Denote the vector fields again by
V = e1 e2, . . . , en . Then we have at p

∇̂ei = 0, ∇̂ei ∇̂ei V = 0 (61)

for i = 1, . . . , n. Denote by Φ the function A(V , V , V ). Of course, Φp = ϕp and Φ ≤ ϕ

everywhere. We have at p

�Φ =
n

∑

i=1

(∇̂ei (∇̂ei A))(V , V , V ). (62)

Indeed, we have

(∇̂dΦ)(X , Y ) = X(dΦ(Y )) − dΦ(∇̂XY )

= X [(∇̂Y A)(V , V , V ) + 3A(∇̂Y V , V , V )] − dΦ(∇̂XY )

= (∇̂X (∇̂Y A))(V , V , V ) + 3(∇̂Y A)(∇̂XV , V , V ) + 3(∇̂X A)(∇̂Y V , V , V )

+ 3A(∇̂X ∇̂Y V , V , V ) + 6A(∇̂Y V , ∇̂XV , V ) − d�(∇̂XY ).

Thus, by (61), we get (62) at p. We now have at p

�Φ =
n

∑

i=1

∇̂ei ((∇̂ei A)(V , V , V )) =
n

∑

i=1

∇̂ei ((∇̂V A)(ei , V , V ))

=
n

∑

i=1

(∇̂ei (∇̂V A))(ei , V , V )
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=
n

∑

i=1

(R̂(ei , V )A)(ei , V , V ) +
n

∑

i=1

(∇̂V (∇̂ei A))(ei , V , V )

=
n

∑

i=1

(R̂(ei , V )A)(ei , V , V ) +
n

∑

i=1

∇̂V ((∇̂ei A)(ei , V , V ))

=
n

∑

i=1

(R̂(ei , V )A)(ei , V , V ).

In the last computations we used both assumptions: the conjugate symmetry and the trace-
freeness of the statistical structure. By a straightforward computation one also gets at p

−
n

∑

i=1

([Kei , KV ]A)

(ei , V , V ) =
n

∑

i=1

λ2i (3λ1 − 2λi ) (63)

and
n

∑

i=1

(R(ei , V )A) (ei , V , V ) =
n

∑

i=1

(λ1 − 2λi )ki1. (64)

Assume now that the sectional ∇-curvature is bounded from below by a number N . Using
the equality R̂ = R − [K , K ] and the relations λ1 − 2λi ≥ 0, Φ = λ1 ≥ 0, Φ = ϕ at p, we
get at p

�Φ =
n

∑

i=1

(λ1 − 2λi )k1i + λ31 +
n

∑

i=2

λ2i (3λ1 − 2λi )

≥
n

∑

i=2

(λ1 − 2λi )N + Φ3 = (n + 1)NΦ + Φ3. (65)

It follows that the function ϕ is a weak solution of the differential inequality

�ϕ ≥ (n + 1)Nϕ + ϕ3. (66)

Since ̂Ric is clearly bounded from below, by Theorem 3.4 we obtain that if N ≤ 0 then

ϕ(x) ≤ √−(n + 1)N (67)

for all x ∈ M . If N = 0 we get ϕ ≡ 0 which means that K ≡ 0. Theorem 4.1 is
proved. �

We also proved

Proposition 4.2 Let (M, g) be a complete Riemannian manifold and (g,∇) a trace-free
conjugate symmetric statistical structure on M. If the sectional∇-curvature is bounded from
below by a non-positive number N, then for any unit tangent vector U ∈ T M we have

A(U ,U ,U ) ≤ √−(n + 1)N . (68)

5 Proof of Theorem 1.3

We shall now prove Theorem 1.3. Assume that the statistical sectional curvature is bounded
from below and above, that is, the inequalities

H2 ≤ k(π) ≤ H1 (69)
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are satisfied, where H1, H2 are real numbers. If H2 < 0 then H3 = H2 − n−2
2 ε < 0 and we

can use Theorem 3.1 to get the first assertion of Theorem 1.3. If H2 ≥ 0 then we can use
Theorem 4.1. The fact that the Ricci tensor of g is bounded trivially follows from the fact that
the ordinary sectional curvature of g is equal to the sectional ∇-curvature. If H2 > 0 then
̂Ric ≥ (n − 1)H2 > 0. By Myers’ theorem, M is compact and its first fundamental group is
finite. This completes the proof of Theorem 1.3.
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