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Abstract

Background—Neuroanatomical asymmetries have recently been associated with the progression 

of Alzheimer’s disease (AD) but the biological basis of asymmetric brain changes in disease 

remains unknown.

Methods—We investigated genetic influences on brain asymmetry by identifying associations 

between MRI-derived measures of asymmetry and candidate single-nucleotide polymorphisms 

(SNPs) that have previously been identified in genome-wide association studies (GWAS) for AD 

diagnosis and for brain subcortical volumes. For the longitudinal neuroimaging data (1,241 
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individuals; 6,395 scans), we use a mixed effects model with interaction between genotype and 

diagnosis.

Results—We found significant associations between asymmetry of amygdala, hippocampus, and 

putamen and SNPs in the genes BIN1, CD2AP, ZCWPW1, ABCA7, TNKS, and DLG2. For AD 

candidate SNPs, we demonstrated an asymmetric effect on subcortical brain structures.

Conclusions—The associations between SNPs in the genes TNKS and DLG2 and AD-related 

increases in shape asymmetry are of particular interest; these SNPs have previously been 

associated with subcortical volumes of amygdala and putamen but have not yet been associated 

with Alzheimer’s pathology. This provides novel evidence about the biological underpinnings of 

brain asymmetry as a disease marker. Contralateral brain structures represent a unique, within-

patient, reference element for disease and asymmetries can provide a personalized measure of the 

accumulation of past disease processes.
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Introduction

Alzheimer’s disease (AD) is a progressive and irreversible brain disorder characterized by a 

gradual degradation of cognitive functions over many years that includes a long preclinical 

phase (1). Because brain atrophy as measured with magnetic resonance imaging (MRI) 

correlates with neuron loss (2), longitudinal in vivo neuroimaging has become invaluable for 

studying trajectories of pathophysiological change in AD. Repeated volumetric 

measurements of brain volumes in the same individuals have shown accelerated rates of 

atrophy in patients with AD compared to healthy controls, even in preclinical stages (3).

Volume measurements are, however, only a crude simplification of the complex anatomical 

change that occurs in aging and AD and often ignore the fact that atrophy is not uniform 

across a brain structure, e.g. the hippocampus, (4–6). In contrast, shape descriptors are 

sensitive to such changes as they retain more geometrical information (7). Indeed, a recent 

study revealed that subtle preclinical changes in the shape asymmetry of subcortical brain 

structures could predict the conversion from mild cognitive impairment to dementia more 

accurately than volumetric asymmetry (8). These asymmetries are undirectional, i.e., they do 

not have a consistent hemispheric effect and therefore refer to the magnitude of asymmetry 

independent of direction.

While structural asymmetries could serve as imaging biomarker for the early pre-

symptomatic classification and prediction of AD, possible biological mechanisms that 

underlie asymmetric manifestation of AD pathology are unclear. Here, we investigate the 

genetic influence on shape asymmetry in AD in an imaging quantitative trait loci (QTL) 

analysis including healthy controls, MCI stable, MCI progressor and AD patients. While 

previous genome-wide association studies (GWAS) studies have revealed single-nucleotide 

polymorphisms (SNP) that are related to AD diagnosis, the mechanism through which they 

affect the disease remains largely unknown. Relating these same SNPs to imaging markers 
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helps our understanding of how common genetic variants alter specific structures and 

pathways in the living human brain (9). Because prior research is inconsistent with respect 

to heritability of brain structural asymmetry (10–12), we model both main effects of SNP as 

well as interactions between diagnosis groups and SNP on brain asymmetry. Whereas main 

effects speak to heritability per se, a significant interaction would reveal genetic influences 

on brain shape asymmetry that are magnified in AD patients and thus can be interpreted to 

reflect the development of disease (13).

Imaging QTL studies may have several potential advantages over case-control studies; 

including increased power (14). Imaging endophenotypes of disease in QTL studies can 

separate diseased and normal subjects more accurately and therefore limit the confound of 

including asymptomatic subjects in the control group, which is particularly important for the 

long clinically silent prodromal phase of AD (13,15–21). These previous imaging QTL 

studies on AD risk variants and MRI measures employed a cross-sectional design and 

focused on volume of brain structures and cortical thickness. Here, we use a longitudinal 

model to study the genetics of shape asymmetry, yielding increased power for detecting 

genetic associations (22), although this may also depend on the genetic architecture of the 

specific traits being studied.

The current study utilizes longitudinal imaging data from over 6,000 MRI scans and genetic 

data from 1,241 individuals in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We 

focus on four brain structures (hippocampus, amygdala, putamen, caudate), selected a priori 

based on previous reports of increased volume and shape asymmetries in AD (8,23). Shape 

asymmetry is computed with the Mahalanobis distance of lateralized brain structures within 

a subject. We include 31 SNPs, selected a priori based on previous GWAS results. These 

SNPs are primarily composed of 21 candidate SNPs that have been associated to late-onset 

AD in GWAS (24–26). If these genetic risk variants for AD also influence shape asymmetry 

in AD the results could suggest mechanisms or pathways through which these genes might 

be exerting their influence in AD. In a more exploratory analysis, 10 additional SNPS are 

included that have recently been associated to subcortical volume in large-scale GWAS (27), 

but not to AD per se. Here, the motivation is to identify possible genetic predispositions that 

render the brain vulnerable to shape asymmetry in disease. For example, genes that are 

associated with smaller hippocampi might render the hippocampus more vulnerable to AD 

pathology even if the genes are not directly implicated in AD pathology.

Methods

Data

We analyzed data from the ADNI, which was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of 

ADNI has been to test whether serial MRI, PET, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and 

early AD. For up-to-date information, see www.adni-info.org. We select all subjects with 

genetic information and at least three longitudinal MRI scans from the ADNI cohort, 

yielding N=1,241 individuals and 6,395 scans with summary statistics listed in 
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supplementary table 1. Supplementary figure 1 shows a histogram of the number of scans 

per subjects.

Analysis of brain structure shape

We compute the brain structure shape based on the brain descriptor BrainPrint, which relies 

on the automated segmentation with FreeSurfer (28–31). BrainPrint and its application to 

study shape asymmetry has previously been described in detail (7,8). Briefly, after image 

segmentation, geometric representations are extracted for the identified subcortical 

structures via the marching cubes algorithm. shapeDNA (32) is used as the shape descriptor 

of the individual structures in the BrainPrint, which performs among the best in a 

comparison of methods for non-rigid 3D shape retrieval (33). shapeDNA is based on the 

eigenvalues of the Laplace-Beltrami operator and, therefore, isometry invariant. Eigenvalues 

of the Laplace-Beltrami operator Δ can be computed via finite element analysis by solving 

the Laplacian eigenvalue problem (Helmholtz equation) on the given shape

Δ f = − λ f .

The solution consists of eigenvalue λi ∈ ℝ and eigenfunction fi pairs. The first l non-zero 

eigenvalues form the descriptor: λ̄ = (λ1, …, λl), where we set l = 50 (7). A key property of 

the eigenvalues is their isometry invariance, i.e., length-preserving deformations will not 

change the spectrum. Isometry invariance includes rigid body motion as well as reflections, 

and, therefore, permits to directly compare shapes across individuals without any 

registration. The collection of shape descriptors from cortical and subcortical structures 

forms the BrainPrint, which has recently shown high potential for the automated diagnosis 

of dementia (34,35).

Brain Asymmetry from BrainPrint

Asymmetry of a lateralized brain structure s is measured by directly computing the 

Mahalanobis distance between the descriptors

Ys = ‖λs
left − λs

right‖∑,

where we use a diagonal covariance matrix Σ with the i-th element Σii = i2 to reduce the 

impact of higher eigenvalues on the distance (7). The asymmetry computation completely 

avoids lateral processing bias as it works on both hemispheres independently. The 

asymmetry measure presents a within-subject measure that can identify directional and 

undirectional asymmetry. In addition, it allows for quantifying localized asymmetries 

potentially induced by morphometric changes in subnuclei, which can be crucial for tracking 

the progression of dementia (4,5).
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Genetic data

In ADNI, GWAS genotyping was performed using three different Illumina platforms, 

Illumina Human610-Quad, Illumina HumanOmni Express, and Ilumina Omni2.5M 

BeadChips (36). The APOE ε4 allele defining SNPs (rs429358, rs7412) were separately 

obtained using standard methods (36). Standard quality control procedures for genetic 

markers and subjects are performed as described previously: 1) for SNP, SNP call rate < 

95%, Hardy-Weinberg equilibrium test p<1 × 10−6, and minor allele frequency (MAF) < 

1%; 2) for subject, subject sex and identity check and subject call rate < 95% (37). Due to 

the impact of population stratification on association analysis, we select only non-Hispanic 

Caucasian participants using multidimensional scale analysis and HapMap GWAS 

genotypes (38). As the ADNI used different genotyping platforms, we impute ungenotyped 

SNPs separately in each platform using MACH (39) with the reference panel of the 

Haplotype Reference Consortium (HRC). After the imputation, we impose an r2 = 0.30 as 

the threshold to accept the imputed genotypes. From the imputed data, we select 21 

candidate AD SNPs (25) and 10 SNPs that have been associated with subcortical brain 

structures (27) based on a cut-off of p<1 × 10−7, listed in the Appendix.

Statistical Analysis

We use linear mixed effects models (40,41) to study the association between longitudinal 

change in brain asymmetry (i.e. the lateral shape distance) and genetics. Genotypes are 

coded as 0, 1, and 2 representing the number of minor alleles in the genotype, following an 

additive genetic model. We denote age at baseline for individual i with Bi, years-from-

baseline at follow-up scan j with Xij, diagnosis with Di, and the additive encoding of the 

SNP with Si. To establish whether an association between SNP and asymmetry differs 

between diagnosis groups, the effect of interest in the model is the interaction term SNP × 

Diagnosis. The linear model for asymmetry Yij as dependent variable is

Y i j = β0 + β1Bi + β2Xi j + β3Si + β4Di + β5SiDi + b0i + b1iXi j, (1)

where β0, β1, β2, β3 are fixed effects regression coefficients and b0i, b1i are random effects 

regression coefficients. The random effects enable modeling individual-specific intercept 

and slope with respect to the time from the baseline. The fixed effect coefficient β2 models 

the longitudinal change on a population level. The statistical model is an adaptation of 

previous longitudinal models on the ADNI (8,40). We further evaluate a simplified model 

without an interaction between SNP and diagnosis. The following additional parameters are 

included as fixed effects (not shown in Eq. (1)): years of education, sex, intracranial volume 

(ICV), and the number of APOE ε4 risk alleles.

For the diagnosis, we differentiate between control subjects, MCI subjects that remain 

stable, MCI subjects that progress to AD, and AD subjects. In our analysis, we encode the 

diagnosis once as a quantitative variable and once as a categorical variable with four levels. 

The continuous coding of diagnosis has for instance been used in (17,42) that also 

investigated the interaction of SNP with diagnosis. In their cross-sectional analyses, they 
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have not differentiated between MCI progressor and stable. In a post-hoc analysis, we 

include the interaction SNP x years-from-baseline to the model to evaluate whether SNPs 

might have time-varied effects on asymmetry. We use false discovery rate (FDR) with 

q=0.05 (43) to control for multiple hypothesis testing across SNPs similar to (19), but also 

discuss Bonferroni correction in the result’s section. The appendix reports details on the 

implementation of the models.

Results

In the following, we describe the results of the SNP-asymmetry analyses, where we use 

models with and without the interaction of SNP and diagnosis together with a quantitative 

and categorical coding of the diagnosis. Table 1 summarizes all the SNPs that showed 

significant associations in the different models together with their closest genes, location, 

major/minor alleles, minor allele frequency, genotype count, population-attributable 

fractions (PAF) or preventive fractions.

In the following, significant interactions are reported in more detail, grouped by whether 

they were identified with a quantitative coding of disease (0=CN, 1=MCI-Stable, 2=MCI-

Progressor, 3=AD; Table 2) or categorical coding (Table 3). We show standardized 

regression coefficients and p-values for the main effects, and in addition adjusted p-values 

after FDR correction for the interaction. Results are only included in the tables 2 and 3 when 

the adjusted p-value of the interaction is below 0.05.

Interactions with a quantitative coding of disease reveal genetic variants that are associated 

to shape asymmetry in a stage-dependent manner. Significant associations exist between 

amygdala asymmetry and rs117253277, as well as between putamen asymmetry and 

rs683250 and rs6733839 (Table 2). The main SNP effect is not significant for any of these 

associations after FDR correction. The main diagnosis effect is highly significant for 

rs117253277 and rs6733839, but not for rs683250. Notably, all regression coefficients for 

diagnosis are positive, which indicates an increase in asymmetry with the progression of 

dementia, consistent with our previous results (8). rs117253277shows a negative coefficient 

for SNP (−0.539), which means that the presence of a minor allele A decreases the 

asymmetry. Importantly, the positive interaction (coefficient estimate = 0.585) signifies that 

asymmetry increases with the number of minor alleles for demented subjects. For rs683250, 

the pattern is inverted, with minor alleles yielding an increase in asymmetry in controls but a 

decrease in the demented population. The SNPs (rs117253277 and rs683250) were identified 

in the subcortical GWAS for amygdala and putamen, respectively, which is consistent with 

the structures in which we observe disease-dependent associations to asymmetry; rs6733839 

was identified in the AD GWAS.

Table 3 reports the results for the categorical coding of diagnosis. The categorical coding is 

less hypothesis-driven than the continuous coding because it allows for non-linear 

interactions that are driven by only two groups (CN -> MCI-s, CN -> MCI-p, and CN -> 

AD). That said, this analysis only revealed significant coefficients for the factor CN -> AD. 

Factors that distinguish MCI groups from CN do not show significant results for the 

interaction. The main SNP effect is not significant for any of these associations, where the 
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main diagnosis effect is highly significant for all. As for the continuous model, the 

interactions of diagnosis with rs117253277 and rs6733839 are significant. In addition, SNP 

x diagnosis interactions are obtained for hippocampal asymmetry for rs1476679 and 

rs4147929. Both of these SNPs have been reported in AD GWAS. Interestingly, they have an 

inverted effect on asymmetry, with a positive interaction coefficient for rs1476679 (estimate 

= 0.255) and a negative coefficient for rs4147929 (estimate = −0.309). This is consistent 

with their respective role in AD, as reported in Table 1: rs4147929 is a risk locus, whereas 

rs1476679 is a preventive locus (25). The minor allele frequency and the genotype count of 

rs117253277 are low, which may bias the results. For confirmation, we created random 

samples of similar sample size that matched the diagnostic distribution. The estimates for the 

interaction SNP x diagnosis over 50 repetitions are plotted in supplementary figure 2. The 

median of 2.08 and the mean of 2.01 are close to the estimate of the original model (2.36).

Figure 1 displays the estimated intra- and inter-individual change of the lateral shape 

asymmetry for hippocampus, amygdala and putamen with the associated loci. We show the 

genotype for control and AD. Solid lines depict the global age effect, where the offset in 

intercept is determined by the genotype. Short line ticks depict the longitudinal intra-

individual effect. The common pattern, except for rs117253277, is that the genotype has 

limited effect on the asymmetry of control subjects but a strong effect for AD patients. For 

rs117253277, the number of minor alleles also influences the asymmetry of control subjects, 

which illustrates the strong main effect of SNP (−0.268) in Table 3. For hippocampus and 

amygdala, we observe a higher intra-individual increase in asymmetry compared to the inter-

individual increase (i.e., the age effect), as previously reported (8). Note that cross-sectional 

and longitudinal effects can vary substantially in Figure 1, which may result from positive 

selection bias for very old adults in cross-sectional studies.

Table 4 provides statistical detail for the model with main effect of SNP only for quantitative 

coding (see supplementary table 2 for categorical coding). The association of rs683250 to 

putamen asymmetry is consistent with the interaction. A new association with amygdala 

asymmetry is found for the AD candidate SNP rs10948363.

In a post-hoc analysis, we added the interaction SNP x years-from-baseline to the models 

and evaluated whether the interaction was significant for the above identified pairings of 

asymmetry and SNP. In the model without SNP x diagnosis interaction, we found that the 

interaction SNP x years-from-baseline was significant for rs683250 and putamen asymmetry 

(beta=0.043, p=0.00127). Figure 2 illustrates the intra- and inter-individual change by 

genotype, which shows that minor alleles were associated with a steeper increase in 

asymmetry over time.

In all the presented analyses, we included the number of APOE4 risk alleles as a covariate. 

In an additional analysis, we removed it from covariates and consider it as the SNP of 

interest. Across all the models, with and without interaction, as well as the different coding 

of diagnosis, there were no significant associations between asymmetry and APOE4.

We used FDR correction to control for multiple testing but almost all results would also be 

significant with the conservative Bonferroni correction (p-value threshold of 0.00161). The 
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only exception is the interaction of rs6733839 with diagnosis for putamen asymmetry in the 

quantitative coding, although the interaction would still be significant for the categorical 

coding. Note that we do not correct for multiple comparisons across models.

Discussion

In a series of linear mixed effects models of longitudinal neuroanatomical change, we have 

identified genetic risk variants associated with an increase in brain shape asymmetry in AD. 

The closest genes associated with significant SNPs include BIN1 (rs6733839), CD2AP 
(rs10948363) and ABCA7 (rs4147929), which code for proteins involved in amyloid 

generation, secretion and clearance and are thus likely directly implicated in the 

accumulation of AD pathology. Another gene, ZCWPW1 (rs1476679) has previously been 

identified to have a preventative effect in AD. Interestingly, we also identified SNPs in the 

genes TNKS and DLG2 as risk variants for AD-related increases in shape asymmetry. These 

are SNPs that have previously been associated to subcortical volumes of amygdala and 

putamen, respectively (27). Here, we show that these same SNPs also convey risk for AD 

pathology in these same structures. Previous reports have found several associations between 

neuroimaging measures and APOE4 (19). In contrast, we found no significant associations 

between neuroanatomical asymmetry and APOE4, suggesting that the association between 

APOE4 and atrophy is global, i.e., not symmetric. Below, we review the specifics of each 

significant SNP before discussing our results more generally.

The interaction of rs117253277 (TNKS) with diagnosis showed the most significant 

association in our study (p=6 × 10−6). The SNP was identified in the subcortical GWAS as a 

common variant associated with differences in amygdala volume. Our results show that the 

SNP also influences amygdala asymmetry in the context of AD pathology, which provides 

novel evidence that inherent differences in amygdala volumes make the brain more 

vulnerable to AD-related patterns of atrophy (i.e. increases in shape asymmetry). 

Importantly also, the interaction between SNP and disease was significant both when coding 

disease categorically and continuously, which shows that the SNP promotes increases in 

shape asymmetry already in the preclinical stages of AD in a dose-dependent response. 

Additional experiments were performed on matched samples to confirm the reliable estimate 

despite the low MAF of the SNP. The closest gene is TNKS (tankyrase) that catalyzes the 

ADP-ribosylation of target proteins.

rs683250 is an intronic locus within DLG2 and was identified in the subcortical GWAS. It 

seems to predispose the brain to undergo asymmetric shape atrophy in the progression to 

AD. For rs683250, however, we also identified a significant main effect of SNP on shape 

asymmetry, suggesting that the related gene has an effect on putamen asymmetry per se that 

is magnified in disease. Moreover, we found in the post-hoc analysis that there was a 

significant interaction between SNP and years-from-baseline, indicating that the SNP affects 

change in putamen asymmetry over time. Genetic variants in DLG2 affect learning and 

cognitive flexibility (44) and are associated with schizophrenia (45). The link to 

schizophrenia of the SNP is interesting, as abnormal asymmetries in subcortical structures 

have previously been reported for schizophrenia (46,47).
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rs6733839 is within the bridging integrator 1 (BIN1) gene and the most important genetic 

susceptibility locus after APOE4 for individuals of European ancestry (48). As 

rs117253277, the SNP was significant for categorical and continuous coding. GWAS studies 

with MRI measures found association of BIN1 with atrophy in hippocampus (16), entorhinal 

and temporal pole cortex (15), left parahippocampal and right inferior parietal cortex (19). 

Functions of the BIN1 gene include the production and clearance of amyloid–beta (Aβ) and 

cellular signaling; it increases the risk for AD by modulating tau pathology and is also 

involved in endocytosis, inflammation, calcium homeostasis, and apoptosis (49). Unlike the 

two AD-related SNPs related to hippocampus asymmetry, reviewed below, the SNP x 

disease interaction for rs6733839 was significant for the continuous coding of disease 

groups, suggesting a linear increase in shape asymmetry with disease progression that 

includes preclinical stages.

For hippocampal asymmetry, two SNPs, rs1476679 and rs4147929, showed significant 

interaction with diagnosis. They have an inverse effect on asymmetry, which is consistent 

with their different roles as preventative or risk locus in AD. rs1476679 is intronic in the 

ZCWPW1 (encoding zinc finger) gene, is a histone modification reader and is involved in 

epigenetic regulation (50). The preventative effect of rs1476679, reducing the risk of AD, 

was reported in Caucasians (25), a Spanish sample (52), and Han Chinese (53).

rs4147929 is within the ATP-binding cassette transporter A7 (ABCA7) gene. It is a 

transmembrane protein that influences neuronal cholesterol efflux and Aβ secretion (54). 

The gene is strongly expressed in hippocampus subfield CA1 (55) and associated with 

amyloid plaque burden (56). The minor allele of ABCA7 increases the risk of AD, as shown 

in an autopsy-confirmed research cohort (57). ABCA7 showed a significant association with 

hippocampal atrophy (20) and gray matter density (13). The expression of the gene in the 

subfield CA1 and the association with hippocampal atrophy are supportive of our results, as 

we have shown in previous work that the increase in asymmetry in hippocampus is not 

uniform but localized; one of the reasons for the improved results with shape descriptors 

compared to volumetric analyses.

There was only one SNP, rs10948363 (CD2AP), which showed a significant association 

with shape asymmetry independent of disease status. This confirms previous reports that 

brain structural asymmetry per se is not strongly heritable (11), but also shows that QTL 

studies can reveal subtle genetic influences that are not detectable in twin studies. CD2AP 
rs10948363 potentially contributes to amyloid precursor protein (APP) metabolism and 

subsequent Aβ generation through its regulation of clathrin-mediated endocytosis (58). It is 

probably linked to modulating Aβ clearance and tau neurotoxicity (56) and was associated 

to FDG PET metabolism (13). Our results suggest its influence on amygdala asymmetry, 

which showed one of the strongest associations to dementia in our previous work (8).

Supplementary data from the UK Brain Expression Consortium on gene expression QTLs 

from postmortem healthy human brains (http://www.braineac.org/), revealed that 

homozygotes of the minor allele type for rs683250 show greater expression of DLG2 in 

putamen of healthy individuals as compared to individuals carrying at least one major allele 
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(supplementary figure 3). The results of the cis-eQTL mapping analysis are consistent with 

our results of the main effect of this SNP on putamen asymmetry.

Collectively, our results provide novel evidence for genes that may drive asymmetric 

accumulation of AD pathology and also suggests that sequence variants may act through 

their influence on neuroanatomical asymmetry. It is important to note that brain structural 

asymmetry in AD, or disease more generally, is different from the lateralization of language 

and motor function, where higher asymmetry tends to relate to higher functioning. Instead, 

higher asymmetry in AD is associated with the progression of preclinical and prodromal 

stages of disease, and reflects an asymmetric effect of pathologic processes on brain 

morphology. The core genetic mechanisms of lateralized human brain development are 

unknown (59). Future work may be directed at studying the relation between functional 

asymmetry in development and asymmetric disease manifestation.

Several strengths and limitations of our work are worth noting. Working with the ADNI 

dataset is a strength as it is a large-scale, publicly available dataset that includes a rigorous 

clinical and genetic examination. However, ADNI was designed to simulate clinical trials 

and therefore uses more stringent inclusion and exclusion criteria, which necessitates a 

replication on an independent sample in the general population. Another limitation of the 

study may be the a priori selection of candidate genes. A limitation of working with a global 

shape descriptor is that we cannot visualize the localized changes in shape asymmetry. A 

strength is that genetic associations of asymmetry are studied in a longitudinal design, where 

baseline asymmetry and change during the study period is modeled. This allowed us to not 

only model controls and AD patients, but further differentiate between MCI subjects that 

remain stable and those that progress to AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Longitudinal analysis of lateral asymmetry measures of the hippocampus, amygdala, and 

putamen with significantly associated SNPs. Lines and ticks illustrate estimates of the 

different linear mixed effects models with categorical coding of diagnosis. The global age 

effect is depicted by the slope of the long solid lines, short line ticks depict longitudinal 

slopes. Plots are shown for control subjects and AD patients. The number of minor alleles 

can be related to higher or lower asymmetry in AD, depending on the SNP and its biological 

function.
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Figure 2. 
Longitudinal analysis for the SNP rs683250 and putamen asymmetry with interaction SNP x 

years-from-baseline. Plots are shown for controls and AD subjects for different genotype 

counts. A larger number of minor alleles corresponds to a steeper longitudinal increase.
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