
Electrostatic repulsion causes anticooperative DNA binding
between tumor suppressor ETS transcription factors and
JUN–FOS at composite DNA sites
Received for publication, May 9, 2018, and in revised form, October 2, 2018 Published, Papers in Press, October 12, 2018, DOI 10.1074/jbc.RA118.003352

Bethany J. Madison‡§1, Kathleen A. Clark‡§1, Niraja Bhachech‡§, Peter C. Hollenhorst¶, Barbara J. Graves‡§�2,
and X Simon L. Currie‡§3

From the ‡Department of Oncological Sciences and §Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake
City, Utah 84112, the ¶Medical Sciences program, Indiana University School of Medicine, Bloomington, Indiana 47405, and the
�Howard Hughes Medical Institute, Chevy Chase, Maryland 20815

Edited by Joel M. Gottesfeld

Many different transcription factors (TFs) regulate gene
expression in a combinatorial fashion, often by binding in close
proximity to each other on composite cis-regulatory DNA ele-
ments. Here, we investigated how ETS TFs bind with the AP1
TFs JUN–FOS at composite DNA-binding sites. DNA-binding
ability with JUN–FOS correlated with the phenotype of ETS
proteins in prostate cancer. We found that the oncogenic ETS-
related gene (ERG) and ETS variant (ETV) 1/4/5 subfamilies
co-occupy ETS–AP1 sites with JUN–FOS in vitro, whereas
JUN–FOS robustly inhibited DNA binding by the tumor sup-
pressors ETS homologous factor (EHF) and SAM pointed
domain– containing ETS TF (SPDEF). EHF bound ETS–AP1
DNA with tighter affinity than ERG in the absence of JUN–FOS,
possibly enabling EHF to compete with ERG and JUN–FOS for
binding to ETS–AP1 sites. Genome-wide mapping of EHF- and
ERG-binding sites in prostate epithelial cells revealed that EHF
is preferentially excluded from closely spaced ETS–AP1 DNA
sequences. Structural modeling and mutational analyses indicated
that adjacent positively charged surfaces from EHF and JUN–FOS
use electrostatic repulsion to disfavor simultaneous DNA binding.
Conservation of positive residues on the JUN–FOS interface iden-
tified E74-like ETS TF 1 (ELF1) as an additional ETS TF exhibiting
anticooperative DNA binding with JUN–FOS, and we found that
ELF1 is frequently down-regulated in prostate cancer. In summary,
divergent electrostatic features of ETS TFs at their JUN–FOS inter-
face enable distinct binding events at ETS–AP1 DNA sites, which
may drive specific targeting of ETS TFs to facilitate distinct tran-
scriptional programs.

Sequence-specific TFs4 bind to cis-regulatory elements in
enhancers and promoters to regulate gene expression. Com-
posite DNA sequences consisting of multiple TF-binding sites
enable precise and combinatorial control of gene transcription
by integrating multiple inputs into a single transcriptional
output (1, 2). Multiple TFs can bind to a composite DNA
sequence in a cooperative (tighter affinity for DNA), non-
cooperative (same affinity for DNA), or anticooperative
(reduced affinity for DNA) manner. In many cases, TFs modu-
late the binding of each other at composite binding sites
through protein–protein interactions (3–6) and/or through
DNA-mediated effects (7–10). Although combinatorial regula-
tion of gene transcription occurs frequently (4), the molecular
basis of interplay between most TF pairings at composite sites is
poorly understood.

Closely-apposed sites for the binding of ETS and AP1 TFs
play an important role in regulating cellular migration.
These composite sites are found in the enhancers and pro-
moters of genes such as the urokinase plasminogen activator
(PLAU), the uridine phosphorylase (UPP), and the matrix
metalloproteases (MMP1, MMP9, etc.) (11–14). Overex-
pression of “oncogenic” ETS factors from the ERG and
ETV1/4/5 subfamilies occurs frequently in prostate cancers
(15, 16) and leads to the hyperactivation of ETS–AP1-regu-
lated genes, ultimately resulting in enhanced cellular migra-
tion (11). Correspondingly, these oncogenic ETS factors
bind to composite ETS–AP1 sites with JUN–FOS in vitro
(17). Conversely, other ETS factors such as EHF and SPDEF
function as tumor suppressors in prostate cancer (18 –20)
and repress the transcription of ETS–AP1-regulated genes
(11, 13). A simple hypothesis is that the tumor suppressor
class of factors competes with oncogenic ones for binding to
ETS–AP1 composite sites. However, no direct evidence for
this hypothesis is available.

Here, we investigate the difference between oncogenic and
tumor suppressor ETS factors in binding to ETS–AP1 sites with
JUN–FOS. Oncogenic proteins bound to composite sites with
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JUN–FOS in either a cooperative (ERG and FLI1) or nonco-
operative manner (ETV1 and ETV4). In contrast, the tumor
suppressors EHF, SPDEF, and ELF1 displayed a robust antico-
operative binding to DNA with JUN–FOS. In the absence of
JUN–FOS, EHF bound to ETS–AP1 sequences with higher
affinity than ERG suggesting that the inability of EHF to co-oc-
cupy DNA with JUN–FOS is not due to intrinsic DNA-binding
differences. Genome-wide mapping of EHF and ERG DNA-
binding sites in a prostate epithelial cell line provided support
for anticooperative DNA binding between EHF and JUN–FOS
at closely spaced ETS–AP1 composite sites. Structural model-
ing suggested that simultaneous DNA binding would result
in electrostatic repulsion between positive surfaces of EHF
and JUN–FOS. In contrast, the corresponding surface on
ERG is polar and negative, complementing the positive
interface of JUN–FOS. In support of this model, mutation of
lysine residues in EHF enabled binding to DNA with JUN–
FOS. Our results indicate that electrostatic properties regu-
late the ability of ETS factors to bind to composite ETS–AP1
DNA sequences with JUN–FOS and implicate the diver-
gence of these properties in the phenotypically diverse roles
of ETS factors in prostate cancer.

Results

JUN–FOS differentially impacts ETS factor binding to
composite ETS–AP1 sites

Oncogenic ETS factors, such as those from the ERG and
ETV1/4/5 subfamilies, enhance transcription at ETS–AP1-reg-
ulated genes; conversely, ETS tumor suppressors, such as EHF
and SPDEF, repress transcription from ETS–AP1-regulated
genes (11, 13, 18, 20). We hypothesized that differences in bind-
ing to DNA with JUN–FOS may be one reason for differential
regulation by ETS factors. To test this hypothesis, we expressed
and purified full-length recombinant proteins for AP1 factors
JUN and FOS and for the ETS factors ETV1, ETV4, ERG, FLI1,
EHF, and SPDEF. We measured the equilibrium dissociation
constant (KD) for ETS proteins binding to an ETS–AP1 com-
posite DNA sequence from the UPP promoter using electro-
phoretic mobility shift assays (EMSAs) in the presence and
absence of JUN–FOS (Fig. 1, Fig. S1, and Table S1). JUN–FOS
enhanced the DNA-binding affinity of FLI1 (greater than
40-fold), had minimal effects on the affinity of ERG (greater
than 2-fold), ETV1 (4 � 3-fold (mean � S.D.)), and ETV4 (1.2 �
0.3-fold), and strongly reduced the DNA-binding affinity of

Figure 1. JUN–FOS differentially influences the DNA binding of ETS factors to AP1–ETS composite sites. A, representative phosphorimages of
EMSAs for EHF (left), ETV4 (middle), and FLI1 (right) binding to the UPP promoter DNA duplex. ETS titrations were performed with DNA alone (top), and
with JUN–FOS bound to the DNA (bottom). JUN–FOS EMSAs contain two control lanes; the 1st lane with indicated ETS factor and DNA and the last lane
with DNA only. The higher band for EHF corresponds to two EHF molecules bound to the DNA duplex, as observed previously for similar ETS factors (17).
B, binding isotherms for EHF binding to UPP DNA in the absence (black) and presence (gray) of JUN–FOS. C, KD values for ETS factors binding to UPP DNA
without (black) and with (gray) JUN–FOS. Lines indicate the mean and standard deviation from two experiments (filled circles). Minimal KD values of 1000
nM were estimated for EHF and SPDEF binding to UPP promoter DNA with JUN–FOS as binding isotherms for these low-affinity interactions do not
approach saturation. Similarly, minimal KD values of 100 nM were estimated for ERG and FLI1 binding to UPP promoter DNA. See Fig. S1 and Table S1 for
quantification of KD values and fold differences.
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EHF (greater than 20-fold) and SPDEF (greater than 10-fold).
These findings suggest that different subgroups of ETS factors
display cooperative, noncooperative, or anticooperative bind-
ing with JUN–FOS to an ETS–AP1 composite DNA sequence.

We also observed that ETS factors in the absence of JUN–
FOS have distinct binding affinities for the ETS–AP1 sequence
in the UPP promoter; EHF bound to this promoter with roughly
10-fold higher affinity than ERG, FLI1, ETV1, and ETV4 (Fig.
1C). We next tested EHF and ERG with a series of DNA
sequences to further investigate this difference in binding to
DNA. We found that ERG binds to a consensus high-affinity
ETS-binding sequence “SC1” (21, 22) with 3-fold higher affinity
than EHF (3 � 1-fold; Fig. 2, Fig. S2, and Table S2). ERG and
EHF had comparable affinities for another ETS–AP1 DNA-
binding sequence from the enhancer of COPS8, indicating that
sequence differences in this enhancer preferentially disfavor

ERG. The proximal 5�-nucleotide outside of the core ETS motif
is a cytosine (CGGAA) in the consensus ETS sequence, but it
is an adenosine (AGGAA) in many ETS–AP1-binding sites,
including those at the UPP promoter and COPS8 enhancer (11,
17). The nucleotide at this position has previously been shown
to selectively affect the DNA binding of different ETS factors
(22, 23). To test whether this single nucleotide difference is
important in selectively weakening ERG binding relative to
EHF binding, we changed this nucleotide from cytosine to
adenosine in the context of the high-affinity ETS sequence
SC1 (Fig. 2) (21). This single change largely recapitulated the
difference in binding affinities observed for the ETS–AP1
sequence, i.e. ERG bound to this DNA with 8-fold weaker
affinity (8 � 5-fold), and the disruption of EHF binding was
more subtle (1.9 � 0.6-fold; Fig. 2 and Fig. S2). Therefore, in
the absence of JUN–FOS, EHF has a higher affinity for ETS–
AP1 DNA sequences compared with oncogenic ETS factors.
The tighter affinity of EHF may allow it to compete with ERG
for ETS–AP1 DNA sequences despite binding anticoopera-
tively with JUN–FOS.

ERG and EHF display differential preference for composite
ETS–AP1 sites in vivo

To explore the biological significance of the cooperativity
and anticooperativity displayed by ERG and EHF with JUN–
FOS, respectively, we examined binding site preferences for
these two proteins in vivo. Specifically, full-length ERG- or
EHF-coding sequence was tagged with FLAG and expressed
retrovirally in RWPE1 cells, a normal prostate epithelial cell
line, and then FLAG-ChIPs were performed to determine chro-
matin occupancy genome-wide. ERG and EHF proteins were
expressed at similar levels as judged by Western blot analysis
(Fig. S3A). Cluster analysis of the ChIP-seq data sets for ERG–
FLAG and EHF–FLAG revealed four distinct groups: 1) regions
with both high ERG and EHF occupancy; 2) regions with high
EHF occupancy and low ERG occupancy; 3) regions with high
ERG occupancy and low EHF occupancy; and 4) regions with
low but significant occupancy for both proteins (Fig. 3A). Thus,
ERG and EHF exhibit both redundant and unique genomic tar-
gets in RWPE1 cells.

Because of the high number of occupied regions, we limited
further analysis to the top 1000 enriched regions for both pro-
teins. Both ChIP datasets were enriched for DNA motifs match-
ing the ETS-binding consensus sequence (Fig. 3B), with slight
differences in nucleotide preference surrounding the core
GGA. The previously described composite “ETS–AP1 half-
site” (CAGGAA(A/G)TGA) (11) was specifically enriched in
the ERG dataset. Full AP1 sites (TGANTCA) were also over-
represented in both datasets (Fig. 3B). The composite element
displaying tight spacing between ETS and AP1 motifs, which we
examined by EMSAs, was more enriched in the ERG dataset as
compared with the EHF dataset (Fig. 3C). Conversely, ETS–
AP1 composite sites with more distant spacing were similarly
represented in both ERG and EHF datasets. We conclude that
anticooperative DNA binding between EHF and JUN–FOS is
limited to ETS–AP1 composite sites with tight spacing.

To interrogate our genome-wide findings by quantifying dif-
ferences in occupancy between ERG and EHF, we performed

Figure 2. Single-nucleotide change flanking core ETS-binding sequence
differentially affects the DNA binding of ETS factors. A, representative
EMSAs for EHF (left) and ERG (right) with three different DNA duplexes. DNA
sequences are listed on the left and consist of a consensus ETS DNA sequence
(ETS), a single nucleotide change from the ETS consensus sequence that is
present in ETS–AP1 composite motifs (ETS C(-1)A), and an ETS–AP1 composite
DNA sequence (ETS–AP1). ETS and AP1 DNA-binding sites are underlined, and
the single nucleotide change is in bold. B, KD values for EHF and ERG with
different DNA sequences. See Table S2 and Fig. S2 for quantification of
EMSAs.
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direct ChIP– qPCR on randomly selected regions from the
ERG–FLAG ChIP data that had an ETS–AP1 site with tight
spacing. JUN occupancy was also confirmed in these direct
ChIPs. Occupancy was defined by ChIP enrichment, the ratio of
the PCR signal from a test region compared with a control
region. At seven of the eight ETS–AP1 sites assayed, ChIP
enrichment was at least 2-fold and up to 7-fold higher for ERG
than EHF (Fig. 3D and Fig. S3B); thus, ERG–FLAG occupancy
at regions with composite ETS–AP1 sites was higher than
EHF–FLAG occupancy, as suggested by the motif analysis in
the genome-wide analysis. JUN occupancy was similar at most
ETS–AP1 sites in RWPE1 cells expressing either ERG or EHF
suggesting that the presence of JUN–FOS may be deterring

EHF binding (Fig. S3C). Additionally, JUN was depleted from
two ETS–AP1 sites at enhancers for SASH1 and PLCB1 in EHF-
expressing cells indicating that EHF may prevent JUN–FOS
from binding to select ETS–AP1 sites. To verify that lower EHF
occupancy at ETS–AP1 sites did not reflect a detection prob-
lem of EHF versus ERG in cells, we assayed regions that were
specifically enriched for EHF in the cluster analysis. At specific
EHF-enriched sites, EHF occupancy was equal or greater than
ERG (Fig. 3D). JUN occupancy was also lower at these regions
compared with regions with preferential ERG binding. Collec-
tively, these data suggest that ERG and EHF have distinct DNA-
binding profiles in prostate cancer cells, including the relative
depletion of EHF at closely spaced ETS–AP1 composite sites.

Positive residues N-terminal of, and within, the ETS domain of
EHF mediate anticooperative binding to DNA with JUN–FOS

To characterize the anticooperative binding to DNA with
JUN–FOS, which we had observed for both EHF and SPDEF,
we chose EHF for mapping the minimal regions of EHF and
JUN–FOS that were sufficient for anticooperative DNA bind-
ing. The DNA-binding domains of JUN (JUN�N250; �C319) and
FOS (FOS�N131; �C203) were sufficient for antagonizing the
DNA binding of full-length EHF (Fig. S4). Residues 193–300 of
EHF (EHF�N193), which includes the ETS domain and 16 resi-
dues N-terminal of the ETS domain, retained the full anticoop-
erative binding behavior of the full-length protein, a greater
than 20-fold decrease due to the presence of JUN–FOS (Fig. 4).
Removal of the flanking N-terminal residues (EHF�N203)
improved binding to DNA in the presence of JUN–FOS,
although EHF�N203 still retained 4-fold (4 � 3-fold) anticoop-
erative behavior. Therefore, the minimal regions required for
anticooperative DNA binding for JUN and FOS are the DNA-
binding domains, although in the case of EHF both the ETS
domain and a proximal N-terminal region are needed.

We next generated a structural model to interrogate the dif-
ferential binding between ETS factors with JUN–FOS at com-
posite ETS–AP1 sites using previously characterized DNA-
bound structures of JUN–FOS (24) and ETS factors ERG (25)
and ELF3 (26), which is a close homolog of EHF. To model the
ternary complex, we aligned the DNA sequences to mimic a
common composite site with the ETS site just upstream of the
AP1 site (GAGGAAGTGACTCA) (11). This modeling demon-
strated no significant steric overlap for the ETS domain of EHF
or ERG binding with JUN–FOS to the composite motif. How-
ever, the regions on the ETS domains of EHF and ERG in closest
proximity to JUN–FOS have contrasting charge properties. For
EHF, the N terminus of the ETS domain, the loop between
�-helices H2 and H3, and the C terminus of H3 are all positively
charged, whereas the analogous regions in ERG are neutral or
negatively charged (Fig. 5, A and B, and Fig. S5). The regions of
JUN and FOS proximal to ETS factors are positively charged.
Therefore, our modeling suggests that the positively-charged
interfaces of EHF and JUN–FOS would cause electrostatic
repulsion, disfavoring simultaneous binding to composite DNA
sequences. In contrast, the lack of positive charges in the ERG
interface presents a more favorable interaction surface for
JUN–FOS allowing for concurrent binding with JUN–FOS to
composite DNA sequences.

Figure 3. Preferential binding of ERG to ETS–AP1 sites in vivo. A, heat map
of reads for ERG–FLAG and EHF–FLAG ChIP data; numbers at left indicate clus-
ters referred to in the text. Analysis of ChIPseq data using MACS2 returned
34,746 enriched regions for ERG–FLAG and 44,977 for EHF–FLAG. B, ETS (top)
and AP1 (bottom) DNA-binding sequences are enriched in ERG- and EHF-
binding sites as determined by MEME (56). C, spacing between ETS and AP1
sites in top 1000 EHF–FLAG and ERG–FLAG ChIP peaks; spacing is defined as
nucleotide distance between core ETS (GGAA) and AP1 (TGANTCA) DNA rec-
ognition motifs (11). Arrow indicates the ETS–AP1 spacing that was used in
EMSAs. D, qPCR quantification of EHF–FLAG, ERG–FLAG, and JUN enrichment
at putative regulatory elements for genes shown; regions selected based on
match to ETS–AP1 sites with �6 spacing as indicated by the arrow in C. Two to
three independent biological replicates provided similar patterns but differ-
ent maximum levels of enrichment. A representative experiment is shown. E,
qPCR quantification of EHF–FLAG, ERG–FLAG, and JUN enrichment at regions
predicted to have high EHF occupancy based on ChIPseq data. ChIP enrich-
ment for D and E is defined as the qPCR signal for that site divided by the qPCR
signal for a neutral region, the 3� UTR of BCLxL1.
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Next, we tested the functional importance of positive resi-
dues within EHF for anticooperative binding with JUN–FOS to
composite sites. Four positively-charged regions of EHF were
mutated: the N-terminal region preceding the ETS domain
(K196E, K200E, and K201E); the loop between �-strand S2 and
�-helixH2(K241E,S242P,andA244E); the loopbetween�-heli-
ces H2 and H3 (K251E and K252Q); and the C-terminal end of

�-helix H3 (K272E) (Fig. 5C). These regions were selected
based on being more positively charged in ETS factors that
displayed anticooperative binding with JUN–FOS (Figs. S5
and S6). The EHF residues within the ETS domain were
mutated to corresponding residues in ETS factors that bind
with JUN–FOS to composite sites, and the lysine residues in
N-terminal region preceding the ETS domain were mutated
to glutamate residues, as there is no meaningful sequence
alignment for this region between different subfamilies of
ETS factors (Fig. S6). Mutant proteins were tested for bind-
ing to DNA alone and with JUN–FOS. Importantly, these
mutations did not significantly change the binding of EHF to
DNA in the absence of JUN–FOS (Fig. S7). However, mutat-
ing the region N-terminal to the ETS domain completely
ablated anticooperative DNA binding with JUN–FOS (Fig.
5D and Fig. S7). Mutation of H3, and to a lesser extent the
H2–H3 loop, showed lower impact. As a control, mutation of
the S2–H2 loop, which is on the opposite side of the ETS
domain from JUN–FOS in this ETS–AP1 composite motif
arrangement, did not alter EHF binding with JUN–FOS.
Therefore, positive residues in EHF that form the JUN–FOS
interface are important for the anticooperative binding of
EHF and JUN–FOS to ETS–AP1 DNA sequences.

ELF1 also exhibits anticooperative DNA binding with JUN–FOS

To further explore the role of basic residues in anticoopera-
tive binding, we tested DNA binding of other ETS factors with
JUN–FOS. We selected ERF, GABPA, ELF1, and ELK4 for fur-
ther analysis as these factors represent ETS factor subfamilies
that have not been examined previously (17) or in this study
(Fig. S8). Like EHF, ELF1 has positive residues in all three of the
positions that contribute to anticooperative binding with JUN–
FOS (Fig. 6A and Fig. S6). In contrast, ERF, GABPA, and ELK4
lack positive residues in at least one of these important regions
(Fig. S6). JUN–FOS antagonized ELF1 DNA binding and
slightly enhanced ELK4, ERF, and GABPA binding to DNA
(Fig. 6, B and C, and Fig. S9). These additional data allowed us to
predict the effect of JUN–FOS on the remaining untested ETS
factors based on sequence homology (Figs. S6 and S8). Com-
paring the charge of ETS domains and flanking regions demon-
strates that ETS factors that anticooperatively bind to DNA
with JUN–FOS tend to be more positively charged than other
ETS factors (Fig. S8B). These data suggest that ELF1 binds anti-
cooperatively with JUN–FOS due to a similar electrostatic
repulsion mechanism as observed for EHF.

Discussion

Here we report the variable binding of ETS transcription
factors with JUN–FOS to composite DNA sequences. DNA
binding of the tumor suppressors EHF and SPDEF is antag-
onized by JUN–FOS, in contrast to oncogenic factors from
the ERG and ETV1/4/5 subfamilies. We propose that this
difference in binding to DNA with JUN–FOS contributes to
the opposing impact on the transcription of ETS–AP1-reg-
ulated genes by oncogenic and tumor suppressor ETS factors
(Fig. 7A) (11, 13).

Figure 4. Sequences N-terminal to the ETS domain and within the ETS
domain of EHF are important for anticooperative binding with JUN–FOS
to composite ETS–AP1 sites. A, schematic of EHF truncation series. ETS DNA-
binding domain (ED) and Pointed domain (PNT) are labeled. B, representative
binding isotherms for EHF and N-terminal truncations binding to an ETS–AP1
sequence without (black) and with (gray) JUN–FOS. KD values (mean � S.D.)
from four experiments are listed. Minimal KD values for EHF, EHF�N183, and
EHF�N193 binding to DNA with JUN–FOS were estimated as these binding
isotherms do not approach saturation. See Fig. S4 for representative EMSA
images and Table S5 for quantification.
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Model for anticooperative DNA binding between EHF and
JUN–FOS

Residues flanking and within the ETS domain of EHF con-
tribute to anticooperative DNA binding with JUN–FOS, as
revealed by a truncation series. In particular, the region includ-
ing multiple lysine residues N-terminal to the ETS domain is
the single strongest contributor to this effect. Structural mod-
eling indicated that the N terminus of the ETS domain as well as
the loop between �-helices H2 and H3 and the C-terminal end
of H3 are all positioned at the JUN–FOS interface when both
factors are bound to DNA. These three regions of ETS factors,
although separate in primary sequence, converge in the tertiary
structure to form a tripartite interface. In EHF, all of these
regions are positively charged and are positioned near the pos-
itively-charged regions of the DNA-binding domains of JUN
and FOS. Therefore, we suggest that electrostatic repulsion
between basic EHF and JUN–FOS surfaces inhibits simultane-
ous DNA binding in this orientation. In contrast, the collective
JUN–FOS interface on ERG is composed of negative and polar
residues, making ERG more suitable for simultaneous DNA
binding with JUN–FOS. Mutation of EHF to eliminate basic

residues along this interface at any of the three regions abro-
gated anticooperative binding with JUN–FOS. Eliminating
basic residues from the region N-terminal to the ETS domain
again demonstrated the largest effect, matching the truncation
series data. However, mutation of the H2–H3 loop or the C
terminus of H3 also significantly improved the DNA binding of
EHF with JUN–FOS, indicating that positive residues at all
three sites contribute to the full anticooperative effect. Interest-
ingly, further examination of additional ETS factors demonstrated
that ELF1, which is positively charged at all three analogous
regions, exhibited anticooperative DNA binding with JUN–FOS.
In contrast, ERF and ELK4, which lack positively-charged residues
in at least one of these regions, do not exhibit anticooperative DNA
binding. Finally, introduction of the positive residues from EHF
into any single site of the tripartite interface on ERG (i.e. N-termi-
nal, H2–H3 loop, or C terminus of H3) failed to transfer any level of
anticooperative binding with JUN–FOS into ERG (data not
shown). Therefore, we propose that anticooperative binding to
DNA with JUN–FOS requires all three stretches of positive resi-
dues on EHF that cumulatively form a basic interface with JUN–
FOS (Fig. 7B and Fig. S10).

Figure 5. Positively-charged residues near the JUN–FOS interface are important for anticooperative binding of EHF and JUN–FOS. A and B, structural
model of EHF (A) and ERG (B) binding to an ETS–AP1 composite DNA sequence with JUN–FOS. EHF, ERG, and JUN–FOS are shown in surface mode and colored
according to electrostatic potential (red, negative; blue, positive). Regions of EHF that were subsequently mutated are labeled 1– 4 in A. Note that EHF residues
193–204 are not present in this modeled structure. C, listing of EHF residues that were mutated. Circled numbers 1– 4 correspond to the regions labeled in A. The
top and bottom sequences indicate the native and mutated residues, respectively. Residues are colored according to charge, as in A. D, portions of EMSAs
showing EHF wildtype (WT) and mutants bound in the presence of JUN–FOS on an ETS–AP1 site. EHF was serially diluted in 2-fold increments. Bands
corresponding to JUN–FOS bound to DNA (JF:DNA) as well as EHF and JUN–FOS bound to DNA (EHF:JF:DNA) are labeled. See Fig. S7 and Table S6 for further
quantification of EMSAs.
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Despite close proximity to the DNA interaction surface,
elimination of basic residues from the JUN–FOS interface of
EHF did not significantly impact DNA binding in the absence of
JUN–FOS. We interpret this to indicate that DNA binding
alone and anticooperative DNA binding with JUN–FOS are
fundamentally different and separable properties. Correspond-
ingly, the arginine and tyrosine residues along the core DNA-
recognition surface of �-helix H3 are highly conserved across
ETS factors (Figs. S6 and S10) (22, 27). Nevertheless, our data
do not exclude the possibility that alteration to DNA structure
upon JUN–FOS binding may disfavor EHF binding. Further
structural characterization of cooperative FLI1 and JUN–FOS
DNA binding, as well as molecular simulations of anticoopera-
tive EHF and JUN–FOS DNA binding, would help to determine
whether through-DNA effects contribute to the disparate bind-
ing behavior that we have observed for ETS and JUN–FOS fac-
tors binding to composite DNA sites.

Anticooperative ETS factors, such as EHF, ELF1, SPDEF, and
SPI1, bind with slightly stronger affinities to ETS–AP1 DNA
sequences in the absence of JUN–FOS compared with cooper-
ative ETS factors. These data suggest that when present in
excess, anticooperative ETS factors will compete with onco-
genic ETS factors and JUN–FOS for binding to ETS–AP1 sites.
In principle, this competition would reduce the level of tran-

scription from ETS–AP1-regulated genes by reducing the
occupancy of oncogenic ETS factors and/or JUN–FOS (Fig.
7A). This hypothesis is supported by previously reported data
indicating that anticooperative ETS factors are highly ex-
pressed in normal prostate cells and dampen the transcription
of genes involved in cellular migration that are regulated by
ETS–AP1 sites (11, 13, 17, 28). Therefore, we propose that anti-
cooperative DNA binding with JUN–FOS is one mechanism for
tumor suppressor ETS factors to repress the transcription of
ETS–AP1-regulated genes.

Distinct mechanisms of transcriptional repression among ETS
factors

We originally examined the anticooperative ETS factors EHF
and SPDEF based on their reported tumor suppressor roles in
prostate cancer (18 –20). Thus, we hypothesized that other pos-
itively charged ETS factors that bind to DNA in an anticoop-
erative manner with JUN–FOS might also behave as tumor
suppressors in prostate cancer. Publicly available data support
this hypothesis, as protein levels of ELF and SPI subfamily
members ELF1, ELF2, ELF4, and SPIB are often down-regu-
lated in prostate cancer samples (Fig. S11A) (29, 30). Further-
more, at the genomic level, ELF1 in particular is affected by
deep gene deletions in up to 20% of prostate cancer samples

Figure 6. ELF1 also exhibits anticooperative DNA binding with JUN–FOS. A, sequence alignment of EHF and ELF1/2/4 subfamilies for regions important for
anticooperative DNA binding with JUN–FOS. Numbers above sequences and arrows below sequences refer to EHF regions and residues mutated in Fig. 5. See Fig.
S6 for complete sequence alignments. B, representative EMSAs for ELF1 alone (top) and with JUN–FOS (bottom). The first three lanes correspond to DNA only,
ELF1:DNA, and JUN–FOS:DNA (bottom gel only) controls. C, comparison of KD values for ELF1, ELK4, ERF, and GABPA alone (black) and with JUN–FOS (gray). Filled
circles indicate an individual experiment, and lines indicate the mean and S.D. See Table S7 for KD values and Fig. S9 for representative EMSAs of ELK4, ERF, and
GABPA. D, example of an oncoprint curated from cBioPortal showing mutational frequencies of the ETS factors ERG, ETV1, ELF1, EHF, and SPDEF (http://
www.cbioportal.org) (31, 32). (Please note that the JBC is not responsible for the long-term archiving and maintenance of this site or any other third party
hosted site.) This example is from a 2015 TCGA prostate cancer study (34). ERG and ETV1 are frequently overexpressed through gene fusions, and EHF and
SPDEF are rarely present in deep deletions, as characterized previously (15, 16, 19, 20). Interestingly, ELF1 is also frequently involved in deep deletions
suggesting that it may be a tumor suppressor in prostate cancer. See Fig. S11 for additional studies with frequent ELF1 gene deletions in prostate cancer
patients.
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from different prostate cancer studies (Fig. 6D and Fig. S11B)
(31–38). Our functional DNA-binding data suggest that ELF1
behaves similarly to EHF and SPDEF. Therefore, given the high
frequency of gene deletions in prostate cancer patients, we sug-

gest that the potential role of ELF1 as a tumor suppressor
should be further investigated.

A recent report implicated the ETS factor ERF as a novel
tumor suppressor in prostate cancer and suggested that ERF
represses transcription from ERG and androgen receptor target
genes by competing with ERG for binding to ETS DNA
sequences (39). Our analysis of an ERF truncation (residues
1–126) indicates that ERF cooperatively binds to ETS–AP1
DNA sequences with JUN–FOS, unlike the other ETS tumor
suppressors that we tested. Although we cannot rule out that
full-length ERF may behave differently, several lines of evidence
support that ERF transcriptional repression occurs through a
distinct mechanism as compared with EHF, ELF1, and SPDEF.
The repressor domain of ERF is distal from the ETS DNA-
binding domain, greater than 350 residues away in primary
sequence, and is fully transferable to a heterologous protein
(40). In contrast, the positive residues of EHF that facilitate
anticooperative DNA binding with JUN–FOS flank or are
within the DNA-binding domain and are not easily transferable
to other proteins, such as ERG. Furthermore, ERF acts as a
transcriptional repressor in all contexts tested thus far (40),
whereas EHF represses or activates genes in a context-depen-
dent manner (13, 41). These data suggest that ERF-mediated
transcriptional repression occurs at a level other than DNA
binding, such as through the recruitment of transcriptional
corepressors. In contrast, our results suggest that anticoopera-
tive binding to DNA with JUN–FOS is a distinct mechanism of
transcriptional repression that may contribute to the tumor
suppressor phenotypes of the ETS factors EHF and SPDEF in
prostate cancer (18 –20, 35, 42).

Diversification of interaction surfaces enables functional
regulation

Individual ETS transcription factors display diverse develop-
mental and disease-related phenotypes (27, 43), yet they pos-
sess ETS domains with remarkably similar DNA-binding
preferences (22). How might this apparent contradiction be
explained? One route for specificity involves the use of compos-
ite DNA sequences for combinatorial regulation. For example,
composite ETS–RUNX sites are found in T-cell activation
genes, and ETS1 specifically regulates these genes through
cooperatively binding to DNA with RUNX1 (6, 10, 23, 44). FLI1
binds cooperatively to DNA with JUN–FOS, although the
molecular basis for this cooperativity remains unclear (17).
Here, we demonstrate that a subset of ETS factors, including
SPDEF, EHF, and ELF1, bind to DNA in an anticooperative
manner with JUN–FOS. This anticooperativity depends on
positively charged residues from multiple regions of the protein
that together form the JUN–FOS interface. The JUN–FOS-in-
teracting surface is distinct from the conserved DNA-binding
surface, enabling precise control on modulating transcriptional
activity at genes regulated by ETS–AP1 composite sites without
impacting other genes that are regulated by ETS sites. An anal-
ogous electrostatic repulsion mechanism has recently been
described for the selective recognition of appropriate substrates
by tyrosine kinases involved in T-cell signaling (45, 46). There-
fore, electrostatic selection may be a general mechanism for

Figure 7. Model for differential regulation of ETS–AP1 sites by ETS fac-
tors. A, left, EHF and ERG have DNA-binding surfaces similar to all ETS factors
and therefore bind to ETS DNA sequences with relatively similar affinities.
Right, distinct JUN–FOS interface of EHF and ERG allows ERG to bind to ETS–
AP1 sequences with JUN–FOS but prevents EHF from binding to ETS–AP1
sequences with JUN–FOS. This difference in binding affinities is consistent
with the repression and activation of ETS–AP1-regulated genes by EHF and
ERG, respectively (11, 13). B, three positive regions of EHF form the JUN–FOS
interface. Top, ETS domain of EHF is depicted in cartoon format; cylinders and
arrows indicate �-helices and �-strands, respectively, and are named accord-
ing to previous nomenclature (27). Positive residues in �-helix H3 are at the
primary DNA interface and are highly conserved among human ETS factors
(Figs. S6 and S8). In contrast, positive residues N-terminal to the ETS domain
(i), in the H2–H3 loop (ii), and C terminus of �-helix H3 (iii) form the JUN–FOS
interface and are only found in a subset of human ETS factors. Bottom, these
three regions of EHF, which are separated in primary sequence, converge to
form a broad positively-charged interface for JUN–FOS. See Fig. S10 for the
JUN–FOS interfaces of SPDEF, ELF1, and ERG.
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fine-tuning molecular interactions that contribute to the phe-
notypic diversity of large gene families.

Materials and methods

Expression plasmids

Open reading frames corresponding to full-length or trun-
cated JUN, EHF, ELF1, ELK4, ERF, ERG, ETV1, ETV4, FLI1,
FOS, GABPA, and SPDEF were cloned into the bacterial
expression vector pET28 as described previously (47, 48).
Point mutations were introduced into the EHF �N193 plas-
mid using the QuikChange site-directed mutagenesis proto-
col (Stratagene).

Expression and purification of proteins

ETS proteins were expressed in Escherichia coli (�DE3) cells.
Full-length EHF and truncated ETS proteins (see Table S8 for
protein sequences) were efficiently expressed into the soluble
fraction. One-liter cultures of Luria broth (LB) were grown at
37 °C to an A600 of �0.7. The cultures were then induced with
0.5 mM isopropyl �-D-thiogalactopyranoside for approximately
3 h at 30 °C. Cultures were centrifuged at 12,000 � g for 10 min
at 4 °C. Cells were resuspended with 25 ml of buffer (per liter of
culture) containing 25 mM Tris, pH 7.9, 1 M NaCl, 0.1 mM

EDTA, 2 mM 2-mercaptoethanol (�ME), and 1 mM phenyl-
methanesulfonyl fluoride (PMSF), flash-frozen in liquid nitro-
gen, and stored at �80 °C. Cells were lysed by sonication and
centrifuged at 125,000 � g for 30 min at 4 °C. The supernatant
containing the soluble fraction was loaded onto a Ni2� affinity
column (GE Biosciences) and eluted over a 5–500 mM imidaz-
ole gradient. Fractions containing purified protein were pooled
and dialyzed overnight at 4 °C into a buffer containing 25 mM

Tris, pH 7.9, 10% glycerol (v/v), 1 mM EDTA, 50 mM KCl, and 1
mM dithiothreitol (DTT). After centrifugation at 125,000 � g
for 30 min at 4 °C, the soluble fraction was loaded onto an SP-
Sepharose cation-exchange column or Q-Sepharose anion-ex-
change column (GE Biosciences), depending on the pI value of
the individual protein, and then eluted by a linear gradient from
50 mM to 1 M NaCl. Fractions containing purified protein were
pooled and further purified by size-exclusion chromatography
on a Superdex 75 column run with a buffer containing 25 mM

Tris, pH 7.9, 10% glycerol, 1 mM EDTA, and 300 mM KCl. Frac-
tions containing purified protein were pooled and concentrated
by 30-, 10-, or 3-kDa molecular mass cutoff Centricon devices
(Sartorius). Concentrated proteins were snap-frozen with liq-
uid nitrogen and stored at �80 °C in single-use aliquots for
subsequent EMSA studies.

Full-length ERG, FLI1, ETV1, ETV4, and SPDEF were pre-
dominantly expressed into inclusion bodies (see Table S8 for
protein sequences). Protein expression was induced and then
cells were centrifuged and stored as described above, with the
exception of ETV4, which was induced by autoinduction as
described previously (48, 49). After the initial sonication, the
samples were centrifuged at 31,000 � g for 15 min at 4 °C, and
then the soluble fraction was discarded. This procedure was
performed a total of three times to wash the inclusion bodies in
25 mM Tris, pH 7.9, 1 M NaCl, 0.1 mM EDTA, 5 mM imidazole, 2
mM �ME, and 1 mM PMSF. The final insoluble pellet was resus-
pended in a buffer containing 25 mM Tris, pH 7.9, 1 M NaCl, 0.1

mM EDTA, 5 mM imidazole, 2 mM �ME, 1 mM PMSF, and 6 M

urea using sonication. After rotation for �1 h at 4 °C, the sam-
ple was centrifuged at 125,000 � g for 30 min at 4 °C. The
soluble fraction was loaded onto a Ni2� affinity column and
refolded on-column by switching to the same buffer lacking
urea. After elution with a 5–500 mM imidazole gradient, the
remaining purification steps (ion-exchange and size-exclusion
chromatography) were performed, as described above.

Full-length JUN and FOS proteins were expressed and puri-
fied as described previously (50, 51). Briefly, JUN and FOS
expressed into the insoluble fraction and were expressed and
purified as above, with the following exceptions. FOS was
expressed in Rosetta 2 cells (Novagen) for supplementation of
rare Arg tRNAs. Inclusion bodies were purified and solubilized
as described above, and then JUN and FOS were combined for
JUN–FOS heterodimers, diluted to 200 ng/�l (total protein),
and then dialyzed for at least 3 h each against the following
three buffers (in sequential order): 1) 25 mM Tris, pH 6.7, 0.1
mM EDTA, 10% glycerol, 5 mM �ME, 1 M NaCl, 1 M urea; 2)
same as 1 but without urea; and 3) same as 2 but with NaCl
reduced to 100 mM. Refolded samples were then purified by
Ni2� affinity and size-exclusion chromatography, as described
above.

Truncated JUN�N250; �C319 and FOS�N131; �C203 proteins
expressed into the insoluble fraction and were solubilized as
described above. JUN�N250; �C319 and FOS�N131; �C203 were
then individually loaded onto a Ni2� affinity column, refolded
on-column, and eluted, as described above. JUN�N250; �C319

and FOS�N131; �C203 were then combined to form heterodimers
and further purified by size-exclusion chromatography, as
described above.

EMSA

DNA-binding assays of ETS factors utilized duplexed oligo-
nucleotides corresponding to the promoter or enhancer
regions of the genes UPP1 and COPS8, respectively, and a con-
sensus high-affinity ETS-binding site SC1 (Selected Clone 1)
(11, 17, 21). The DNA sequences for these oligonucleotides are
listed in Table S8. Each pair of oligonucleotides, at 2 �M as
measured by absorbance at 260 nm on a NanoDrop 1000 (Ther-
moFisher Scientific), was labeled with [�-32P]ATP using T4
polynucleotide kinase at 37 °C for 30 min. After purification
over a Bio-Spin 6 chromatography column (Bio-Rad), the oligo-
nucleotides were incubated at 100 °C for 5 min and then cooled
to room temperature over �2 h. The DNA concentration for
EMSAs was diluted to 5 � 10�11 M and held constant. JUN–
FOS was titrated against each DNA sequence to determine
near-saturating amounts, where bound DNA was �80% of
total DNA. For the UPP promoter, full-length JUN–FOS was
included at 1 �M, whereas the truncated JUN–FOS was
included at 100 nM for the COPS8 enhancer. In a series of equi-
librium binding reactions, ETS factor concentrations were var-
ied from the micromolar to the sub-nanomolar range to deter-
mine the equilibrium dissociation constant (KD) for ETS factors
on DNA or on JUN–FOS–DNA complexes. Protein concentra-
tions were determined after thawing each aliquot of protein
using the Protein Assay Dye Reagent (Bio-Rad). The binding
reactions were incubated for 3 h at 4 °C in a buffer containing 25
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mM Tris, pH 7.9, 0.1 mM EDTA, 60 mM KCl, 6 mM MgCl2, 200
�g/ml bovine serum albumin, 10 mM DTT, 100 ng/�l poly-
(dI-dC), and 10% (v/v) glycerol. The fractions of bound versus
nonbound species were resolved on a 4 or 6% (w/v) native poly-
acrylamide gel run at 4 °C for experiments with full-length or
truncated JUN–FOS, respectively. The 32P-labeled DNA was
quantified on dried gels by phosphorimaging on a Typhoon
Trio Variable Mode Imager (Amersham Biosciences). Equilib-
rium dissociation constants (KD) were determined by nonlinear
least-squares fitting of the total ETS protein concentration [P]t
versus the fraction of DNA bound ([PD]/[D]t) to the equation
[PD]/[D]t 	 Bmax�[P]y

h/(KD
h � [P]t

h) with Prism (version 7;
GraphPad Software), with Bmax indicating maximum specific
binding and h indicating the Hill slope. To determine ETS fac-
tor KD values in the presence of JUN–FOS, the PD in this for-
mula was represented by [PPD], the signal from doubly occu-
pied DNA. Because of the low concentration of total DNA, [D]t,
in all reactions, the total protein concentration is a valid
approximation of the free, unbound protein concentration.
Individual experiments were fit using the equation above, and
KD values are reported as mean � S.D. for the indicated number
of replicate experiments. Statistical t tests were calculated
with Graph Pad Prism (Version 7.0b) for experiments with at
least three replicates. Consistent standard deviation was not
assumed, and the two-stage step-up false discovery rate (FDR)
approach of Benjamini et al. (52) was used with a desired FDR
of 1%.

Cell culture and viral expression

RWPE1 cells were obtained from American Type Culture
Collection and cultured accordingly. Full-length ERG and EHF
cDNAs with an added C-terminal 3xFLAG tag were cloned into
a modified pLHCX retroviral expression vector (Clontech) with
the cytomegalovirus promoter replaced by the HNRPA2B1
promoter. Expression and infection of retrovirus were per-
formed following standard protocols. Whole-cell extracts from
cells expressing empty constructs, ERG–FLAG, or EHF–FLAG
were run on SDS-polyacrylamide gels and blotted to nitrocel-
lulose membranes following standard procedures. Antibodies
used for immunodetection were FLAG (M2, Sigma) and �-ac-
tin (C4, ThermoFisher Scientific).

ChIP and ChIPseq analysis

ChIPs were performed as described previously (53), with the
following modifications. Cross-linked chromatin was sheared
with a Branson sonifier, and magnetic beads were washed with
buffer containing 500 mM LiCl. Antibodies used for ChIP were
as follows: anti-FLAG (M2, Sigma) and anti-c-JUN (E254,
Abcam). ChIPseq libraries were prepared using the NEBNext�
ChIP-Seq Library Prep Master Mix Set for Illumina (New Eng-
land Biolabs, E6240) and run on a Hiseq2000 sequencer.
Sequence reads were aligned with Novoalign to human genome
HG19, and enriched regions (peaks) were determined using the
MACS2 analysis package (54). Heat maps of enriched regions
for ERG–FLAG and EHF–FLAG ChIPseq were generated with
DeepTools (55) using a bed file corresponding to coordinates
from the combined ChIPseq bed files, and bigwig files gener-

ated from the individual ChIPseq datasets. Data were aligned
using the center point of this shared peak bed file.

Over-represented DNA sequences present in the ERG–
FLAG and EHF–FLAG enriched regions were determined
using the MEME-ChIP program (http://meme-suite.org)5 (56,
57) using default settings except for following parameters for
MEME: 1) any number of repetitions for site distribution; and
2) maximum site width of 13. ETS–AP1 sites spacings were
determined using Regulatory Sequence Analysis Tools (58)
searching the top 1000 ChIPseq peaks for the ERG–FLAG and
EHF–FLAG datasets.

Primer-BLAST (59) was used to generate primer sets for
amplification of enriched regions; primer sequences and the
coordinates of interrogated regions are provided in Table S9.
qPCR of ChIP DNA was performed using Roche FastStart
Essential DNA Green Master and run on a Lightcycler 96
(Roche Applied Science). Serially diluted input was used to cre-
ate a standard curve for absolute quantitation of amplified
regions from ChIP DNA. PCRs for each sample and primer pair
were run as triplicates and signal averaged over the three values.
Data are displayed in graphical form as a ratio of the signal of
the target region over the signal of a negative control genomic
region. An input sample was also subject to the same qPCRs
graphed to confirm validity of negative control region. For all
primer pairs, the input enrichment value was approximately 1.

Structural modeling

Structural models for ETS and JUN–FOS factors binding to a
composite DNA sequence were constructed with PyMOL (Ver-
sion 1.7.0.5) and the following Protein Data Bank entries: ERG,
4IRI (25); JUN–FOS, 1FOS (24); ELF3, 3JTG (26). A homology
model of EHF was generated from the closely related ELF3 by
manual mutation of distinct residues. ETS and JUN–FOS mol-
ecules were oriented by aligning DNA nucleotides to create an
ETS–AP1 composite sequence, such as those found in the UPP
promoter and the COPS8 enhancer (Table S8). The overlapping
DNA from the ETS and JUN–FOS structures does not perfectly
align, suggesting that DNA distortions may occur in the ternary
complex. We cannot rule out that through DNA effects may
also contribute to the anticooperative DNA binding exhibited
by EHF and JUN–FOS.

Protein Atlas and cBioPortal data curation

Protein levels for ETS factors in normal prostate and prostate
cancer samples were curated from The Protein Atlas (https://
www.proteinatlas.org)5 (29, 30). Data are reported for ELF1,
ELF2, ELF4, and SPIB; these ETS factors, or close homologs
(Figs. S6, S8, and S9), have been shown to bind to ETS–AP1
DNA in an anticooperative manner with JUN–FOS here or as
described previously (17). These four factors are expressed at a
“medium” level in normal prostate cells so “low” or “no detec-
tion” in prostate cancer cells represents down-regulation at the
protein level. TCGA data were curated from cBioPortal (http://
www.cbioportal.org)5 (31, 32). Several prostate cancer genomic
studies revealed recurrent gene deletions of ELF1 in up to 20%

5 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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of patient samples (33–38). An example from one study is rep-
resented in Fig. 6D, and all studies with substantial ELF1 dele-
tions are listed in Fig. S11B.
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