
Phospholamban Regulates Nuclear Ca2+ Stores and Inositol 
1,4,5-Trisphosphate Mediated Nuclear Ca2+ Cycling in 
Cardiomyocytes

Mu Chen#1,2, Dongzhu Xu#1,3, Adonis Z. Wu1, Evangelia Kranias4, Shien-Fong Lin1,5, Peng-
Sheng Chen1, and Zhenhui Chen1,†

1Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, USA

2Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 
Shanghai, China

3Cardiovascular Division, Institute of Clinical Medicine, Faculty of Medicine, University of 
Tsukuba, Japan

4Department of Pharmacology and Systems Physiology, University of Cincinnati College of 
Medicine, Cincinnati, OH, USA

5Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National 
Chiao Tung University, Hsin-Chu, Taiwan

# These authors contributed equally to this work.

Abstract

Aims—Phospholamban (PLB) is the key regulator of the cardiac Ca2+ pump (SERCA2a)-

mediated sarcoplasmic reticulum Ca2+ stores. We recently reported that PLB is highly 

concentrated in the nuclear envelope (NE) from where it can modulate perinuclear Ca2+ handling 

of the cardiomyocytes (CMs). Since inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) mediates 

nuclear Ca2+ release, we examined whether the nuclear pool of PLB regulates IP3-induced nuclear 

Ca2+ handling.

Methods and Results—Fluo-4 based confocal Ca2+ imaging was performed to measure Ca2+ 

dynamics across both nucleus and cytosol in saponin-permeabilized CMs isolated from wild-type 

(WT) or PLB-knockout (PLB-KO) mice. At diastolic intracellular Ca2+ ([Ca2+]i= 100 nM), the 

Fab fragment of the monoclonal PLB antibody (anti-PLB Fab) facilitated the formation and 

increased the length of spontaneous Ca2+ waves (SCWs) originating from the nuclear region in 

CMs from WT but not from PLB-KO mice. We next examined nuclear Ca2+ activities at basal 
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condition and after sequential addition of IP3, anti-PLB Fab, and the IP3R inhibitor 2-

aminoethoxydiphenyl borate (2-APB) at a series of [Ca2+]i. In WT mice, at 10 nM [Ca2+]i where 

ryanodine receptor (RyR2) based spontaneous Ca2+ sparks rarely occurred, IP3 increased 

fluorescence amplitude (F/F0) of overall nuclear region to 1.19 ± 0.02. Subsequent addition of 

anti-PLB Fab significantly decreased F/F0 to 1.09 ± 0.02. At 50 nM [Ca2+]i, anti-PLB Fab not 

only decreased the overall nuclear F/F0 previously elevated by IP3, but also increased the 

amplitude and duration of spark-like nuclear Ca2+ release events. These nuclear Ca2+ releases 

were blocked by 2-APB. At 100 nM [Ca2+]i, IP3 induced short SCWs originating from nucleus. 

Anti-PLB Fab transformed those short waves into long SCWs with propagation from the nucleus 

into the cytosol. In contrast, neither nuclear nor cytosolic Ca2+ dynamics was affected by anti-PLB 

Fab in CMs from PLB-KO mice in all these conditions. Furthermore, in WT CMs pretreated with 

RyR2 blocker tetracaine, IP3 and anti-PLB Fab still increased the magnitude of nuclear Ca2+ 

release but failed to regenerate SCWs. Finally, anti-PLB Fab increased low Ca2+ affinity mag-fluo 

4 fluorescence intensity in the lumen of NE of nuclei isolated from WT but not in PLB-KO mice.

Conclusion—PLB regulates nuclear Ca2+ handling. By increasing Ca2+ uptake into lumen of the 

NE and perhaps other perinuclear membranes, the acute reversal of PLB inhibition decreases 

global Ca2+ concentration at rest in the nucleoplasm, and increases Ca2+ release into the nucleus, 

through mechanisms involving IP3R and RyR2 in the vicinity.
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1. Introduction

Phospholamban (PLB) regulates cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase 

(SERCA2a isoform), controlling the rate of Ca2+ removal from the cytoplasm into the lumen 

of SR [1–3]. In cardiomyocytes (CMs), phosphorylation of PLB or the use of anti-PLB 

antibody reverses its inhibition on SERCA2a, thus enhancing the Ca2+ uptake into SR and 

the subsequent SR Ca2+ release through ryanodine receptor (RyR2) which triggers 

excitation-contraction (E-C) coupling [1, 2, 4]. The critical role of PLB in regulation of 

cardiac contractility has been demonstrated in multiple experimental systems: in vitro 
expression systems, PLB knockout (PLB-KO) and transgenic mice [5, 6], and by the effects 

of that naturally occurring mutations of PLB [7–9] that cause human heart diseases. 

Therefore, PLB remains as an important target for understanding cardiac function in 

physiological and pathological conditions and for new drug design aiming at the control of 

intracellular Ca2+ handling.

Nuclear Ca2+ signaling exists in CMs as well as other types of cells, and critically regulates 

various essential cell functions [10, 11]. In CMs, Bers and colleagues proposed an 

“excitation-transcription coupling” mechanism that links the local nuclear Ca2+ release 

through 1,4,5-trisphosphate (IP3) receptor (IP3R) to gene regulation [12], which is separated 

from the global SR mediated E-C coupling. While cytosolic Ca2+ release is dominated by 

RyR2 release from SR, IP3R mediated Ca2+ signaling is prominently responsible for nuclear 

Ca2+ handling in ventricular CMs [12]. Several groups showed that IP3 induced the opening 
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of IP3R channels in the nuclear envelope (NE), decreased Ca2+ content in the nuclear Ca2+ 

stores (inside the lumen of perinuclear endoplasmic reticulum and NE), and subsequently 

increased Ca2+ concentration inside the nucleus [12, 13] [14], and global Ca2+ release, e.g., 

from both SR and NE [15]. Luo et al showed that such nuclear Ca2+ release may be in the 

form of nuclear sparks and waves in neonatal rat CMs [16]. In addition to IP3R, RyR-based 

Ca2+ release in the nuclear regions may also co-exist [17, 18], but details remain unclear [13, 

19–24]. In parallel to SR Ca2+ uptake, SERCA2a is responsible for recycling Ca2+ into 

lumen of NE, yet detailed mechanisms for the regulation of nuclear Ca2+ handling remain 

poorly understood.

We recently showed that PLB protein exists outside of the conventional sarcomeric SR 

network, where it resides within the NE of CMs [25]. The high concentration of PLB in the 

NE is confirmed in both CMs and in isolated cardiac nuclei from several species, including 

humans, by multiple species-specific monoclonal anti-PLB antibodies [25]. In contrast, 

SERCA2a distributes evenly between NE and SR. Administration of isoproterenol, which 

phosphorylates PLB, increased the fluorescence amplitude and shortened the decay time of 

Ca2+ transients at both cytosolic and nuclear regions, suggesting that detailed Ca2+ dynamics 

may affect SR and perinuclear regions differently.

We have previously characterized a novel reagent, anti-PLB Fab (the Fab fragment of the 

anti-PLB monoclonal antibody 2D12), which specifically binds to PLB in situ in 

permeabilized CMs [26]. Furthermore, anti-PLB Fab reverses the inhibition of PLB on 

SERCA2a activity, and facilitates the generation of whole cell propagating spontaneous 

Ca2+ waves (SCWs) traversing through both cytosol [26] and nucleus [25]. The changes in 

parameters in the perinuclear Ca2+ uptake and release in these experiments are consistent 

with previously documented biophysical characteristics of perinuclear Ca2+ release from 

several other labs [12, 16, 18, 24, 27]. Based on these findings, we hypothesized that PLB in 

the NE may regulate SERCA-based Ca2+ uptake into the nuclear Ca2+ stores, influencing 

perinuclear/nuclear Ca2+ dynamics, an important process for transcriptional control. In the 

current study, taking advantage of anti-PLB Fab and well-characterized PLB-KO mice as a 

control, we performed detailed analyses of the effects of PLB on Ca2+ uptake into the lumen 

of the NE and subsequent perinuclear Ca2+ releases through both IP3R and RyR2.

2. Methods

2.1 Cardiomyocyte preparation and permeabilization and cardiac nuclei isolation.

The use of animals in the study was approved by the IACUC of Indiana University School of 

Medicine and the Methodist Research Institute, Indianapolis, Indiana and conformed to the 

NIH Guide for the care and use of laboratory animals. CM isolation from adult C57BL/6 

mice and PLB-KO mice (2 to 6 month old) using protocols modified from our previously 

reported [26, 28]. In brief, CMs were isolated with 15μg/ml liberase (Roche) stored in 

normal Tyrode’s solution containing (in mM/L): 138 NaCl, 5.33 KCl, 0.33 NaH2PO4, 1.18 

MgCl2, 10 HEPES, 10 taurine, and 10 glucose, pH 7.4 (NaOH). Small chunks of dog heart 

tissues were digested with gentle shaking at 37°C for 30 min. Isolated dog CMs were 

harvested by centrifugation. Permeabilization with saponin (50μg/ml) was conducted for 60 
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s in a mock internal solution composed of (in mM/L) 100 potassium aspartate, 20 KCl, 10 

HEPES, 0.5 EGTA, and 0.75 MgCl2, pH 7.2 (KOH).

Crude cardiac nuclei were isolated based on our modified protocols previously reported [25]. 

Briefly, mouse CMs were homogenized in low salt solution and centrifuged at 500Xg. 

Pellets were resuspended in 250mM sucrose, 20mM KCl, 1mM MgCl2, 50mM Tris, (pH 

7.0). Crude nuclei were harvested by centrifugation at 1000Xg.

2.2 Confocal immunofluorescence microscopy.

Confocal immunofluorescence microscopy on paraformaldehyde fixed isolated mouse CMs 

was performed as previously described [26]. The monoclonal antibodies against PLB (2D12) 

was visualized using Protein A labeled with Alexa-Fluor 594 fluorescent dye. Anti-PLB Fab 

was conjugated with Alexa-Fluor 594 (ThermoFisher Scientific) in the assay [26].

2.3 Intracellular/nuclear Ca2+ imaging and analysis.

Intracellular Ca2+ activities were imaged at room temperature with the Leica TCS SP8 

LSCM inverted microscope fitted with a 40× 1.42 NA oil immersion objective. Intact CMs 

were loaded with Fluo-4AM and imaged in normal Tyrode’s solution with 1.8 mM Ca2+. 

Spontaneous Ca2+ activity of saponin-permeabilized CMs was imaged using the Ca2+ 

indicator dye Fluo-4, as previous described [26]. The Scan-line was placed across the length 

of the cell in a medial plane that showed the full nuclear diameter with brighter fluo-4 

signal. The z section thickness is 580nm under our experimental setting. Mock internal 

solution contained (in mM): 100 potassium aspartate, 20 KCl, 5 KH2PO4, 5 MgATP, 10 

phosphocreatine, 5 U/ml creatine phosphokinase, 10 HEPES, 0.5 EGTA, 1 MgCl2, 0.015 

Fluo-4 (Invitrogen), and 8% w/v dextran (molecular weight 40,000), pH 7.2 (KOH). Since 

fluo-4 was not calibrated, paired experiments were performed to compare the effect of anti-

PLB Fab. Use of IP3 and 2-APB followed protocols of Zima et al [13]. In some experiments, 

lumenal Ca2+ was visualized with use of a low affinity Ca2+ indicator Mag-Fluo-4 

(ThermoFisher Scientific). In brief, because of the poor signal to noise ratio in mouse CMs, 

permeabilized dog CMs, or crude mouse cardiac nuclei were incubated with mag-fluo-4 for 

30 min in mock internal solution with 50 nM Ca2+, and imaged. CaCl2 was added to make 

the free [Ca2+]i of 10nM, 50nM, and 100nM (WebMaxC Extended (http://

www.maxchelator.stanford.edu)).

2.4 Statistical analysis.

Results were expressed as mean ± SEM. The statistical significance was evaluated using 

paired or unpaired t tests and one-way ANOVA followed by Tukey post hoc analyses. A 

value of p<0.05 was considered a statistically significant difference.

3. Results

3.1 Effect of anti-PLB on cytosolic and perinuclear originated spontaneous Ca2+ waves.

We previously reported that acute reversal of PLB inhibition by anti-PLB Fab significantly 

increased cytosolic Ca2+ release, facilitating the propagation of SCWs in CMs isolated from 

WT mice [26]. Although anti-PLB Fab acts specifically on PLB, the specificity of the 
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reagent was not tested in CMs from PLB-KO. In addition, detailed study was not performed 

to evaluate the effect of anti-PLB Fab on nuclear Ca2+ activity at various [Ca2+]i. Here, 

using saponin-permeabilized CMs isolated from WT and PLB-KO mice, we extended the 

study to measure the effect of anti-PLB Fab on intracellular Ca2+ activity across the cytosol 

and nucleus.

At 50 nM of [Ca2+]i, line-scan confocal Ca2+ images revealed Ca2+ sparks and macro sparks 

in the cytosol (Fig. 1Aa, Ctl). Addition of anti-PLB Fab (100 μg/mL) significantly increased 

Ca2+ releases, in the forms of macro-sparks and mini waves in the cytoplasm, consistent 

with our recent report [26]. Anti-PLB Fab also significantly increased Ca2+ releases across 

the nuclear region (Fig. 1Aa, Fab, between red line). Fig. 1Ab and c show the intensity 

profile of the Ca2+ release in cytosol and across the nuclear regions, and corresponding fold 

of increase in spark frequency after addition of anti-PLB Fab. Anti-PLB Fab induced a 

significantly stronger response of increase in frequency of Ca2+ sparks in nucleus than 

cytosol. In support of PLB action in the NE, addition of anti-PLB Fab failed to stimulate 

significant subcellular Ca2+ release at both cytosolic and nuclear regions in CMs isolated 

from PLB-KO mice (Fig. 1B). Note that the frequency and intensity of sparks and macro-

sparks were higher in PLB-KO than that in WT mice, confirming reports on sarcomeric PLB 

from multiple labs [29]. Finally, both 2D12 and anti-PLB Fab stained CMs from WT mice, 

with typical higher immunofluorescence intensity in and around the nucleus than that in SR. 

However, neither 2D12 nor anti-PLB Fab stained CMs from PLB-KO mice (Fig. 1C), 

demonstrating the specificity of the anti-PLB Fab in binding to PLB and reversing PLB 

inhibition of SERCA2a.

As expected, 100 nM [Ca2+]i increased the frequency of Ca2+ sparks and short SCWs under 

basal conditions in CMs from WT mice (Fig. 2Aa, Ctl). Compared with those in the cytosol, 

the spontaneous Ca2+ waves (SCWs) across nuclei exhibited the characteristics of 

perinuclear Ca2+ transients [18, 24, 25, 27, 30], with smaller amplitude (F/F0) and slower 

rise and decay time (Fig. 2Ab, compare black vs blue traces). Consistent with our previously 

report [26], addition of anti-PLB Fab significantly increased initiation of short and long 

SCW in the cytosol (Supplement Figure 1). Interestingly, addition of anti-PLB Fab also 

significantly increased long SCWs that were initiated in the perinuclear region and 

propagated into the cytosol (Fig.2Aa, Fab, between red lines, magnified in panel Ab). Fig.

2Ac summarizes our findings. In addition to the significant increase in amplitude (F/F0), 

anti-PLB Fab also decreased the half decay time (DT50) , reflecting the reversal of PLB 

inhibition of SERCA2a, causing a higher rate of Ca2+ re-uptake into SR and NE. Due to low 

density of RyRs and low effective Ca2+ diffusion coefficients in the nucleus [31], the wave 

velocity in the perinuclear region was slower than that in the cytosol, but both were 

increased after addition of anti-PLB Fab. On the other hand, CMs isolated from PLB-KO 

already have greater levels of intracellular Ca2+ release than that in WT, leading to a high 

frequency of short broken SCWs at both cytosolic [32] and nuclear regions (Fig. 2Ba). 

Subsequent addition of anti-PLB Fab had no effect on SCWs in both cytosol and nuclear 

regions in CMs from PLB KO mice (Fig. 2Ba, amplified in panel Bb, kinetic parameters 

summarized in panel Bc).
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Fig. 2C and D compared the differences before and after addition of anti-PLB Fab on 

frequencies of mini and long SCWs between WT and PLB-KO. While very few long SCWs 

were developed at basal condition in WT mice, 35.4 ± 5.1% of short SCWs were originated 

within the nuclear regions. Anti-PLB Fab application dramatically increased the total 

frequency of long SCWs (from 0.05 ± 0.03 to 0.52 ± 0.07 Hz) and long SCWs which 

initiated from nuclear region and propagated into the cytosol (from 0.02 ± 0.02 to 0.24 

± 0.05 Hz). Note that 43.3 ± 7.6% of long SCWs were initiated in the nuclear regions. In 

contrast, anti-PLB Fab did not change the frequencies or morphologies of SCWs in PLB-

KO. As nuclei only occupied 18 ± 1% of the whole line-scan regions, we compared SCWs 

density originated from cytosol or nucleus region by dividing the frequency of SCWs 

initiated in either region by the width of corresponding region. In WT, SCW density 

exhibited no significant difference between cytosol and nucleus at basal condition. However, 

anti-PLB Fab caused about 8 fold increase in the SCW density in cytosol (1000 × Hz/μm: 

0.4 ± 0.3 vs. 3.4 ± 0.5, p<0.05), compared to a more than 12 fold increase in the nuclear 

region (1000 × Hz/μm: from 1.1 ± 1.1 to 14.6 ± 2.9, p<0.05). In contrast, these effects were 

not observed in PLB KO mice. Collectively, these sets of data suggest that acute reversal of 

PLB inhibition by anti-PLB Fab enhances the SERCA-based Ca2+ uptake into SR and more 

profoundly into the nuclear Ca2+ stores, and increases the frequencies of whole cell 

propagating long SCWs, especially SCWs originated from nuclear regions.

3.2 Effect of ET-1 on Ca2+ transients in intact cardiomyocytes isolated from WT and PLB-
KO

Since nuclear Ca2+ release involves IP3R [12, 16, 24], we used endothelin-1 (ET-1, 100 nM) 

to activate IP3R and measured Ca2+ transients in intact CMs isolated from WT and PLB-KO 

mice. As shown in Fig. 3A, ET-1 increased Ca2+ releases in the cytosol but more 

prominently across the nuclear region, consistent with reports from other labs using 

ventricular CMs from rat [14, 27] and rabbit [15]. In particular, ET-1 significantly increased 

diastolic F/F0 at rest to 1.18 ± 0.03 and systolic Ca2+ transients F/F0 from 5.5 ± 0.2 to 8.6 

± 0.2 in the nuclear regions. Interestingly, ET-1 decreased nuclear Ca2+ transients DT50 from 

367.6 ± 14.0 ms to 279.9 ± 13.4 ms in WT. However, while F/F0 of Ca2+ transients 

increased, DT50 was not altered by ET-1 (from 158.3 ± 6.6ms to 174.1± 22.5 ms, p>0.05) in 

PLB-KO. Those different effects of ET-1 on perinuclear Ca2+ handling between WT and 

PLB-KO indicate that PLB may be involved in regulation of IP3R-mediated perinuclear 

Ca2+ handling.

3.3 Effect of anti-PLB Fab on nuclear Ca2+ levels of cardiomyocytes in the presence of 
IP3.

Because ET-1 has broad effects in intact CMs, we used anti-PLB Fab to manipulate PLB 

specifically and determine whether PLB contributes to the modulation of IP3-induced 

nuclear Ca2+ handling at a series of [Ca2+]i. We first examined 2D Ca2+ imaging at 10 nM 

of [Ca2+]i where RyR2 based spontaneous Ca2+ release rarely occurs. Addition of IP3 (10 

μM) increased fluo-4 fluorescence (F/F0) at rest in cytosol (Cy) and more prominently in 

nucleus (Nu) in permeabilized CMs from both WT (Fig. 4A and 4B) and PLB-KO (Fig. 4C 

and 4D). In particular, F/F0 at rest across the nucleus increased to 1.19 ± 0.02 and 1.17 

± 0.02 for CMs from WT and PLB-KO, respectively, a level similar to that previously 
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reported in atria CMs [13], suggesting increased nuclear Ca2+ releases through opening of 

IP3R channels. IP3 also had some effects on F/F0 at rest in the cytoplasmic region, to 1.08 

± 0.02 and 1.08 ± 0.02 for WT and PLB-KO, respectively. Importantly, subsequent addition 

of anti-PLB Fab significantly decreased F/F0 at rest in cytosolic regions to 1.04 ± 0.02 and 

more profoundly in the nuclear regions to 1.09 ± 0.02 in CMs from WT mice. In contrast, 

anti-PLB Fab had no effect on F/F0 at rest in CMs from PLB-KO mice in nuclear (1.17 

± 0.03) and cytosolic regions (1.07 ± 0.02). Further addition of IP3R blocker 2-

aminoethoxydiphenyl borate (2-APB, 10 μM) decreased F/F0 at rest in both regions of CMs 

from WT (Nu: 1.03 ± 0.02 and Cy: 1.01 ± 0.02) and PLB-KO mice (Nu: 1.05 ± 0.02 and Cy: 

1.00 ± 0.02). These results were also verified by line-scan images at 10 nM of [Ca2+]i 

(Supplement Fig.2). Therefore, acute reversal of PLB inhibition by anti-PLB Fab increases 

SERCA uptake, thus responsible for the transient reduction in nuclear Ca2+ until a new IP3R 

release-uptake balance is reached.

We next performed the experiments using 50 nM of [Ca2+]I to induce spontaneous Ca2+ 

sparks. As shown in Fig. 5, effects of IP3 and anti-PLB Fab on F/F0 at rest in nuclear regions 

were similar to that observed in 10 nM [Ca2+]i, but more complicated for nuclear Ca2+ 

releases. Specifically, while having small effects in the cytoplasmic region (Fig. 5. Cy, 
bottom panels, 1.04 ± 0.02 and 1.04 ± 0.02 at 4min, for WT and PLB-KO, respectively), IP3 

significantly increased F/F0 at rest across nuclear regions with time (top panels, Nu) to 1.14 

± 0.03 and 1.13 ± 0.02 at 4 min for CMs from WT (Fig. 5A,B) and PLB-KO (C,D), 

respectively. Again, subsequent addition of anti-PLB Fab significantly decreased F/F0 at rest 

in the nuclear regions to 1.06 ± 0.02 at 3min only in CMs isolated from WT (A,B) but not 

from PLB-KO (C,D. at 3min,1.12 ± 0.02). Consistent with our previous report [26], anti-

PLB Fab also decreased F/F0 at rest in the cytosol (0.98 ± 0.02) in CMs from WT, but had 

no effect on CMs from PLB-KO mice. In addition, IP3R blockade by 2-APB further 

decreased F/F0 at rest to 1.01 ± 0.02 in nuclear regions of CMs from both WT and PLB-KO. 

These results confirmed the observations at 10nM [Ca2+]i, suggesting reversal of PLB 

inhibition by anti-PLB Fab reduces nuclear Ca2+ concentrations elevated by IP3-induced 

perinuclear/nuclear Ca2+ release.

Interestingly, at 50 nM of [Ca2+]i, while IP3 showed no significant effect on Ca2+ sparks in 

the cytosol, nuclear Ca2+ release showed significant increases in the frequency of “nuclear 

spark-like” Ca2+ releases in the nuclear regions of both CMs from WT (Fig. 5A) and PLB-

KO (Fig. 5C). Kinetic parameters of those sparks are listed in Table 1. In general, Ca2+ 

releases in the nuclear regions were significantly different in morphology from that of the 

cytosol (compare top and bottom traces). Compared with sparks in the cytosol, nuclear Ca2+ 

sparks have smaller F/F0 and full width at half maximum (FWHM), but larger full duration 

at half maximum (FDHM) and DT50 (Table 1), consistent with characteristics of “nuclear 

sparks” reported previously [16]. Importantly, anti-PLB Fab generated even bigger, 

prolonged Ca2+ releases in the nuclear regions in CMs from WT, but not PLB-KO (compare 

arrows in Nu). Table 1 shows that in WT CMs, anti-PLB Fab significantly increased F/F0, 

FWHM and FDHM, but decreased DT50 in the nuclear regions. In contrast, at basal 

condition, CMs from PLB-KO exhibited more frequent, bigger and prolonged IP3-induced 

Ca2+ releases in the nuclear regions than those in WT. Anti-PLB Fab had no additional 

effect on either cytosolic or nuclear regions, confirming that the observed effects in WT 
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were attributed to the reversal of PLB inhibition by anti-PLB Fab. These results demonstrate 

that PLB in the NE regulates IP3R-mediated perinuclear/nuclear Ca2+ release.

As [Ca2+]i further increased to 100 nM, macro sparks and short SCWs occurred at basal 

conditions in WT. The addition of IP3 induced more organized short SCWs originating in 

and confining within the nucleus (Fig. 6A). Subsequent addition of anti-PLB Fab 

significantly increased F/F0 and decreased DT50 of SCWs (Fig. 6C). Importantly, anti-PLB 

Fab transformed the nucleus-originating short waves into long SCWs that propagated 

outside the nucleus, triggering subsequent cytosolic Ca2+ release (Fig. 6A). In contrast, in 

PLB-KO (Fig. 6B), IP3 alone increased the frequency of short and long SCWs originating in 

the nucleus which spread into cytosol. Subsequent addition of anti-PLB Fab affected neither 

the frequency nor other biophysical parameters of the SCWs (Fig. 6C).

3.4 Effects of anti-PLB Fab with inhibition of RyR by tetracaine

To separate the effects of RyR2 from IP3R on Ca2+ release in the nuclear regions, at 100 nM 

[Ca2+]i, we pretreated WT CMs with RyR blocker tetracaine (0.5mM), followed by addition 

of IP3, anti-PLB Fab, and 2-APB. As shown in Fig. 7, tetracaine blockade of RyR2 was 

evident as SCWs were completely eliminated. Subsequent application of IP3 increased F/F0 

at rest intensity and augmented Ca2+ release in the nuclear regions, consistent with previous 

observation in atrial and neonatal ventricular myocytes [16, 20]. Anti-PLB Fab decreased 

F/F0 at rest and further increased Ca2+ release in the nuclear regions (F/F0 from 1.8 ± 0.1 to 

2.1 ± 0.1, p<0.05). However, no SCW was formed with RyR blockade even in the presence 

of IP3 and anti-PLB Fab. Finally, IP3R blockade by 2-APB eliminated all Ca2+ release in the 

nuclear regions. These results suggest that PLB modulates IP3R-mediated Ca2+ release in 

the nuclear regions, but RyR activities are necessary to form propagating SCWs originating 

from nuclear regions.

3.5 Effects of anti-PLB Fab on lumenal Ca2+ in the NE and SR.

To directly address whether PLB regulates Ca2+ uptake into the lumen of the NE, we 

measured the effect of anti-PLB Fab on lumenal Ca2+ inside the NE and SR. Thus, the 

lumen of permeabilized dog CMs was loaded with mag-fluo-4 and imaged at 50 nM Ca2+. 

In control experiment in the absence of IP3, there was no significant change in mag-fluo-4 

fluorescence intensity inside the NE and SR for 30 min (Fig. 8Aa). We then confirmed the 

results previously reported by Wu and Bers [33] that addition of IP3 caused Ca2+ releases 

from lumen. Indeed, IP3 significantly decreased the mag-fluo-4 intensity (Fig. 8Ab) to about 

42.1 ± 1.6 % for SR and 49.2 ± 1.5 % for NE at 20 min after its application, reaching a new 

balance between Ca2+ uptake and release. Addition of anti-PLB Fab significantly increased 

fluorescence intensity to about 116.4 ± 0.8% for the NE and 110.9 ± 0.9% for SR (Fig. 

8Ac), indicating that reversal of PLB inhibition of SERCA increased Ca2+ concentration 

inside the lumen of NE and SR. Importantly, when anti-PLB Fab was present, addition of 

IP3 decreased the levels fluorescence intensity to about 76.4 ± 1.4% in the NE and 73.4 

± 1.7% in SR, compared to the absence of anti-PLB Fab. These findings indicate that a new 

balance was reached at higher lumenal Ca2+ concentration, due to increased SERCA uptake. 

Furthermore, anti-PLB Fab prolonged the decay time for IP3 induced fluorescence decay 

(Fig. 8Ad). The difference in these parameters between NE and SR was small, consistent 
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with the previous finding by Wu and Bers [33] that the lumen of NE and SR are contiguous 

to maintain overall uniform driving force.

Because the lumen of SR and NE are contiguous, we measured specifically if anti-PLB Fab 

increases NE lumenal Ca2+ in isolated mouse cardiac nuclei. As shown in a typical 

experiment, anti-PLB Fab significantly increased mag-fluo 4 fluorescence intensity around 

the nucleus from WT mice (to 110.7 ± 2.0 %, Fig. 8B). In contrast, no significant change 

was observed on the mag-fluo-4 fluorescence intensity in isolated cardiac nuclei from PLB-

KO after addition of anti-PLB Fab (to 99.8 ± 1.0 %, Fig. 8B). These results demonstrate for 

the first time that PLB regulates Ca2+ uptake into the lumen of the NE and IP3-induced Ca2+ 

release.

4. Discussion

In this study, we further investigated our recent findings that relatively high concentrations 

of PLB exist in the nuclear region, likely to be in the NE, of CMs. Moreover, we have shown 

that PLB in the nuclear region regulates SERCA-mediated Ca2+ uptake into perinuclear/

nuclear lumens, and that its subsequent release may involve both IP3R and RyR in the 

vicinity.

4.1 PLB and the Ca2+ waves originated in the nucleus in CMs.

Several previous studies reported that Ca2+ sparks and waves may originate in nuclei of 

atrial myocytes [13, 34], in neonatal rat CMs [16], and in adult mouse ventricular CMs [18]. 

While some of those waves were confined inside nucleus, nuclear Ca2+ waves can also 

spread into the cytosol, capable of inducing whole cell propagating Ca2+ waves [16]. In 

particular, retention of CSQ2 (CSQ2-DsRed) in the NE can increase SCWs initiated in the 

perinuclear/nuclear regions in CMs isolated from both WT and IP3R2 knockout mice [18]. 

While opening of RyR or IP3R may be responsible for these nuclear Ca2+ release, it is 

unclear whether PLB is involved in the regulation of these Ca2+ waves originated in the 

nucleus. Here under basal condition in the semi-intact CMs, we showed that SCWs exhibit 

similar probabilities of initiation from cytosol and nucleus when normalized to the width of 

the line-scan region. Anti-PLB Fab-increased SR Ca2+ content may trigger a RyR lumenal 

Ca2+ sensor [35], increasing the channel open probability. On the other hand, the volume of 

nuclear Ca2+ stores are likely several orders of magnitude smaller than that of SR, given the 

large surface area of SR membranes. Using our anti-PLB antibody to reverse total SERCA 

inhibition in all PLB-containing compartments, we revealed how transient increases in Ca2+ 

concentration occur differently in perinuclear regions and SR. Although Fluo-4 based Ca2+ 

wave measurement has the limitation and cannot pinpoint the origin of the Ca2+ release, we 

speculate that anti-PLB Fab may induce a much stronger response in the perinuclear regions 

than in the cytosol, prominently increasing incidents of SCWs that originate in the nucleus, 

and unmasking PLB-dependent initiation of SCWs in nuclear regions.

In intact CMs, complex regulatory pathways, e.g., adrenergic stimulation, could regulate 

phosphorylation and dephosphorylation differently in nuclear regions and SR, resulting in 

differential Ca2+ load in nuclear regions and SR. Furthermore, there are differences in the 

proximity of the Ca2+ uptake and releasing units, as well as their properties (e.g., density, 
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sensitivity) in these sub-compartments for achieving various physiological functions. 

Therefore, SCWs initiating in the nuclear regions may not contribute equally or 

proportionally to the overall intracellular Ca2+ dynamics under basal and physiological 

conditions. However, during pathological conditions, cardiac remodeling during hypertrophy 

and heart failure has been shown to change SR and nuclear Ca2+ dynamics, along with 

increased size of the nuclei [24]. For example, in an early hypertrophy rat model, nuclear 

Ca2+ signaling was enhanced with elevated nuclear SERCA2a expression relative to the 

cytoplasm, [36]. However, nuclear PLB dysfunction was not studied in these disease 

conditions. Higher sympathetic tone during heart failure might also selectively 

phosphorylate PLB in the NE, leading to the effects similar with those shown in this study. 

Combinations of these factors could increase the incidence of long SCWs originating in the 

nucleus, potentially changing the normal balanced action from cytoplasmic and nuclear 

regions into imbalanced overall abnormal Ca2+ dynamics, and enhanced vulnerability to 

arrhythmias during heart failure.

Various mutations of PLB have been linked to lethal cardiomyopathies in human patients. In 

particular, patients harboring PLB mutation R25C-PLB or R14Del-PLB developed 

hypertrophy and arrhythmia [9, 37]. Both PLB mutants were shown to exhibit abnormal 

Ca2+ dynamics in CMs, with as-yet unknown molecular and cellular mechanisms [38]. 

Interestingly, R14Del-PLB exhibited abnormal perinuclear accumulations and was mis-

routed during trafficking that resulted in its absence from SR [39]. The extent of SCWs 

originating in the nucleus, however, was not further studied in these PLB mutants (or any 

other PLB mutants). Coordinated studies with regard to PLB regulation are necessary to 

understand the full impact of PLB and PLB mutants on both SR and nuclear Ca2+ cycling in 

physiological and pathological conditions in intact CMs.

4.2 Different Ca2+ dynamics in CMs from PLB-KO and WT mice treated with anti-PLB Fab

Our study used the important research tools of anti-PLB Fab and the well-characterized 

PLB-KO mice. In fact, the use of PLB-KO model as a control validated the specificity of 

binding interaction of anti-PLB Fab to PLB. Anti-PLB Fab, along with an array of 

monoclonal anti-PLB antibodies, neither stained nor affected SR and nuclear Ca2+ dynamics 

in CMs isolated form PLB-KO mice. Therefore, considering that various reagents, including 

beta-adrenergic stimulation, which have several possible protein targets in addition to PLB, 

anti-PLB Fab remains as a specific tool to probe PLB and other factors in intracellular Ca2+ 

handling [25].

Studies combining the use of anti-PLB Fab on WT mice with PLB-KO controls clearly 

demonstrated the contribution of PLB to the initiation and maintenance of SCWs in SR and 

nuclear regions. In WT mice, anti-PLB Fab reduced the decay time DT50 of SCWs, a 

hallmark effect of PLB. Reduced DT50 of SCWs was also observed at basal condition in 

CMs from PLB-KO mice. However, there are marked differences in Ca2+ dynamics between 

PLB-KO and WT CMs in the absence and presence of anti-PLB Fab. In line with other 

published findings [29], we observed that CMs in PLB-KO displayed higher frequency of 

Ca2+ sparks than those in WT. In addition, while SCWs in PLB-KO typically appeared with 

short broken wave forms [32, 40], SCWs in WT exhibited whole cell propagating SCWs in 
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the presence of anti-PLB Fab. This anti-PLB Fab effect can be explained by the wave 

sensitization model [41], in which acute PLB ablation in CMs from WT mice increased 

Ca2+ uptake into SR, promoting the formation and elongation of SCWs.

Chronic absence of PLB in PLB-KO mice has been reported to exhibit adaptive changes in 

intracellular Ca2+ handling proteins [42]. In particular, RyR2 expression in PLB-KO mice is 

decreased more than 25%, which could contribute to the occurrence of short travelling of 

SCWs. Additionally, it is well established that a hyperdynamic cardiac function of PLB-KO 

mouse is associated with increases in inotropy but not chronotropy [5]. While human PLB 

null resulted in lethal cardiomyopathy [8], neither arrhythmias nor other cardiac phenotypes 

were observed in PLB-KO mice, which was possibly attributed to these adaptations. 

Nevertheless, in the current study, we did observe differences in nuclear Ca2+ handling in 

CMs from PLB-KO mice, including different responses to ET-1 and IP3 treatments (table 1) 

and more frequent nucleus-initiated SCWs in PLB-KO than WT at basal condition (Fig.2). 

Coupled with our findings using anti-PLB Fab in WT CMs, because of the importance of 

PLB to nuclear Ca2+ handling, it is also possible that adaptation in nuclear Ca2+ handling 

proteins may also occur in PLB-KO mice. Although previous 2D gel based proteomic 

studies did not identify IP3R alteration in PLB-KO [43], further detailed studies will be 

necessary to address such potential changes. In addition, future studies on this valuable line 

of mice will be helpful to dissect the mechanism of nuclear Ca2+ handling in CMs.

4.3 Profound effects of PLB on nuclear Ca2+ signaling

Anti-PLB Fab significantly increased Ca2+ uptake into the lumenal nuclear Ca2+ stores and 

decreased overall IP3-induced levels of nucleoplasmic Ca2+ only in CMs from WT, not CMs 

from PLB-KO. A likely mechanism for this effect would appear to be that SERCA uptake 

into perinuclear and nuclear Ca2+ stores was enhanced by acute reversal of PLB inhibition. 

Previously, Ljubojevic et al detected the presence of significant nucleoplasmic-to-

cytoplasmic [Ca2+] gradients in resting myocytes and during the cardiac cycle [44]. They 

suggested that regulation of the nucleoplasmic [Ca2+] in CMs may be through diffusion 

from the cytoplasm and Ca2+release via IP3R from perinuclear Ca2+ stores. Our data here 

strongly suggest that PLB must also be involved in this mechanism to regulate 

nucleoplasmic [Ca2+] in CMs. In parallel, in the presence of IP3, reversal of PLB inhibition 

also increased intra-nuclear Ca2+ release, in the form of discrete macro sparks and SCWs 

that originated in the nuclear regions. Increased driving force is a likely mechanism due to 

the augmentation of [Ca2+] inside the NE by anti-PLB Fab. However, the mechanism behind 

the nuclear Ca2+ release events is complex and less clear.

Ca2+ release through IP3R channels (puff) are normally very small in amplitude. At our 

experimental conditions, we do not think we directly recorded individual puffs. For example, 

at 10nM [Ca2+]i, no individual releasing events was recorded, although IP3 induced a 

significant rise in F/F0. At 50nM [Ca2+]i, IP3 significantly increased frequency of macro 

spark-like nuclear Ca2+ releases, but no other parameters were significantly affected in WT 

(Table 1). Nonetheless, IP3R is likely to be involved in these spark-like nuclear Ca2+ release 

events because of their activation by IP3 and inhibition by 2-APB. A small event in the 

cytosol/perinuclear region can become greater in magnitude in the nucleus due to its lower 
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buffering than in the cytosol [45]. Therefore, it is possible that those spark-like local nuclear 

Ca2+ release are combined effects of IP3R (puffs) and RyR (sparks). For example, nuclear 

Ca2+ release through IP3R increase local Ca2+ concentration, synergistically increasing 

perinuclear/nuclear RyR2 open probability.

The nature of SCWs originating in cardiac nuclei has remained uncertain, although it is 

suggested that IP3R and RyR2 could both be involved [14–16, 18]. Gating of IP3R involves 

a multitude of factors, including ligands, cytoplasmic and luminal Ca2+ sensors and channel 

cooperativity [46]. At 100nM [Ca2+]i with tetracaine and IP3 pretreatment, reversal of PLB 

inhibition increased the amount of Ca2+ release (F/F0), but failed to regenerate SCWs (Fig. 

7). Hence, even with weakened RyR Ca2+ release, Ca2+ release through IP3R is not 

sufficient to form SCWs. Interestingly, in spontaneously hypertensive rats, increased IP3R 

Ca2+ release has been shown to augment Ca2+ transients [27]. In conclusion, acute reversal 

of PLB inhibition raises perinuclear Ca2+ content, leading to increased nuclear Ca2+ release 

via activation of IP3R, which may trigger perinuclear/nuclear RyR in a positive feedback 

mechanism to generate SCWs from the nucleus.

4.4 Specific PLB regulation of the lumenal Ca2+ concentration in the NE and SR.

There is a PLB concentration gradient between the NE and SR [25]. Therefore, under certain 

conditions, the rate of SERCA Ca2+ uptake can be distinct for perinuclear and nuclear 

membranes and SR, creating different Ca2+ concentration locally in the lumen of NE and 

SR. If SR and NE membranes are actually connected, an overall uniform driving force for 

Ca2+ release will be maintained [33]. As a result, differences between Ca2+ concentration in 

the lumen of NE and SR would only be local and transient, and not detectable in our current 

experimental approaches. In addition, there are differences in proximity, sensitivity, density, 

and distribution of Ca2+ uptake and Ca2+ release units between SR and NE. All these factors 

may contribute to the precision sensing and release of lumenal Ca2+ that can produce both 

excitation-contraction coupling in the cytosol and excitation-transcription coupling in the 

nuclear regions. The experimental approaches employed in our studies, did not permit 

detection of downstream effects, e.g., activation of CaMKII or calcineurin, known 

downstream targets of IP3 signaling pathway. Moreover, our use of permeabilized CMs may 

result in dialysis/loss of critical co-factors in the down-stream signal pathways. Future 

experiments will be required to gain greater insights into the role of PLB in regulation of the 

excitation-transcription coupling signal pathway.

The functional stoichiometry of PLB inhibition of SERCA2a in SR membranes has been a 

subject of debated [1–4]. PLB is in a dynamic equilibrium between monomers and homo-

pentamers [47]. Although still controversial [48], it is likely that PLB monomers specifically 

interact with SERCA2a in the Ca2+ free, E2 conformation, thus preventing the pump from 

binding Ca2+ to continue the enzyme kinetic cycle [49]. Although temperature affects 

equilibria between PLB monomers and pentamers and PLB monomers binding to 

SERCA2a, PLB interacts with SERCA at room temperature [50]. In human SR membranes, 

there is a 1:1 molar ratio between PLB and SERCA2a [51]. In in vitro heterologous 

expression systems, increasing PLB expression beyond 1:1 over SERCA2a does not produce 

additional inhibition [52, 53]. On the other hand, using PLB overexpression mice, Brittsan et 
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al [54] determined that approximately 40% of SERCA2a were regulated by PLB in the SR 

membranes; over-expression of PLB in mice enhanced SERCA2a inhibition. In the NE, PLB 

maintained similar pentamer to monomer ratio to that in SR on SDS-PAGE [25]. However, 

in addition to the amount of PLB, regulation of SERCA may also be achieved through 

various signal pathways that uniquely phosphorylate PLB in the NE. Collectively, the 

biochemical properties of PLB in the NE remain poorly understood and need extensive 

further investigation.

In conclusion, as a powerful known regulator of SR Ca2+ uptake and release, PLB also 

critically regulates nuclear Ca2+ signaling. Regardless of the mechanism of nuclear Ca2+ 

release, our results suggest for the first time that PLB exerts effects on nuclear Ca2+ 

handling. By increasing Ca2+ uptake into lumen of the NE and perhaps other perinuclear 

membranes, the acute reversal of PLB inhibition decreases global Ca2+ concentration at rest 

in the nucleoplasm, and increases transient Ca2+ release into the nucleus, through 

mechanisms involving local IP3R and RyR2.
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Abbreviations:

CM cardiomyocyte

ER endoplasmic reticulum

Fab the Fab fragment of the monoclonal anti-PLB antibody 2D12

IP3R inositol 1,4,5-trisphosphate receptor

NE nuclear envelope

PLB phospholamban

RyR ryanodine receptor

SCW spontaneous Ca2+ wave

SR sarcoplasmic reticulum
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SERCA2a isoform of Ca2+-ATPase in cardiac SR

2-APB 2-aminoethoxydiphenyl borate
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Highlights:

• Phospholamban (PLB) is concentrated in nuclear envelope (NE) of 

cardiomyocytes (CMs).

• The Fab fragment of PLB antibody increased the lumenal Ca inside the NE of 

CM nuclei.

• Anti-PLB Fab increased Ca release in the nuclear regions of permeabilized 

CMs.

• Anti-PLB Fab decreased Ca levels elevated by IP3 at rest in the nuclear 

regions.

• PLB regulates nuclear Ca handling in CMs through mechanisms involving 

IP3R and RyR.
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Figure 1. The effect of anti-PLB Fab on intracellular Ca2+ release in nuclear and cytoplasmic 
regions of CMs isolated from WT (A) or PLB-KO mice (B).
a. representative confocal line-scan Ca2+ images using Fluo-4 Ca2+ indicator were obtained 

in the same permeabilized mouse CM (top) before (Ctl) and after addition of 100 μg/ml anti-

PLB Fab (Fab). Nucleus is between red lines. Scan-line (white) is across cytosol and 

nucleus. Ca2+ concentration was 50 nM. b. Traces showed intensity of fluorescent signals 

(F/F0) across the cytosol and nucleus (regions indicated by lines in a). c. Bar graphs showing 

spark frequency in the cytoplasmic and perinuclear regions, and fold of increase after 

addition of anti-PLB Fab. * indicates p<0.05 vs control (average of 12 CMs from 5 mice). C. 
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Confocal immunofluorescence images showing 2D12 and anti-PLB Fab conjugated with 

Alexa Fluor-594 staining CMs from WT, but not from PLB-KO mice. Similar staining was 

obtained from at least 6 CMs isolated from WT or PLB-KO mice.
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Figure 2. The effect of anti-PLB Fab on initiation of the spontaneous Ca2+ waves in cytoplasmic 
and perinuclear regions of CMs from WT (A) or PLB-KO mice (B).
a. representative confocal line-scan Ca2+ images using Fluo-4 Ca2+ indicator were obtained 

in the same permeabilized mouse CM (top) before (Ctl) and after addition of 100 μg/ml anti-

PLB Fab (Fab). Nucleus is between red lines. Scan-line (white) is over cytosol and nucleus. 

Ca2+ concentration was 100 nM. b. Magnified region showing spontaneous Ca2+ waves 

(SCWs). Traces showed intensity of fluorescent signals (F/F0) of SCWs. c. Bar graphs 

showing characteristics of SCWs. C, D. Bar graphs showing frequency of mini-waves and 
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long SCWs initiated at cytoplasmic and perinuclear regions. * indicates p<0.05 vs control 

(average of 12 CMs from 5 WT or 12 CMs from 5 PLB KO mice, respectively).
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Figure 3. The effect of ET-1 (100 nM) on Ca2+ transients in cytoplasmic and perinuclear regions 
of CMs isolated from WT (A) or PLB-KO mice (B).
a. representative traces of Ca2+ transients in cytoplasmic and perinuclear (between red lines) 

regions of CMs. b and c, intensity profiles and biophysical parameters of Ca2+ transients in 

cytoplasmic and perinuclear regions of CMs. Each Ca transient have its own diastolic Ca 

level diastolic Ca in the absence of ET was used for F0 determination. * indicates p<0.05 vs 

control (average of 10 CMs from 5 WT or 10 CMs from 5 PLB KO mice, respectively).
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Figure 4. Anti-PLB Fab affects IP3-induced nuclear Ca2+ releases at rest in WT (A, B) but not in 
PLB-KO (C, D).
Representative 2D confocal images show fluo-4 signals in permeabilized CMs. [Ca2+]I = 10 

nM. A.C, Scan Images for nuclear (Nu) and cytosolic (Cy) regions show fluo-4 signals and 

intensity (F/F0) at control condition (Ctl) and 3 min after sequential addition of IP3 (10 μM), 

anti-PLB Fab (100μg/ml) and IP3R blocker 2-APB (10 μM). White ellipses show the 

identical regions of interest for detecting fluorescence intensity in Nu and Cy. B.D, plots 

show F/F0 at rest for Nu (left panels) and Cy (right panels) in each condition. * indicates 

p<0.05. n=12 CMs, 6 mice for WT; n= 12 CMs, 6 mice for PLB-KO.
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Figure 5. Anti-PLB Fab affects IP3-induced nuclear Ca2+ releases at 50nM [Ca2+]i in WT (A,B) 
but not in PLB-KO (C,D).
Representative line-scan confocal images show fluo-4 signals in permeabilized CMs. 

[Ca2+]i,=50 nM. A, C. Scan Images (2 sec) and traces for nuclear (Nu, upper panels) and 

cytosolic (Cy, lower panels) regions show fluo-4 signals and intensity profiles (F/F0) at basal 

condition (Ctl) and after sequential addition of IP3 (10 μM), anti-PLB Fab (100μg/ml), and 

2-APB (10 μM). M indicates minutes after addition of the reagents. B.D, Bar graphs show 

F/F0 at rest for Nu (left panels) and Cy (right panels) in each condition. * indicates p<0.05. 

n=12 CMs, 6 mice for WT; n= 13 CMs, 6 mice for PLB-KO.
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Figure 6. Anti-PLB Fab affects IP3-induced SCWs originated from nuclear regions in WT (A) 
but not in PLB-KO (B).
Representative line-scan confocal images show fluo-4 signals in permeabilized CMs. </P/> 

[Ca2+]i,=100nM. A, B. Scan images (3 sec) and traces for cytosolic (Cy, lower panels) and 

nuclear (Nu, upper panels) regions show fluo-4 signals and intensity profiles (F/F0) at basal 

(Ctl) and after sequential addition of IP3 (10 μM) and anti-PLB Fab (100μg/ml). M indicates 

minutes after addition of the reagents. C. Plot shows the frequency and kinetic parameters of 

nuclear initiated SCWs with triggering cytosolic Ca2+ release. * indicates p<0.05. n=15 

CMs, 7 mice for WT; n= 14 CMs, 7 mice for PLB-KO.
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Fig. 7. Effects of anti-PLB Fab with pretreatment of tetracaine and IP3 in WT.
A. Representative line-scan confocal images and intensity profiles (F/F0) of fluo-4 signals in 

cytoplasmic and nuclear regions at baseline and 3 minutes after sequential addition of 

tetracaine (0.5 mM), IP3 (10 μM), anti-PLB Fab (100 μg/ml), and 2-APB (10 μM). B. Bar 

graphs show characteristics of Ca2+ release. n= 12 CMs from 6 WT mice.
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Fig. 8. Effects of anti-PLB Fab on Ca2+ concentration in the lumen of NE and SR.
Permeabilized CMs or isolated cardiac nuclei from both WT and PLB-KO mice were loaded 

with mag-fluo-4 and imaged. A. Representative 2D confocal images of mag-fluo-4 signals in 

the NE and SR from permeabilized dog CMs at a. baseline; b. after addition of IP3 (10 μM); 

and c. sequential addition of anti-PLB Fab (100 μg/ml), and IP3 (10 μM). d. graphs show 

time-dependent intensity profiles (F/F0min) after treatments. n= 6 CMs from 2 dogs. B. 

Representative 2D confocal images of mag-fluo-4 signals in the NE in isolated cardiac 
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nuclei from WT and PLB-KO mice at control (Ctl) and after addition of anti-PLB Fab (Fab). 

Bar graph shows the mag-fluo-4 intensity ratios after addition of anti-PLB Fab.
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Table 1.

Characteristics of Ca2+ sparks.

Ca2+ activities were measured at 50 nM of [Ca2+]i in permeabilized CMs from WT and PLB-KO as indicated 

in Fig. 5. Ca2+ sparks were measured at baseline, after IP3, after anti-PLB Fab and 2-APB and analyzed using 

the SparkMaster plug-in for ImageJ software [55]. Parameters of Ca2+ sparks characteristics were compared 6 

using one-way ANOVA with Tukey post-tests. Results are the means ± SEM from 12 CMs from 6 WT and 13 

7 CMs from 6 PLB KO mice. * indicates P<0.05 vs baseline, † vs. IP3, ‡ vs. Fab. FWHM: full width at half 8 

maximum; FDHM: full duration half maximum; DT50: half decay time.

WT Nu Spark numbers
(/100 μm.s)

Peak amplitude
F/F0

FWHM, μm FDHM, ms DT50, ms

control 2.6 ± 0.5 1.8 ± 0.1 1.7 ± 0.2 30.4 ± 3.9 36.5 ± 6.0

IP3 8.3 ± 0.9 * 1.8 ± 0.1 1.9 ± 0.1 35.0 ± 3.6 52.6 ± 11.6

Fab 8.8 ± 0.8 * 2.2 ± 0.1 *† 2.8 ± 0.2 *† 69.1 ± 6.6 *† 118.6 ± 29.9 *†

2-APB 2.3 ± 0.4 † ‡ 1.8 ± 0.1 ‡ 1.7 ± 0.2 ‡ 28.0 ± 4.4 ‡ 29.7 ± 3.2 ‡

WT Cy

control 4.3 ± 0.4 3.1 ± 0.1 2.9 ± 0.1 28.9 ± 1.4 24.2 ± 1.4

IP3 6.4 ± 0.8 3.3 ± 0.1 3.0 ± 0.1 27.9 ± 0.8 28.2 ± 1.7

Fab 8.3 ± 0.5 * 4.2 ± 0.1 *† 3.8 ± 0.1 *† 40.2 ± 1.9 *† 37.2 ± 1.9 *†

2-APB 3.9 ± 0.6 † ‡ 2.9 ± 0.1 ‡ 2.8 ± 0.1 ‡ 26.1 ± 1.0 ‡ 29.9 ± 1.9 ‡

KO Nu

control 5.6 ± 0.4 1.9 ± 0.1 1.7 ± 0.2 32.0 ± 3.8 38.5 ± 5.7

IP3 8.6 ± 0.4 * 2.3 ± 0.1 * 2.8 ± 0.2 * 67.5 ± 4.2 * 107.8 ± 7.6 *

Fab 8.4 ± 0.3 * 2.3 ± 0.1 * 2.8 ± 0.2 * 65.3 ± 4.0 * 103.6 ± 7.3 *

2-APB 4.2 ± 0.3 † ‡ 1.9 ± 0.1 † ‡ 1.9 ± 0.2 † ‡ 40.9 ± 5.7 † ‡ 58.8 ± 14.3 † ‡

KO Cy

control 7.5 ± 0.6 3.3 ± 0.1 2.9 ± 0.1 28.6 ± 1.0 27.0 ± 1.2

IP3 9.7 ± 0.7 3.8 ± 0.1 * 3.1 ± 0.1 32.4 ± 1.7 30.7 ± 2.0

Fab 9.5 ± 0.6 3.8 ± 0.1 * 3.1 ± 0.1 31.8 ± 1.5 31.0 ± 2.2

2-APB 5.4 ± 0.5 † ‡ 3.3 ± 0.1 † ‡ 2.7 ± 0.1 27.5 ± 1.3 29.6 ± 1.6
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