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Abstract

Innovations in epitranscriptomics has resulted in identification of more than 160 RNA 

modifications till date. These developments together with the recent discovery of writers, readers 

and erasers of modifications occurring across a wide range of RNA and tissue types, led to a surge 

in integrative approaches for transcriptome-wide mapping of modifications and protein-RNA 

interaction profiles of epitranscriptome players. RNA modification maps and cross-talk between 

them have begun to unfold the role of modifications as signaling switches, opening the notion of 

epitranscriptomic code as a driver of post-transcriptional fate of RNA. Emerging single molecule 

sequencing technologies and development of antibodies specific to various RNA modifications 

could enable charting transcript specific epitranscriptomic marks across cell types and their 

alterations in disease.
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Emergence of an expanded view of RNA alphabet

Genomic studies over the last two decades have enabled us to have a comprehensive 

understanding of both coding (mRNA) and non-coding RNAs (ncRNA) as well as to 

uncover their role as active and passive players in governing the functional outcomes of a 

cell [1–4]. However, the molecular players mediating and controlling the transition from 

RNA to protein i.e, post-transcriptional regulation, which governs expression patterns, 
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localization, splicing, stability and structure of RNA, has been relatively under-appreciated. 

Recent research has led to the discovery of dynamic chemical modifications of nucleotide 

bases on RNA and are increasingly witnessed to be key switches in its metabolism [5–8]. A 

variety of such chemical modifications are now known to be the result of RNA-binding 

proteins [9], which can be broadly classified as writers (enzymes responsible for installation 

of the modification), readers (RNA-binding proteins which can recognize and bind to the 

sequence upon modification of the RNA), and erasers (enzymes responsible for the removal 

of the modification) (Figure 1). A multitude of such chemical switches have been observed 

to be regulated and catalyzed by modification enzymes (Table 1).

Although, modifications like pseudouridine (ψ) and internal N6-methyladenosine (m6A) in 

mRNAs have been known for decades [10], lack of efficient detection and analysis 

techniques limited their profiling for a long time. However, recent technological 

advancements and the availability of high throughput detection methods have enabled the 

documentation of more than 160 types of RNA modifications (Table 1) with increasing 

evidence for their role in gene regulation, cell development, translation, metabolism and 

stress responses [11, 12]. Further, the discovery of m6A erasers like Fat mass obesity-

associated protein (FTO) and alkB homologue 5 (ALKBH5) that can demethylate the target 

loci, has pushed the idea that RNA modifications are dynamic and reversible similar to DNA 

modifications and are likely to contribute to a complex epitranscriptomic code, revealing 

their significance in multiple human diseases [13–15]. Studies also support that mutations 

associated with more than half of the known RNA modifications and RNA modifying 

enzymes are involved in major human diseases like cancer, neurological disorders, 

cardiovascular diseases, metabolic diseases, genetic birth defects and mitochondrial-related 

defects [16]. Such developments together with significant evolutionary conservation of RNA 

modification enzymes and their target sites across domains of life [17], rapid discovery of 

new RNA modification writers and erasers along with their functions in regulating RNAs 

and their functional outcomes, has led to the birth of Epitranscriptomics [18].

A survey of available RNA modification databases [11, 12] reveals that RNA modifications 

are abundant in tRNAs, rRNAs, snoRNAs and snRNAs, but their diversity is most 

widespread among tRNAs, rRNAs and mRNAs followed by snRNAs and snoRNAs. 

Nevertheless, given the rapid development in detection methods which can scale to whole 

transcriptomes, our understanding of the dynamic epitranscriptomes and resulting 

contribution to cellular phenotypes is expected to improve dramatically. In this review, we 

summarize few of the extensively studied RNA modifications that are observed to be 

abundant in mRNAs and tRNAs, with substantial roles in RNA metabolism and human 

diseases. For brevity, we focus on RNA modifications and omit the discussion on the role of 

RNA editing events in disease [19].

Types of major RNA modifications

The first RNA modification Pseudouridine (ψ) identified in the early 1950s [20], is an 

isomer of C5-glycoside from the nucleoside uridine and is considered to be the most 

abundant cellular RNA modification with a ψ/U ratio of 0.2–0.6% [21, 22], observed mainly 

in rRNAs and tRNAs; although the rapid growth in high-resolution detection techniques has 
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also led to the discovery of pseudouridine within the mRNAs of eukaryotes [23, 24]. 

Pseudouridine formation is dynamically controlled by environmental stress stimuli and is 

considered an irreversible modification due to the formation of an inert C-C bond. It is 

known to play a crucial regulatory role in RNA stabilization, structural alteration and mRNA 

metabolism during stress conditions [24–26]. High-resolution detection techniques like 

Pseudo-seq where pseudouridine specific chemical agents like CMC (N-cyclohexyl-N’-(2-

mor-pholinoethyl)carbomiimide metho-p-toulenesulfonate) are used to block reverse 

transcription one nucleotide downstream, has enabled unfolding its significance in human 

diseases like prostate cancer, dyskeratosis congenital, and pituitary tumorigenesis [23, 24, 

27].

Adenosine modifications like N6-methylAdenosine (m6A), discovered in the 1970s [28] are 

thought to be the most abundant mRNA modification accounting for 0.1–0.5% of all 

adenosines, with a crucial role in regulating RNA stability, expression, and localization [5, 

29, 30]. Although the precise location of m6A on mRNA is still under debate, new high-

throughput detection techniques point to their enrichment near 3’ untranslated regions 

(UTRs) and at stop codons in long exons [31–33]. Studies carried out by Meyer and co-

workers on cancer and tissue-specific cell lines using immunoblotting techniques also 

revealed that m6A modifications are tissue-specific with a high degree of variability in their 

occurrence profiles between brain, heart and kidney [31]. In addition, Molinie and 

coworkers also reported the differential m6A levels among mammalian embryonic and B-

cell lymphoblastoid cell lines using the m6A-LAIC-seq detection method [34]. m6A specific 

immunoprecipitation techniques like m6A-Seq, also called MeRIP-Seq, revealed their 

widespread prevalence among 25% of the known transcripts and their extensive evolutionary 

conservation [31, 35]. However, the major shift in the study of m6A modifications and their 

role in human diseases ascended after the discovery of Fat mass obesity-associated protein 

(FTO) and alkB homologue 5 (ALKBH5) due to their ability to erase m6A modifications 

[13, 15]. Mutations related to m6A erasers and writers like FTO, ALKBH5, METTL14, and 

METTL3 are observed to be associated with major diseases like cancer, type 2 diabetes, 

leukemia, infertility and some major neuropsychiatric behavioral and depressive disorders, 

signifying the importance of m6A in major human diseases [36, 37].

Recently, N1-methyladenosine (m1A) another adenosine modification, known to be 

originally abundant in non-coding RNAs has been reported to be prevalent in mRNA [30, 

38, 39]. Comprehensive analysis carried out on human embryonic kidney cells (HEK293T) 

using m1A specific immunoprecipitation techniques (m1A-ID-seq) [40], revealed the 

abundant distribution of m1A at 5’ untranslated regions (UTR) of mRNA in the vicinity of 

start codons and also known to be associated with novel sequence motifs. Studies on 

ALKBH3 (DNA/RNA demethylase) knockout cell lines also revealed the reversible nature 

of m1A modifications similar to m6A modification and tend to be dynamically responsive 

towards physiological stress stimuli [39]. Although, m1A modifications are observed to be 

associated with human diseases like obesity and neurodevelopmental regression, more 

phenotypic studies are required to uncover the regulatory and functional dynamics of N1-

methyladenosine in the context of human diseases.
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Modifications to cytosines on RNA include N5-methylcytidine (m5C), which was originally 

observed in tRNAs and rRNAs. It is now known to play a key role in controlling the 

secondary structure conformation and translation of RNAs [41]. The first global 

transcriptome mapping analysis carried out by Squires and colleagues in 2012 using a 

sodium bisulfite sequencing technique, unveiled more than 10000 m5C modification 

positions in human mRNA enriched around annotated untranslated regions (UTRs) [42]. 

Recently, Yang et. al mapped the m5C sites across multiple tissues in mice, to demonstrate 

its enrichment in CG-rich locations and in regions immediately downstream of translation 

initiation sites [43]. The study also provided evidence for a conserved and tissue-specific 

m5C epitranscriptome with NSUN2 as a methytransferase and ALYREF as a novel m5C 

reader with the ability to shuttle mRNAs between the nucleus and cytoplasm [43]. However, 

although several m5C methyl transferases like NSUN2, DNMT1, NSUN3 and TRDMT1 

have been reported, unlike m6A, so far no erasers have been established for m5C leaving the 

debate on the reversible nature of this modification wide open.

N3-methylcytdine, another cytosine modification, was initially reported in tRNAs [44, 45] 

and is known to be catalyzed by TRM140, TRM141 in yeast [46–48] and by their homologs 

METTL2b, METTL6 in mammals [45, 49–51]. However, recent gene knock out studies 

carried out by Xu and co-workers on mice and human cell lines reported the existence of 

m3C modification in human mRNAs and observed to be catalyzed by METTL8 [51, 52]. 

Mutations in the enzymes METTL2, METTL6 and METTL8 known to catalyze m3C 

modification, were found to be associated with diseases like asthma, lung and breast cancer 

in humans [16].

A comprehensive list of RNA modifications and their human regulators is presented in Table 

1, since a detailed discussion of all the known modifications is beyond the scope of this 

review. However, it is now clear from these emerging studies, that a deeper understanding of 

each of these modifications to uncover their functional and regulatory dynamics as well as to 

unfold their cross-talk with other modifications and layers of regulation is required, to 

dissect the role of epitranscriptomes in health and disease.

Experimental and integrative approaches for detecting RNA modifications

Detecting RNA modifications on the transcriptome level has been challenging because many 

of the known RNA modifications are either reverse transcription (RT) silent or cannot inherit 

the modification marks onto the cDNA. In addition, lack of efficient high throughput 

detection methods has poised the field of epitranscriptomics for a long time. However, the 

past decade has seen a tremendous increase in high throughput detection and sequencing-

based techniques for transcriptome-wide identification and mapping of RNA modifications. 

Currently, the available detection techniques mainly depend on chemical and antibody-based 

detection methods followed by sequencing analysis (Table 2). However, fourth generation 

sequencing technologies like Oxford Nanopore Technologies (ONT), which promise to 

provide long read sequencing of the native full-length RNA transcripts, open new frontiers 

for RNA modification detection, similar to the developments made on DNA modification 

detection on native DNA fragments in the recent past [53, 54].
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Alteration of modification enzymes and their marks in diseases

Several recent studies have provided a link between RNA modifications and their 

interactions with post-transcriptional regulatory machinery, implicating this cross-talk in 

modulating the metabolism of RNA (Table 3). However, our understanding of the 

importance of these modifications in disease biology is only beginning to emerge. For 

instance, patients with myotonic dystrophy type 2 (DM2), a neuromuscular disease 

characterized by neuronal loss and impairment [55], have increased binding of Muscleblind-

like 1 protein (MBNL1) to CUG repeats in non-coding regions of the target transcripts [56]. 

A recent report by deLorimier et. al [57] provided a link between pseudouridine 

modification and the efficiency of binding by Muscleblind-like 1, 2, and 3 group of proteins, 

which are known to be sequestered to CUG repeat containing regions in DM2 patients. 

Using thermal melt and gel shift binding assays, the authors demonstrated that modification 

of U to ψ in CUG repeats results in reduced RNA flexibility and inhibition of binding to 

these repeats by MBNL proteins and hence could be a promising therapeutic approach to 

modulate the activity of the targets directly regulated by MBNL proteins [57]. Li and 

coworkers [58] demonstrated an increase of ~40–50% in mRNA pseudouridylation levels in 

HEK293T, HEK293, A549, DU145, Hela, HT29, HepG2, H1299, WPMY-1 cells and 

mESCs cells upon exposure to acute oxidative stress by H2O2 treatment, suggesting another 

direct link between global ψ levels and increased cellular stress. In addition, mutations in 

human PUS1, a member of the TRUA family of pseudouridylating enzymes, are 

documented to lead to Mitochondrial myopathies, Lactic Acidosis and Sideroblastic 

Anaemia (MLASA) like symptoms [59–61], while a truncated form of PUS3 detected in 

patients with intellectual disability (ID), resulted in reduced levels of ψ at positions 38 and 

39 in tRNA of patients with PUS3 truncation suggestive of the prominent role of PUS3 

enzyme and its target sites, in cognition and neurodevelopmental pathways [62]. Although 

these studies report the role of PUS enzymes in disease due to their ability to alter 

translation by pseudouridylation of RNA [59–62], caution is required in evaluating the 

impact of PUS enzymes in disease prognosis, considering the complex factors like structural 

variations among nuclear and cytoplasmic PUS enzyme isomers, sensitivity of 

pseudouridylation to environmental stimuli and the impact of other pseudouridylation targets 

in diseases [27, 59–62].

N6-methyladenosine (m6A) levels have been shown to be high in the developing mouse 

brain with increasing levels of methylation in adulthood and similarly, high m6A levels in 

the nervous system have also been observed in adult flies [31, 63]. These studies have been 

further confirmed by a recent study which detected high m6A levels in various normal adult 

mouse brain regions, with cerebellum exhibiting significantly higher m6A levels compared 

to cerebral cortex [64]. The authors observed high m6A methylation levels for the targets of 

the RBP, fragile X mental retardation protein (FMRP) and suggested that m6A is likely used 

for selective recognition of targets in the synapse where FMRP is expressed, acting as a 

dynamic expression switch. m6A modification has also been shown to be required for timely 

decay of transcripts involved in stem cell maintenance and cell cycle regulation in cortical 

neuronal progenitors [65]. Such timely decay of transcripts allows for accurate progression 

of the cell cycle and to induce spatiotemporal formation of different neuronal subtypes. 
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Comparison of the m6A methylomes in human and mouse Neuronal Progenitor Cells 

(NPCs) during cortical neurogenesis revealed an m6A enrichment in human gene transcripts 

compared to mouse gene transcripts, many of these human genes are associated with genetic 

risk for human brain disorders like schizophrenia and autistic spectrum disorder [65]. m6A 

mRNA modification is essential for survival as mice lacking the writer METTL3 die at E6.5 

[66]. Depletion of METTL3 in human embryonic stem cells (hESC) was shown to impair 

neuronal differentiation [67] and formation of mature neurons [66]. Loss of components of 

the m6A methyltransferase complex in flies has been shown to result in locomotion defects 

while METTL3 mutants displayed alterations in walking speed and orientation [63, 68]. In 

addition, conditional KO (cKO) of METTL14 in neurons of METTL14 WT and cKO mouse 

cortical neural progenitor cells (NPCs) revealed an essential role of m6A in embryonic 

cortical neurogenesis [65, 69]. METTL14 WT and cKO mouse showed decreased 

proliferation and premature differentiation of Neural Stem Cells (NSC) [69], as well as a 

delayed specification of neuronal subtypes during brain development [65]. In addition to its 

recently established role in neuronal development, m6A modification has also been shown to 

play a critical role in the process of axon regeneration in mature mouse neurons [70]. The 

authors demonstrated that upon nerve injury m6A levels of many transcripts encoding for 

regeneration and translation machinery in dorsal root ganglion were elevated, which led to 

increased translation during the time of axon regeneration, via the m6A specific reader 

protein YTHDF1 [70].

METTL3 has also been reported as a key player in human cancer metastasis with 

knockdown studies in lung cancer cell lines (A549, H1299, H1792) and Hela cells reporting 

a strong positive influence of METTL3 in promoting growth, survival and invasion of 

human lung cancer cells [71]. Recent studies carried out by Li et al. on renal cell carcinoma 

(RCC) cell lines (CAKI-1, CAKI-2 and ACHN) and a normal human renal tubular epithelial 

cell line HK-2, reported the crucial role of METTL3 in the regulation of tumor progression 

through PI3K/Akt/mTOR signaling pathway [72]. In addition, studies on immune-deficient 

mice by Barbieri et al. also demonstrated the effect of METTL3 down-regulation on 

leukaemic cell cycle arrest and inhibition of cell differentiation [73]. These observations 

support a cancer-specific regulatory role for METTL3, indicating the need for an indepth 

investigation of m6A methylation in oncogenesis and progression across cancer types.

So far, two proteins in humans have been reported to act as m6A erasers: FTO and ALKBH5 

– with the ability to catalyze the removal of the methyl group of m6A by oxidation. 

Although ALKBH5 is moderately expressed in the brain, Du et al. found polymorphisms in 

ALKBH5 gene in a Chinese Han cohort of 738 patients with major depressive disorder 

(MDD) and 1098 controls, suggesting ALKBH5 as a significant risk loci for MDD [37]. 

Although the study lacked a replication cohort and functional evidence, it is tempting to 

speculate that the loss/gain of function of this eraser in MDD patients could result in 

aberrant post-transcriptional outcomes. In contrast, FTO is highly expressed in the human 

brain and displays dynamic expression patterns during postnatal neurodevelopment [74, 75]. 

Although several genome-wide association studies have linked SNPs in the FTO loci to a 

multitude of human diseases including obesity [76], cancer [77, 78], infertility [79], 

Attention-deficit/hyperactivity disorder (ADHD) [80] and Alzheimer’s disease [81, 82] with 

varying levels of statistical significance and case-control cohort sizes, evidence from these 
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studies is largely causal and the precise functional role of FTO in contributing to these 

phenotypes is debatable and needs further investigation [76]. Association analysis with 

replication cohorts linked nonsynonymous mutations in the FTO enzymatic domain of 

adolescent French Canadian founder population with brain malformation and impaired brain 

function while intronic SNPs have been associated with abnormal brain volumes with 

additional functional evidence using a FTO knock-out mouse model directly linking FTO 

loss with decreased brain size and body weight [83, 84]. RNA hypermethylation of FTO was 

found to be associated with increased levels of target mRNAs but decreased protein levels in 

FTO knock-out mice [36]. Deletion of FTO in dopaminergic neurons of mice revealed 

impaired dopamine receptor signaling as well as abnormal locomotion and reward 

stimulatory actions in response to cocaine [36]. Widagdo et. al [85], showed that fear 

conditioned mice compared to footshock unconditioned stimulus exhibited a significant 

increase in m6A intensity on several learning-induced neuronal loci from prefrontal cortex, 

and knockdown of FTO further enhanced memory by an accompanying reduction in the 

stability of the target mRNAs. Loss of FTO was also shown to reduce the proliferation and 

neuronal differentiation, leading to impaired learning and memory suggesting a more 

complex locus and brain region-specific effects of m6A levels likely resulting from rewiring 

the post-transcriptional recognition landscape of the target RNAs [84]. A more recent study 

by Yu et. al [86] shows that FTO is enriched in mouse dorsal root ganglia and is specifically 

expressed in axons, influencing translation of axonal mRNAs providing a means for just in 

time local translation regulation for axon specific transcripts.

Furthermore, recently FTO and ALKBH5 were found to play a regulatory role in human 

cancer development. Studies carried out by Liu et al. on breast cancer cell lines (MCF-7, 

MDA-MB-231 and HCC1937) demonstrated that overexpression of FTO regulates 

PI3K/AKT signaling pathway promoting glycolysis in breast cancer cells [87]. In another 

study carried out by Li et al, high expression of FTO with t(11q23) rearrangements has been 

observed to regulate the expression of ASB2 and RARA, leading to cell transformation and 

leukemogenesis in acute myeloid leukemia (AML) [88]. In addition, recently two different 

association studies by Salgado-Montilla et al in a cohort of Puerto Rican men and Akbari et 

al. from literature survey, also reported causal link between FTO and cancer onset as well as 

progression [89, 90]. In a breast cancer biopsies study carried out by Zhang et al, a 

concordance of ALKBH5 and HIF-1a expression has been reported, suggesting hypoxia 

dependent regulation of ALKBH5.

Knockdown of ALKBH5 in MDA-MB-231 breast cancer cells showed decreased metastasis 

from breast to lungs in immunodeficient mice [91].

DNMT2 is a member of highly conserved cytosine-5-DNA methyltransferase protein family 

among eukaryotes and known to catalyze as a tRNA methylase [92, 93]. It has been shown 

that double knockout of Dnmt2 and NSun2 in mice will trigger lethal phenotypes such as 

severe developmental defects and impair cellular differentiation [94]. In addition, deletion of 

NSun2 [95, 96] or Dnmt2 [97] alone has been reported to cause cellular differentiation 

damage in zebra fish and mice skin, testis and brain. Furthermore, association studies in 

families of Iranian, Kurdish and United Arab Emirates origin linked multiple mutations in 

NSun2 with Intellectual Disability (ID) and Dubowitz-like syndrome, with additional 
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functional evidence from a NSun2 knock-out model in flies resulting in severe short-term-

memory (STM) which could be rescued by re-expression of the wildtype protein along with 

ID and facial dysmorphism phenotypes in flies, suggesting functional conservation of the 

phenotypes in human brains [98–100]. These observations are further substantiated using a 

NSun2 knock-out mouse model by Blanco et. al where loss of NSun2 mediated methylation 

on tRNAs was shown to result in angiogenin-mediated endonucleolytic cleavage of transfer 

RNAs (tRNA), leading to an accumulation of 5’ tRNA-derived RNA fragments, which 

results in reduced protein translation rates and activates stress pathways leading to reduced 

cell size and increased apoptosis of cortical, hippocampal and striatal neurons in mice [101]. 

In addition, a recent study in human and mice NPCs showed that m5C deposited by NSUN2 

regulates NSC differentiation and motility [102]. These studies thus provide a link between 

the failure of m5C deposition and brain development. Hence, several methyl transferases 

including NSUN2, DNMT1, NSUN3, and TRDMT1, as well as their corresponding marks 

are being recognized as clinically important due to their significance in human disease [98, 

99, 103, 104].

One of the best characterized associations between ID in human and mutations in a gene 

encoding for 2′-O-methylation (Nm) writer, are those recorded on FTSJ1 gene providing a 

link between Nonsyndromic X-Linked Intellectual Disability (NSXLID) and Nm [105]. Two 

Nm events Cm32 and Gm34 were found to be completely lost in tRNA(Phe) obtained from 

two genetically independent lymphoblastoid cell lines of NSXLID patients with loss-of-

function FTSJ1 mutations [105]. TRMT44 is another putative 2′-O-methyluridine 

methyltransferase in which non-synonymous coding sequence mutations were identified to 

be enriched in Partial Epilepsy with Pericentral Spikes (PEPS) subjects compared to control 

population, providing causal link between mutations in the enzyme and this mendelian 

idiopathic epilepsy [106]. However, considering the rapidly growing number of 

epitranscriptome maps and availability of new techniques for detection and identification of 

novel modifications and their cognate enzymes, more extensive functional studies which can 

uncover the role of individual epitranscriptomic marks and their impact on human disease 

are needed.

Emerging role of epitranscriptome readers in disease

Epitranscriptome readers are the enzymes that are recruited at modification sites on RNA, 

regulating the splicing, degradation, localization and translation of the RNA. Given the 

dynamic nature of m6A and its enrichment in mRNA, m6A modification readers were 

among the most extensively studied. Members of the YTH domain family proteins 

(YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2) and HNRNP proteins 

(HNRNPA2B1 and HNRNPC) were the first known direct readers of m6A modifications, 

with roles in translation regulation and degradation of RNA [107–114]. Recently, a new set 

of m6A readers IGF2BP1, IGF2BP2, IGF2BP3 and eIF3 were identified to regulate mRNA 

stability and translation [115, 116]. Consistent with the increasing appreciation for the role 

of readers, polymorphisms in ZC3H13, a recently discovered m6A reader [117], have been 

associated with schizophrenia [118]. Interestingly, cytoplasmic METTL3, known to be a 

writer of m6A has also been recently reported to serve as an m6A reader, promoting the 

translation of oncogenic mRNAs in lung cancer due to elevated levels of METTL3 [71]. 
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YTH family members known to recognize m6A RNA, were found to suppress HIV-1 

infection [119] and METTL3 has been reported as a potential therapeutic target due to its 

regulatory role in the maintenance of leukemic state of myeloid leukemia, through a 

chromatin mediated pathway wherein METTL3 localizes to the transcriptional start sites of 

active genes, resulting in their enhanced translation by relieving ribosome stalling [73]. Such 

studies support the potential of human m6A readers as future drug targets. However, more 

in-depth studies are required to unveil the full potential of other known and novel 

modification readers as therapeutic targets.

Concluding Remarks

Although recent developments in epitranscriptomics approaches have enabled the 

transcriptome-wide mapping of several modifications, several limitations still exist. For 

instance, like much of the research to date, using antibody-based immunoprecipitation 

approaches that cannot distinguish between m6A and m1A or more generally between the 

different intermediate products of the modification marks on the full-length transcripts, 

remains a significant challenge.

Moreover, methods based on crosslinking and immunoprecipitation are known to be 

inefficient, resulting in the identification of only a small fraction of all the target sites due to 

low yields, along with significant differences in the identified targets depending on the 

specific crosslinking protocols employed [120, 121]. Although, more recent advanced CLIP 

methods like enhanced CLIP (eCLIP) [122] and DO-RIP-seq [123] were able to address 

some of these limitations such as reproducibility, coverage and quantification of RBP 

binding events [124], utility and repurposing of these methods for efficient quantification of 

RNA modification sites at single nucleotide resolution still needs exploration. This is 

especially a challenge for the field since most of these post-transcriptional modifications are 

not present at high levels on RNA and have differential abundance between the types of 

RNA in a spatiotemporal fashion. Hence, highly sensitive and accurate approaches are 

needed to identify, quantify and monitor RNA modifications that occur at low abundance 

across classes of RNAs: rRNAs, tRNAs, snoRNAs, miRNAs, mRNAs, and lncRNAs, on 

individual transcript isoforms to uncover the role of epitranscriptome in modulating the 

spatio-temporal cellular regulatory networks (Figure 2, see Clinician’s Corner and 

Outstanding Questions box). For instance, as discussed above, RNA m6A methylation has 

been shown to drive region-specific post-transcriptional regulatory networks in mouse brain, 

by selectively dictating the binding of FMRP target RNAs in synapse, due to their increased 

methylation status [64]. Given the limitations and scalability of current short read 

sequencing technologies to delineate such associations, a detailed understanding of 

epitranscriptome code is still not possible at present. However, state-of-the-art long read 

direct RNA sequencing technologies [53] could shape our improved understanding of such 

epitranscriptome codes similar to how epigenetic codes for gene transcription have evolved 

over the last decade (Figure 2). Improvements in such single molecule techniques to identify 

the modifications marks on full length transcripts, together with the inclusion of various 

complementary omics profiling datasets like RNA-seq, ribosome profiling and proteomic 

analysis of the respective normal and diseased states, would enable delineation of the 

specific roles of the modifications and their combinations in controlling the fate of gene 
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expression. Such developments together with additional layers of information on RNA 

localization and structure would enable a deeper understanding of the cross-talk and 

interplay between various modifications and regulatory networks, to facilitate using 

reference epitranscriptome maps in individual tissues for therapeutic benefit in disease 

contexts.
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Glossary:

snoRNAs Small nucleolar RNA (snoRNAs) are a class of small non-coding 

RNAs and are involved in guiding chemical modification of other 

RNAs. They are classified into two groups - C/D box snoRNAs 

involved in methylation processes and H/ACA box snoRNAs 

associated with pseudouridylation.

snRNA Small nuclear RNA (snRNA) are found within splicing speckles and 

cajal bodies of the cell nucleus in eukaryotic cells. They are known to 

play a significant role in RNA splicing and frequently cooccur with 

snRNPs.
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Highlights

• A survey of available literature on RNA modifications reveals that RNA 

modifications are abundant in tRNAs, rRNAs, snoRNAs and snRNAs, but 

their diversity is prominent in tRNAs, rRNAs and mRNAs followed by 

snRNAs and snoRNAs

• Increasing evidence provides a link between RNA modifications and post-

transcriptional regulatory processes

• Gene knock out and functional studies report the importance of RNA 

modifications in human health and disease

• Emerging long read direct RNA sequencing technologies and development of 

antibodies specific to RNA modifications could be promising venues for 

charting the combinatorial epitranscriptomic code across cell types

• Locus and cell type specific combination of epitranscriptome marks could 

drive the post-transcriptional regulatory fate of an RNA molecule
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Outstanding questions

• Is there a cross-talk between modification marks, to control the fate of RNA 

transcripts?

Most current work is focused on identifying individual modification types; 

however, the interplay between modification marks on individual transcripts is 

unclear. Future work could uncover the combinatorial regulatory play 

between a multitude of RNA modifications and their relevance for gene 

regulation in specific cellular contexts.

• Do isoforms of a gene exhibit different epitranscriptomic marks across 

tissues?

Current high-throughput technologies provide a catalogue of modification 

sites on a transcriptome-wide scale. However, due to the limitations of 

existing short read sequencing technologies, which are commonly employed 

as a downstream approach, deconvolution of these modification marks at 

individual isoform level has been difficult.

• Could emerging single molecule sequencing technologies decipherthe 

epitranscriptomic code and its relevance for human health and disease?

Single molecular sequencing technologies like nanopore, which can 

simultaneously identify both isoforms and their modification marks in their 

native state could be a key to generating high resolution tissue-specific 

epitranscriptome maps.

• Is there a cross-talk between modification marks, to control the fate of RNA 

transcripts?

Most of the current work is focused on identifying individual modification 

types however the interplay between modification marks on individual 

transcripts is unclear. Future work could uncover the combinatorial regulatory 

play between a multitude of RNA modifications and their relevance for gene 

regulation in specific cellular contexts.

• Do isoforms of a gene exhibit different epitranscriptomic marks across 

tissues?

Current high-throughput technologies provide a catalogue of modification 

sites on a transcriptome-wide scale. However, due to the limitations of 

existing short read sequencing technologies, which are commonly employed 

as a downstream approach, deconvolution of these modification marks at 

individual isoform level has been difficult.

• Are emerging single molecule sequencing technologies a promising venue for 

deciphering the epitranscriptomic code and its relevance for human health and 

disease?
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Single molecular sequencing technologies like nanopore which can 

simultaneously identify both isoforms and their modification marks in their 

native state could be a key to generating high resolution tissue-specific 

epitranscriptome maps.
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Clinician’s Corner

• Increasing evidence points to the diversity of RNA alphabet, resulting from 

covalent modification of canonical RNA bases, across a multitude of RNA 

types occurring in the cell

• Multiple studies provide a link between RNA modifications and disease via 

altered modulation of post-transcriptional regulatory processes

• Improvements in available antibodies specific to RNA modifications and 

corresponding tailored experimental protocols, are making it feasible to chart 

an atlas of RNA modifications in specific cell types and their alterations in 

disease contexts

• Emerging technologies like single molecule direct RNA sequencing of full 

length transcripts are likely to yield high resolution locus and cell type 

specific epitranscriptome maps in the near future
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Figure 1: Frequently occurring chemical modifications in mRNA and their currently known 
writers, readers, and erasers.
Readers and eraser proteins are only listed for m6A modification type. A comprehensive list 

of RNA modifications along with their currently known enzymes are listed in Table 1.
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Figure 2: Emerging concept of the epitranscriptome code governing the fate of different 
transcript isoforms of a gene across tissue types.
Although a combination of transcript isoforms of a gene are expressed in a tissue their 

dynamic tissue/cell-type specific regulation by different modification enzymes (Writers, 

Readers and Erasers) via epitranscriptome code, determines the differential post-

transcriptional regulatory fate of an RNA molecule resulting from a loci. Such combinatorial 

epitranscriptome marks specific to an RNA transcript originating from a genic locus, can 

dictate its splicing, stability, localization as well as translation status, providing a precise 

cell-type specific spatiotemporal context for regulation.
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Table 1:

Comprehensive list of currently known RNA modifications and their corresponding modification enzymes in 

the human genome. Listed human enzyme abbreviations stand for ACA13: small nucleolar RNA/ H/ACA box 

13, EMG-1: N1-specific pseudouridine methyltransferase, NEP1: N1-specific pseudouridine 

methyltransferase, TRM6: tRNA methyltransferase 6, TRMT10C/RG9MTD1: tRNA methyltransferase 10C, 

TRMT61A: tRNA methyltransferase 61A, TRMT61B: tRNA methyltransferase 61B, NML: ribosomal RNA 

processing 8, hRRP8: Human Ribosomal RNA processing 8, SDR5C1: hydroxysteroid 17-beta dehydrogenase 

10, ALKBH1: alkB homolog 1, TRMT5: tRNA methyltransferase 5, TRMT112: tRNA methyltransferase 112, 

TRMT1L: tRNA methyltransferase 1L, TRMT10A/RG9MTD2: tRNA methyltransferase 10A, TRMT10B/

RG9MTD3: tRNA methyltransferase 10B, CDK5RAP1: CDK5 regulatory subunit associated protein 1, 

CDKAL1: CDK5 regulatory subunit associated protein 1 like 1, TRMU: tRNA 5-methylaminomethyl-2-

thiouridylate methyltransferase, FTSJ1: FtsJ RNA methyltransferase homolog 1, FTSJ2: FtsJ RNA 

methyltransferase homolog 2, FTSJ3: FtsJ RNA methyltransferase homolog 3, CCDC76: tRNA 

methyltransferase 13 homolog, TARBP1: TAR (HIV-1) RNA binding protein 1, MRM1: mitochondrial rRNA 

methyltransferase 1, RNMTL1/MRM3: mitochondrial rRNA methyltransferase 3, METTL2B: 

methyltransferase like 2B, METTL2A: methyltransferase like 2A, METTL8: methyltransferase like 8, 

METTL6: methyltransferase like 6, TYW1: tRNA-yW synthesizing protein 1 homolog, TYW3: tRNA-yW 

synthesizing protein 3 homolog, ALKBH8: alkB homolog 8, ELP3: elongator acetyltransferase complex 

subunit 3, ELP4: elongator acetyltransferase complex subunit 4, IKBKAP/ELP1: elongator complex protein 1, 

NSUN3: NOP2/Sun RNA methyltransferase family member 3, GTPBP3: GTP binding protein 3, 

mitochondrial, CTU1: cytosolic thiouridylase subunit 1, NSUN2: NOP2/Sun RNA methyltransferase family 

member 2, NSUN1: NOP2/Sun RNA methyltransferase family member 1, NSUN4: NOP2/Sun RNA 

methyltransferase family member 4, NSUN5: NOP2/Sun RNA methyltransferase family member 5, NSUN6: 

NOP2/Sun RNA methyltransferase family member 6, p120: RAS p21 protein activator 1, WDR4: WD repeat 

domain 4, TGS1: trimethylguanosine synthase 1, NAT10: N-acetyltransferase 10, DIMT1L: DIM1 

dimethyladenosine transferase 1 homolog, FTO: alpha-ketoglutarate dependent dioxygenase, TRMO: tRNA 

methyltransferase O, DUS1L: dihydrouridine synthase 1 like, DUS2: dihydrouridine synthase 2: DUS3L: 

dihydrouridine synthase 3 like, DUS4L: dihydrouridine synthase 4 like, ADAT2: adenosine deaminase, tRNA 

specific 2, ADAT3: adenosine deaminase, tRNA specific 3, ADAT1: adenosine deaminase, tRNA specific 1, 

ADAR1: adenosine deaminase, RNA specific, ADAR2: adenosine deaminase, RNA specific B1, PUS1: 

pseudouridylate synthase 1, PUS3: pseudouridylate synthase 3, PUS7: pseudouridylate synthase 7, RPUSD2: 

RNA pseudouridylate synthase domain containing 2, THG1L: tRNA-histidine guanylyltransferase 1 like.

Short Name New Nomenclature Name Human Enzyme

m1Am 01A 1,2′-O-dimethyladenosine

m1Gm 01G 1,2′-O-dimethylguanosine

m1Im 019A 1,2′-O-dimethylinosine

m1acp3Y 1309U 1-methyl-3-(3-amino-3-
carboxypropyl)pseudouridine ACA13, EMG1, NEP1

m1A 1A 1-methyladenosine

TRM6, TRMT10C,
TRM61A, TRM61B,
Nucleomethyin, NML,
hRRP8, SDR5C1,
ALKBH1
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Short Name New Nomenclature Name Human Enzyme

m1G 1G 1-methylguanosine

TRMT5, TRMT10A
TRMT10B,
TRMT10C
RG9MTD2,
RG9MTD1,
RG9MTD3, SDR5C1

m1I 19A 1-methylinosine

m1Y 19U 1-methylpseudouridine EMG1, NEP1

m2,8A 28A 2,8-dimethyladenosine

msms2i6A N/A 2-methylthiomethylenethio-N6-
isopentenyl-adenosine

ges2U 21U 2-geranylthiouridine

k2C 21C 2-lysidine

m2A 2A 2-methyladenosine

ms2ct6A 2164A 2-methylthio cyclic N6-
threonylcarbamoyladenosine

ms2io6A 2160A 2-methylthio-N6-(cis-
hydroxyisopentenyl) adenosine

ms2hn6A 2163A 2-methylthio-N6-
hydroxynorvalylcarbamoyladenosine

ms2i6A 2161A 2-methylthio-N6-
isopentenyladenosine

CDK5RAP1

ms2m6A 621A 2-methylthio-N6-methyladenosine

ms2t6A 2162A 2-methylthio-N6-
threonylcarbamoyladenosine

CDKAL1

se2U 20U 2-selenouridine

s2Um 02U 2-thio-2′-O-methyluridine TRMU

s2C 2C 2-thiocytidine

s2U 2U 2-thiouridine TRMU

Am 0A 2′-O-methyladenosine FTSJ1, FTSJ2, FTSJ3

Cm 0C 2′-O-methylcytidine FTSJ1, FTSJ2, FTSJ3,
CCDC76

Gm 0G 2′-O-methylguanosine TARBP1, FTSJ1,
MRM1, RNMTL1

Im 09A 2′-O-methylinosine

Ym 09U 2′-O-methylpseudouridine

Um 0U 2′-O-methyluridine FTSJ1, FTSJ2, FTSJ3

mcmo5Um 0503U 2′-O-methyluridine 5-oxyacetic acid
methyl ester

Ar(p) 00A 2′-O-ribosyladenosine (phosphate)

Gr(p) 00G 2′-O-ribosylguanosine (phosphate)

(pN)2′3′>p 3377N 2′3′-cyclic phosphate end

m3Um 03U 3,2′-O-dimethyluridine

acp3D 308U 3-(3-amino-3-carboxypropyl)-5,6-
dihydrouridine

acp3Y 309U 3-(3-amino-3-
carboxypropyl)pseudouridine
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Short Name New Nomenclature Name Human Enzyme

acp3U 30U 3-(3-amino-3-carboxypropyl)uridine

m3C 3C 3-methylcytidine
METTL2B,
METTL2A, METTL8,
METTL6

m3Y 39U 3-methylpseudouridine

m3U 3U 3-methyluridine

imG-14 4G 4-demethylwyosine TYW1

s4U 74U 4-thiouridine

m5Cm 05C 5,2′-O-dimethylcytidine

m5Um 05U 5,2′-O-dimethyluridine

mchm5Um 0522U 5-(carboxyhydroxymethyl)-2′-O-
methyluridine methyl ester

ALKBH8

mchm5U 522U 5-(carboxyhydroxymethyl)uridine
methyl ester

inm5s2U 2583U 5-(isopentenylaminomethyl)-2-
thiouridine

TRMU

inm5Um 0583U 5-(isopentenylaminomethyl)-2′-O-
methyluridine

inm5U 583U 5-(isopentenylaminomethyl)uridine

nm5ges2U 21510U 5-aminomethyl-2-geranylthiouridine

nm5se2U 20510U 5-aminomethyl-2-selenouridine

nm5s2U 2510U 5-aminomethyl-2-thiouridine

nm5U 510U 5-aminomethyluridine

nchm5U 531U 5-carbamoylhydroxymethyluridine ALKBH8

ncm5s2U 253U 5-carbamoylmethyl-2-thiouridine

ncm5Um 053U 5-carbamoylmethyl-2′-O-
methyluridine

FTSJ1, FTSJ3

ncm5U 53U 5-carbamoylmethyluridine ELP3, ELP4, IKBKAP

chm5U 520U 5-carboxyhydroxymethyluridine

cm5s2U 2540U 5-carboxymethyl-2-thiouridine

cmnm5ges2U 2151U 5-carboxymethylaminomethyl-2-
geranylthiouridine

cmnm5se2U 2051U 5-carboxymethylaminomethyl-2-
selenouridine

cmnm5s2U 251U 5-carboxymethylaminomethyl-2-
thiouridine

TRMU

cmnm5Um 051U 5-carboxymethylaminomethyl-2′-O-
methyluridine

cmnm5U 51U 5-carboxymethylaminomethyluridine
Protein MTO1
homolog
mitochondrial isoform

cm5U 52U 5-carboxymethyluridine

cnm5U 55U 5-cyanomethyluridine

f5Cm 071C 5-formyl-2′-O-methylcytidine

f5C 71C 5-formylcytidine NSUN3
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Short Name New Nomenclature Name Human Enzyme

ho5C 50C 5-hydroxycytidine

hm5C 51C 5-hydroxymethylcytidine

ho5U 50U 5-hydroxyuridine

mcm5s2U 2521U 5-methoxycarbonylmethyl-2-
thiouridine

ALKBH8, CTU1,
ELP3, ELP4,
IKBKAP, TRMU

mcm5Um 0521U 5-methoxycarbonylmethyl-2′-O-
methyluridine

ALKBH8, ELP3,
ELP4, IKBKAP,
KIAA1456/TRM9L

mcm5U 521U 5-methoxycarbonylmethyluridine

mo5U 501U 5-methoxyuridine

m5s2U 25U 5-methyl-2-thiouridine TRMU

mnm5ges2U 21511U 5-methylaminomethyl-2-
geranylthiouridine

mnm5se2U 20511U 5-methylaminomethyl-2-
selenouridine

GTPBP3

mnm5s2U 2511U 5-methylaminomethyl-2-thiouridine TRMU

mnm5U 511U 5-methylaminomethyluridine

m5C 5C 5-methylcytidine

NSUN2, DNMT2,
NSUN1, NSUN3,
NSUN4, NSUN5,
NSUN6 WBSCR20,
hNOP2, NOL1, p120,
TRDMT1

m5D 58U 5-methyldihydrouridine

m5U 5U 5-methyluridine TRMT2A, TRMT2B1

tm5s2U 254U 5-taurinomethyl-2-thiouridine TRMU

tm5U 54U 5-taurinomethyluridine GTPB3

CoA(pN) 455N 5′ (3′ -dephospho-CoA)

acCoA(pN) 4155N 5′ (3′ -dephosphoacetyl-CoA)

malonyl-
CoA(pN) 4255N 5′ (3′ -dephosphomalonyl-CoA)

succinyl-
CoA(pN) 4355N 5′ (3′ -dephosphosuccinyl-CoA)

p(pN) 552N 5′ diphosphate end

5′-OH-N 550N 5′ hydroxyl end

(pN) N 5′ monophosphate end

NAD(pN) 255N 5′ nicotinamide adenine dinucleotide

pp(pN) 553N 5′ triphosphate end

yW-86 47G 7-aminocarboxypropyl-
demethylwyosine

yW-72 347G 7-aminocarboxypropylwyosine TYW3

yW-58 348G 7-aminocarboxypropylwyosine
methyl ester

preQ1tRNA 101G 7-aminomethyl-7-deazaguanosine

preQ0tRNA 100G 7-cyano-7-deazaguanosine
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Short Name New Nomenclature Name Human Enzyme

m7G 7G 7-methylguanosine
WBSCR22/TRMT112,
WDR4, METTL1
(tRNA)

m7Gpp(pN) 79553N 7-methylguanosine cap (cap 0)

m8A 8A 8-methyladenosine

m2Gm 02G N2,2′-O-dimethylguanosine

m2,7Gm 027G N2,7,2′-O-trimethylguanosine TGS1

m2,7G 27G N2,7-dimethylguanosine

m2,7Gpp(pN) 279553N N2,7-dimethylguanosine cap (cap
DMG)

m2,2Gm 022G N2,N2,2′-O-trimethylguanosine TRMT1, TRMT1L
(C1ORF25)

m2,2,7G 227G N2,N2,7-trimethylguanosine TGS1

m2,2,7Gpp(pN) 2279553N N2,N2,7-trimethylguanosine cap (cap
TMG)

m2,2G 22G N2,N2-dimethylguanosine

m2G 2G N2-methylguanosine

m4Cm 04C N4,2′-O-dimethylcytidine

m4,4Cm 044C N4,N4,2′-O-trimethylcytidine

m4,4C 44C N4,N4-dimethylcytidine

ac4Cm 042C N4-acetyl-2′-O-methylcytidine

ac4C 42C N4-acetylcytidine NAT10 U13

m4C 4C N4-methylcytidine

m6Am 06A N6,2′-O-dimethyladenosine

m6,6Am 066A N6,N6,2′-O-trimethyladenosine

m6,6A 66A N6,N6-dimethyladenosine DIMT1L

io6A 60A N6-(cis-
hydroxyisopentenyl)adenosine

ac6A 64A N6-acetyladenosine

f6A 67A N6-formyladenosine FTO

g6A 65A N6-glycinylcarbamoyladenosine

hm6A 68A N6-hydroxymethyladenosine FTO

hn6A 63A N6-
hydroxynorvalylcarbamoyladenosine

i6A 61A N6-isopentenyladenosine

m6t6A 662A N6-methyl-N6-
threonylcarbamoyladenosine

TRMO

m6A 6A N6-methyladenosine ALKBH5, FTO,
Mettl14, Mettl3

t6A 62A N6-threonylcarbamoyladenosine

Qbase 10G (base) Qbase

A A adenosine

C+ 20C agmatidine
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Short Name New Nomenclature Name Human Enzyme

mm(pN) 2551N alpha-dimethylmonophosphate cap

m(pN) 1551N alpha-methylmonophosphate cap

G+ 103G archaeosine

ct6A 69A cyclic N6-
threonylcarbamoyladenosine

C C cytidine

D 8U dihydrouridine
DUS1L, DUS2,
DUS3L, DUS4L,
PP35

oQtRNA 102G epoxyqueuosine

galQtRNA 104G galactosyl-queuosine

mpp(pN) 1553N gamma-methyltriphosphate cap

gluQtRNA 105G glutamyl-queuosine

G G guanosine

pG(pN) GN guanosine added to any nucleotide

Gpp(pN) 9553N guanylylated 5′ end (cap G)

ht6A 2165A hydroxy-N6-
threonylcarbamoyladenosine

OHyW 34830G hydroxywybutosine

I 9A inosine
ADAT2-ADAT3,
ADAT1, ADAR2,
ADAR1

imG2 42G isowyosine

manQtRNA 106G mannosyl-queuosine

OHyWy 3480G methylated undermodified
hydroxywybutosine

mimG 342G methylwyosine

o2yW 34832G peroxywybutosine

preQ0base 100G (base) preQ0base

preQ1base 101G (base) preQ1base

Y 9U pseudouridine PUS1, PUS3,
RPUSD2, PUS7

QtRNA 10G queuosine

OHyWx 3470G undermodified hydroxywybutosine

Xm 0X unknown methylated base

xX X unknown modification

xA ?A unknown modified adenosine THG1L

xC ?C unknown modified cytidine

xG ?G unknown modified guanosine

xU ?U unknown modified uridine

N N/A unknown nucleotide residue

U U uridine

cmo5U 502U uridine 5-oxyacetic acid
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Short Name New Nomenclature Name Human Enzyme

mcmo5U 503U uridine 5-oxyacetic acid methyl ester

yW 3483G wybutosine TRMT12

imG 34G wyosine
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Table 2:

Antibody and chemical based detection methods commonly used for transcriptome-wide identification of 

chemical modifications.

Detection
Technique Modification

Antibody or
chemical based Antibody or chemical used

MeRIP-Seq[31] m6A Antibody anti-m6A antibody

m6A-Seq[125] m6A, m6Am Antibody anti-m6A polyclonal antibody

miCLIP[95, 126, 127]
m6A, m6Am,
m5C Antibody

anti-m6A polyclonal
antibody, anti-m5C
monoclonal antibody

PA-m6A-Seq[128] m6A Antibody anti-m6A antibody

m6A-CLIP[126] m6A Antibody anti-m6A antibody

SCARLET[33] m6A Chemical 32P-labeling

m6A-LAIC-Seq[34] m6A Antibody anti-m6A antibody

RNA-BisSeq[129] m5C Chemical Sodium bisulphite

Aza-IP[130] m5C
Antibody and
Chemical

anti-V5 antibody, 5-
azacytidine(5-aza-C)

m5C-RIP[131] m5C Antibody
anti-m5C monoclonal
antibody

hMeRIP-Seq[132] hm5C Antibody anti-hm5C antibody

Pseudo-Seq[133] ψ Chemical

carbodiimide N-cyclohexyl-
N′-(2-
morpholinoethyl)carbodiimide
metho-p-toluenesulfonate
(CMC)

PSI-Seq[134] ψ Chemical

1-cyclohexyl-(2-
morpholinoethyl)carbodiimide
metho-p-toluene sulfonate
(CMCT)

CeU-Seq[58] ψ Chemical N3-CMC

m1A-Seq[39] m1A Antibody anti-m1A antibody

m1A-ID-Seq[40] m1A Antibody anti-m1A antibody
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Table 3:

List of frequently observed RNA modifications on RNA transcripts and their reported crosstalk with post-

transcriptional regulatory processes.

Modification Regulatory mechanisms affected due to RNA modification

ψ RNA stability[24, 135–138], splicing [23]and translation efficiency [139].

m6A
mRNA stability[109], splicing [112], microRNA processing[107], RNA secondary
structure[108], and translation[110, 116, 140]

m5C
RNA processing[95], mRNA stability [127, 141], mRNA export[43], tRNA
cleavage & translation [92, 94, 142]

m1A Translation [143], structural stability and/or folding of tRNA [144].

2′-Ome RNA structure and stability [145]
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