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ABSTRACT: 

Plasma elevations of the amino acids alloisoleucine and argininosuccinic acid (ASA) are pathognomonic 

for maple syrup urine disease and argininosuccinate lyase deficiency, respectively.  Reliable detection of 

these biomarkers is typically achieved using methods with tedious sample preparations or long 

chromatographic separations, and many published amino acid assays report poor specificity and/or 

sensitivity for one or both of these compounds. This report describes a novel liquid chromatography 

tandem mass spectrometry (LC-MS/MS) method that provides rapid quantification of alloisoleucine and 

ASA in human plasma.   The basis of this method is a mixed-mode solid phase separation that achieves 

baseline resolution of alloisoleucine from isobaric interferents without the use of derivatization or ion 

pairing agents.  The inject-to-inject time is 6 minutes including elution, column washing and re-

equilibration.  Validation studies demonstrate excellent limits of quantification (1 µmol/L), linearity (r = 

0.999 from 1-250 µmol/L), accuracy (bias = -3.8% and -10.1%), and inter-assay imprecision (CV < 8.06%) 

for plasma analyses.  Data from long-term clinical application confirms chromatographic consistency 

equivalent to more traditional reversed-phase or HILIC based columns.  Additional matrix studies 

indicate low suppression (< 10%) for a wide range of amino acids and compatibility with other matrixes 

such as blood spot analyses.  Finally, analysis of our first 257 clinical specimens demonstrates high 

analytic specificity and sensitivity, allowing the detection of subtle but clinically relevant elevations of 

alloisoleucine and ASA that may be missed by other less sensitive methods.   In conclusion, the novel LC-

MS/MS method reported here overcomes a number of the challenges associated with alloisoleucine and 

ASA quantification.  Combining this approach with published incomplete amino acid quantification 

methods allows, for the first time, a rapid and comprehensive LC-MS/MS analysis of underivatized 

amino acids without the use of ion pairing agents.   
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1. Introduction 

Quantification of plasma amino acids is a key step in the detection and management of numerous 

inborn errors of metabolism.  Traditionally, testing for the ~40 clinically relevant amino acids in human 

plasma has been completed using cation exchange chromatography with post column ninhydrin 

derivatization and spectrophotometric detection [1].  

In the last decade, liquid chromatography tandem mass spectrometry (LC-MS/MS) approaches to amino 

acid quantification have been adopted by some biochemical genetics laboratories [2], with the added 

benefits of increased analyte specificity and much quicker analysis times compared to traditional testing.  

Currently, most clinically validated LC-MS/MS methods rely on reversed-phase chromatography in 

combination with ion pairing agents (e.g., heptafluorobutryic acid) to separate and quantify derivatized 

[3, 4] or underivatized amino acids [5, 6].  Although these approaches offer substantial improvements 

over traditional testing, these LC-MS/MS methods have not been widely adopted in part because (i) ion 

pairing agents can act as highly retentive contaminates that  interfere with ionization and 

chromatographic separations and (ii) derivatization is costly and time consuming. 

To overcome these limitations, a hydrophilic interaction liquid chromatography (HILIC) LC-MS/MS 

method was developed which provides excellent retention and detection of many amino acids in human 

plasma without the use of ion pairing agents or derivatization [7].  However, this method cannot 

chromatographically resolve alloisoleucine from the isomeric interferent isoleucine.  In addition, in our 

lab’s experience, argininosuccinic acid (ASA) cannot be reliably quantified due to poor peak shape and 

substantial carryover when using a HILIC amide column.    

Alloisoleucine and ASA are clinically important amino acids that pose technical challenges when 

analyzed by conventional methods.    Both compounds are normally found at low or undetectable levels 

in the plasma of healthy individuals, but when elevated, are considered pathognomonic for inherited 

metabolic diseases: maple syrup urine disease (MSUD; OMIM# 248600) in the case of alloisoleucine and 

argininosuccinic acid lyase deficiency (ASL; OMIM# 207900) in the case of argininosuccinic acid.  

Limitations in the quantification of ASA and/or alloisoleucine have been reported for other methods and 

are not unique to HILIC-based LC-MS/MS approaches.  These include (i) poor sensitivity and specificity 

for ASA using traditional cation exchange chromatography analyses [8], (ii) ASA coelution with 

ethanolamine by ultra performance liquid chromatography [9], (iii) poor alloisoleucine resolution from 

isobaric compounds following derivatization and reversed phase LC-MS/MS [4]. In addition, flow 



injection methods employed by newborn screening labs can not reliably quantify either ASA or 

alloisoleucine.   For many laboratories, it is therefore necessary to use a second complementary method 

to quantify ASA and/or alloisoleucine when applying existing methods to study amino acids.   

Chromatographic columns that combine two or more retention mechanisms (termed “mixed-mode” 

columns) have emerged as an alternative for LC-MS/MS analysis of amino acids  [10, 11].  Some mixed-

mode columns include MS compatible ion exchange binding properties, which may be useful in the 

chromatographic resolution of isomeric compounds such as alloisoleucine and isoleucine.  However, 

there remain concerns about the application of mixed-mode chromatography in routine clinical 

diagnostic use, particular as it relates to lengthy column washing/equilibration steps and long term 

chromatographic stability after exposure to a high volume of heterogeneous clinical specimens.   In the 

following, we report the development of a rapid mixed-mode chromatography-based LC-MS/MS 

method to quantify alloisoleucine and ASA and we chronical this method’s performance characteristics 

and long-term durability when integrated into routine clinical diagnostic testing.        

2. Materials and methods 

2.1 Reagents 

High purity calibration materials were purchased from two sources and analyzed to confirm equivalency: 

argininosuccinic acid disodium salt hydrate (Sigma-Aldrich and Santa Cruz Biotechnology) and L-

alloisoleucine (Sigma-Aldrich and Acros Organics).  Additional stocks of lyophilized 4-hydroxyproline, 

leucine, isoleucine, delta-aminolevulinate, and arginine were purchased from Sigma Aldrich.   

Isotopes tyrosine-13C6 and argininosuccinate-15N4, 13C6 were purchased from Cambridge Isotope.  

Tyrosine-13C6 powder was resuspended in 2% sulfosalicylic acid to a final concentration of 100 µM 

(IS_1).   Argininosuccinate-15N4, 13C6 was resuspended in water to a final concentration of 10 µM 

(IS_2).  Isotopes used in matrix studies include phenylalanine-13C6 (Phe), tyrosine-13C6 (Tyr), glycine-

15N (Gly), isoleucine-13C6 (Iso), tryptophan-indole-D5 (Trp), histdine-D3 (His) and argininosuccinate-

15N4, 13C6 (Asa) purchased from Cambridge isotope and DL-2-Piperidine-carboxylic acid-D9 (Pip) 

purchase from CDN Isotopes. Isotope solutions were stored at -20 °C prior to use.   

Optima LC-MS grade water, formic acid and acetonitrile (Fisher Scientific) and bio ultra-grade 10 M 

ammonium formate (Sigma) were used in all solutions.   

 

2.2 Sample preparation 



Sample collection procedures were approved by the Indiana University Institutional Review Board 

(Protocol #1804038720).  Our sample set included specimens from individuals with the following clinical 

indications:  hyperammonemia, hyperlactatemia, severe ketosis, failure to thrive, developmental delay, 

seizures, renal failure, and liver failure.   

For the analysis of heparinized plasma, 40 µL of specimen was mixed with 30 µL each of IS_1 and IS_2 

and then deproteinated by adding 700 µL of solvent A (90% acetonitrile, 10 mM ammonium formate, 

0.15% formic acid).  Samples were vortexed for ~5 seconds and then centrifuged at 15,000 rpm for 5 

minutes in a microcentrifuge.  Clarified supernatant was transferred to a glass auto-sampler vial for LC-

MS/MS analysis.   

Control specimens were generated by pooling residual heparinized plasma specimens and spiking with 

pure ASA and alloisoleucine solutions.  Controls were stored at -20 °C in single use aliquots.   

For calibration material, pure ASA and alloisoleucine stocks were prepared individually in water and 0.1 

N HCL, respectively.  Immediately prior to use, ASA and alloisoleucine calibration materials were 

combined and diluted with water to generate solutions of the following concentration (0.5, 1, 2.5, 10, 

25, 50, 100, 250 µM).  Forty microliters of each solution were then mixed with 30 µL each of IS_1 and 

IS_2 and 700 µL of solvent A.   

RECIPE ClinCheck plasma amino acid controls (IRIS Technologies International) and European Research 

Network for evaluation and improvement of screening, Diagnosis and treatment of Inherited disorders 

of Metabolism (ERNDIM; http://www.erndim.org/) 2018 amino acids in serum scheme proficiency 

testing materials were resuspended according to the manufacturer’s guidelines.   

 

2.3 LC-MS/MS analysis 

Liquid chromatography was performed using an Aquity i-class UPLC system (Waters) equipped with an 

intrada amino acid column (50 mm X 2 mm, particle size = 3 µm;  Imtakt) maintained at 35 °C.   Mobile 

phase A (20% acetonitrile, 0.3% formic acid, pH~2.4) was prepared by mixing 1.5 mLs of formic acid with 

398.5 mLs of water and then adding 100 mLs of acetonitrile.  Mobile phase B (20% acetonitrile, 80 mM 

ammonium formate, pH ~6.3) was prepared by mixing 396 mLs of water and 4 mLs of ammonium 

formate and then slowing adding 100 mLs of acetonitrile with constant stirring.  All mobile phase 

solutions were filtered through a 0.2 µm nylon filter prior to use and expired after 1 week.  Filtering and 

frequent replacement proved to be critical to avoid binary solvent manager over-pressurization, possibly 

due to buffer precipitation or bacterial contamination.   



Two microliters of specimen were injected into the LC system and chromatographic separation was 

achieved at a flow rate 0.4 mL/min using a gradient of mobile phase A and B as follows:  (i) 25% mobile 

phase B from 0-2 minutes, (ii) linear gradient increase to 99% B from 2-3 minutes, (iii) hold at 99% B 

from 3-4.5 minutes, (iv) equilibration at starting conditions (25% B) from 4.5-6 minutes.  At the end of 

each batch the system was flushed with 20-80 % acetonitrile mobile phase containing low buffer 

content (< 10 mM ammonium formate) to purge the high ammonium formate containing mobile phase 

b from the binary solvent manager.   

Mass spectrometry analysis was completed by multiple reaction monitoring (MRM) on a Xevo TQS micro 

(Waters) in ESI positive mode using the following tune parameters: capillary voltage= 0.25 kV, 

desolvation temperature 550 °C, cone gas = 50 L/hr, desolvation gas = 1000 L/hr.   Analyte specific tune 

parameters (Table 1) were optimized by infusing solutions of pure compounds.   

All data analyses were completed using TargetLynx software (Waters).  Peaks were integrated using the 

apex track function and quantified by comparing the response to that of a linear calibration curve that 

excluded the origin.   

2.4 Matrix Effects Studies 

Post column infusion was completed with a solution containing 100 µM of alloisoleucine and ASA in 

solvent A infused at 5 µl/min.  Infusion studies were completed using heparinized plasma specimens 

prepared following the above listed guidelines and on blank specimens (solvent A).   

The combination of both suppression and analyte recovery was also explored by comparing isotope 

integrated intensity values in three plasma specimens vs three blanks.  The percent difference was 

calculated as 100 x (signal in matrix/ signal in blank)-1) and the average percent difference was plotted.     

Spiked recovery studies were completed using three residual plasma specimens.  For each specimen two 

different ASA spikes were completed, (i) prior to sample preparation and (ii) after protein precipitation 

immediately prior to MS analysis.  The same spike assays were completed using water in place of matrix.  

All analyses were completed in duplicate. Recoveries were determined by comparing the average ASA 

signal in matrix compared to the water blank.    

2.5 Method Validation 

The limit of quantification was determined by studying a dilution series of calibrator material and 

identifying the lowest point that met the following criteria, (i) fit to the linear model (residual < 20%), (ii) 



signal to noise > 10 and (iii) intra-assay imprecision < 15% (calculated by studying 6 replicates).   ASA 

LOQ was multiplied by 2X to partially account for predicted matrix effects.    

Accuracy was studied by spiking 4 different plasma samples each with 4 different concentrations of pure 

ASA or alloisoleucine to achieve a concentration increase of 28, 56, 112, and 225 µM.  Unspiked 

specimens were also studied and all plasma specimens were shown to have low (< 2 µM) or 

undetectable levels of endogenous ASA or alloisoleucine.   Accuracy was determined by plotting all 

observed concentrations against the expected concentration and calculating the slope of the linear 

model and Pearson’s correlation (r).  In addition, bias was calculated by determining the overall average 

percent difference between observed and expected values.    

Carry-over was measured by monitoring the signal in a blank specimen analyzed immediately following 

the analysis of the highest standard curve point.  Intra-assay imprecision was determined by analyzing 

control materials six consecutive times each within the same batch.  Inter-assay imprecision was 

determined by analyzing aliquots of control samples in eight independent batches run on eight different 

days.   Imprecision is reported in terms of the coefficient of variation (CV).  The linear range of detection 

was determined by analysis of calibration materials and determining the range in which all points had a 

residual < 20%, and the correlation coefficient (r2) was ≥ 0.98.  Samples with values outside of this range 

were diluted and reanalyzed.    

3. Results 

3.1 Chromatographic separation 

A chromatographic method was developed to allow the rapid quantification of alloisoleucine and ASA by 

LC-MS/MS without specimen derivatization or the use of ion pairing agents.  The method was based on 

an ammonium formate gradient elution paired with a mixed-mode solid phase (50 X 2 mm intrada 

column) that is reported by the manufacturer to have properties of both a normal phase and an ion 

exchange column.   Complete baseline separation of alloisoleucine was achieved from isobaric 

interferents isoleucine, leucine, 4- hydroxyproline, and delta-aminolevulinic acid (Fig. 1).  This method 

also generated good peak shape and retention for ASA and provided complete elution of strongly 

retained basic amino acids (e.g., arginine; Fig. 1).  The total inject-to-inject time was 6 minutes including 

the gradient elution, washing, and re-equilibration steps.         

Chromatographic separations were consistent across multiple matrixes. Figure 2A and B shows typical 

plasma alloisoleucine and ASA quantitative results from a patient with MSUD and ASL deficiency, 



respectively.  During method development neat solutions, plasma, urine, and blood spot card eluates 

were all extensively tested and found to be essentially identical in terms of analyte retention time and 

peak shape.   

3.2 Suppression 

Plasma matrix suppression was explored using two complementary approaches.  A post column infusion 

(PCI) study found that a major region of suppression occurred early in the elution (RT = 0.6 mins) and did 

not overlap with our analytes of interest (Fig. 3A and B).  Suppression was further studied by comparing 

isotopic signal intensities in blank solvent vs plasma samples.  Consistent with PCI studies, matrix 

induced signal loss was found to be low (<10%) for a wide range of analytes, including those flanking 

alloisoleucine (isoleucine and tyrosine) thus suggesting that surrogate internal standards may be feasible 

for alloisoleucine quantification (Fig. 3C).   

Surprisingly, unlike the other amino acids in our study, ASA signal was significantly diminished when 

measured in plasma (Fig. 3C).  Our PCI results suggested that this observation could not be explained by 

suppression alone and instead raised the possibility of substantial ASA loss during preparation of 

plasma.   To test this, we performed ASA spike recovery assays on three plasma specimens.  Analyte 

recoveries were 105% (range = 104% - 106%) when ASA was added to clarified lysate following protein 

precipitation, but only 67% (range = 64% -72%) when ASA was added to the initial plasma specimen, 

thus indicating a portion of endogenous ASA is lost during deproteinization.  The addition of an ASA 

isotopic internal standard, prior to protein precipitation, was able to faithfully account for analyte loss 

and was therefore used in all subsequent validation studies.    

3.3 Method validation 

Results for validation studies are summarized in Table 2.  Imprecision, accuracy, linearity, and carryover 

were all within acceptable limits.  Importantly, limits of quantification (LOQ) were well below the range 

of clinically affected individuals (see materials and methods section 2.5 for LOQ criteria).  ASA carryover 

was undetectable even when studying matrix samples containing outlier elevations of ASA. 

Method accuracy was further supported by external calibration studies.  For alloisoleucine, we analyzed 

RECIPE clincheck plasma reference materials level I and II and found our results were concordant with 

the reported value (observed vs reported, level I = 17 vs 19 µM  and level II = 171 vs 186 µM). For ASA, 

we analyzed ERNDIM quantitative schemes amino acids (serum) 2018 residual proficiency testing (PT) 

materials.  Our results were concordant (within +/- 1 standard deviation) with the reported median 



participant value (observed vs reported, 25 vs 32, 10 vs 13, 2 vs 3, 60 vs 73, 9 vs 13, 26 vs 33, 4 vs 3, and 

69 vs78 µM.)  The overall negative bias (-16.77%) found in this study may reflect ASA degradation 

related to the age of PT specimens at the time of our analysis (~1.5 years past their intended use date).  

Notably, our in-house accuracy studies used freshly prepared ASA-spiked plasma specimens and found 

much lower bias (-3.8%).   

Argininosuccinic acid is known to be labile, forming ASA anhydrides under acidic conditions [12]. The 

stability of processed samples was studied by reanalysis of calibrators and eight different matrix samples 

when stored on the auto-sampler at 10 °C for 3 days.  Over this time span, plasma ASA values changed 

on average by 8.46%.   

3.4 Solid phase stability over prolonged use 

Long-term chromatographic performance was monitored on a single column used for 62 independent 

batches of clinical amino acid analysis over 5 months on ~700 matrix injections.   During this time, the 

following parameters remained essentially unchanged: column backpressure, peak shape, and 

resolution of alloisoleucine from isoleucine/leucine.   The retention time drifted lower by 0.1 mins for 

alloisoleucine/leucine/isoleucine, with the retention time for alloisoleucine having a CV = 3.18% (Fig. 

4A).  The retention time drift for ASA was much less, CV = 0.44% (Fig. 4B).   

3.5 Analysis of patient samples 

Figures 5A and B show the results from the clinical application of this method to the first 257 plasma 

specimens sent sequentially to our laboratory for clinical amino acid analysis.  Striking alloisoleucine 

elevations (> 100 µM) were noted in all patients studied with MSUD but were not detected in any of the 

remaining 252 samples studied that were derived from patients that either had no diagnosis or had a 

diagnosis of a different inborn error of metabolism (termed “other”, Fig. 5A).   Low levels of 

alloisoleucine were detectable in the majority of the “other” population including the detection of mild 

elevations (≥ 4 µM) in two patients with isovaleric acidemia (OMIM# 243500) and one patient with 3-

hydroxy-3-methylglutaryl (HMG) coA lyase deficiency (OMIM# 246450).  Subtle alloisoleucine elevations 

have been previously reported in patients with isovaleric acidemia [13] but they may be missed by 

conventional methods used to quantify amino acids. 

As expected, ASA was clearly elevated in all patients with argininosuccinic acid lyase (ASL) deficiency and 

ASA was not detectable in any individual unaffected by ASL deficiency (n = 249), with one exception (Fig. 

5B).  Trace levels of ASA (1.4 µM) were identified in a patient with ornithine transcarbamylase (OTC) 



deficiency (OMIM# 311250).  Concurrent plasma elevations of arginine (236 µM, normal range = 32-127 

µM) and citrulline (398 µM, normal range = 12-48 µM) were also detected in this individual, consistent 

with the common amino acid supplementation therapy used to treat OTC deficiency.  Citrulline is the 

metabolic precursor to ASA whereas arginine is an ASA breakdown product.  It is possible high levels of 

supplementation with these amino acids is causing abnormal accumulation of ASA in this individual.  

ASA accumulation driven by arginine supplementation has been previously reported in patients with ASL 

deficiency but never in an individual with functional argininosuccinic acid lyase activity, to our 

knowledge [14]. 

Idiopathic elevations of alloisoleucine and ASA were not detected in our sample set, thus indicating high 

analytic specificity.   Included in this analysis were specimens from individuals on the following 

medications/supplements at the time of sampling:  total parenteral nutrition, oral/intravenous L-

carnitine, Depakote/valproic acid, Keppra/levetiracetam, phenylbutyrate, gabapentin, sodium benzoate, 

and phenobarbital.    

4. Discussion 

This study describes a novel LC-MS/MS method for quantifying alloisoleucine and ASA that has a number 

of advantages over existing approaches.  Foremost, to our knowledge, this is the quickest reported 

method for full baseline resolution of alloisoleucine and the only LC-MS/MS method for alloisoleucine 

measurement that does not require ion pairing agents.  The latter is likely to be an attractive feature for 

smaller laboratories that are unable to dedicate entire LC-MS/MS systems to ion pairing based 

applications.  The unequivocal and sensitive detection of ASA and alloisoleucine provided by this 

method is also likely to be of use to laboratories employing other methods where detection of these 

analytes is challenged by coeluting interfering compounds or insufficient limits of detection. 

Our laboratory developed this method to be used as a complement to a HILIC-based LC-MS/MS 

approach (modified from [7]).  Because sample preparation is identical between these two approaches, 

these methods can be easily combined to quantify the full range of clinically important amino acids 

using a single sample.   We use a basic multi-column manager system to automate column switching and 

repeat sample analyses.   

Our primary concern at the outset of this study was the durability of this method when used over an 

extended period of time and on large numbers of heterogeneous clinical specimens.   During the early 

stages of development, we experienced numerous LC system over-pressurization events with the 



blockage occurring where the mobile phase enters the injector valve.  Over-pressurization often 

occurred during the initial inlet startup (prior to sample analysis) thus making sample contamination an 

unlikely cause.  Instead, we presume the blockages were related to the high ammonium formate 

concentration in mobile phase B.  Consistent with this, over-pressurization issues completely resolved 

after (i) switching to an inlet method based on a constant level of acetonitrile, (ii) purging the LC system 

at the end of each batch, and (iii) filtering mobile phase solutions (see Methods section for more 

details).  With these changes, we have seen consistent chromatographic results over long-term use. 

In summary, we report a simple, rapid, and robust method to quantify alloisoleucine and 

argininosuccinic acid.  Future studies are needed to expand this method to the full list of amino acids 

included in a standard clinical panel.  The success of this method is based on the application of a novel 

mixed-mode column.  Such solid phase chemistries are ideally suited to the analysis of the diverse 

groups of small polar molecules that comprise the majority of human metabolites.  As our experience 

with mixed-mode separations grows, it seems likely that they will become more widely adopted for the 

study of inborn errors of metabolism.   
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Table 1 Mass Spectrometry Parameters 

Analyte Class* Transition Cone (V) 
Collision 

(V) 

Alloisoleucine Q 131.968>69.055 18 16 
Alloisoleucine S 131.968>86.033 24 8 
Tyrosine_6C13 IS 188.100> 142.110 26 12 
ASA Q 291.160> 70.071 46 34 
ASA S 291.104> 115.939 44 22 
ASA_6C13_4N15 IS 301.132> 75.027 4 34 
* Q = transition used for quantification, S= supplemental transition used for confirmation, IS = internal 
standard 

 

  



Table 2 Validation Summary 

        
Intra-assay 

imprecision* 
Inter-assay 

imprecision* Accuracy 

Analyte 
Carry-
over 

LOQ 
(µM) Linear range (r)  low ctl high ctl low ctl high ctl Bias Slope r 

ASA 0 1 1- 250 (0.999) 3.26% 
(19) 

4.41% 
(203) 

8.06% 
(20) 

5.89% 
(208) -3.80% 0.950 0.991 

Alloisoleucine 0 1 1- 250 (0.999) 1.04% 
(11) 

1.01% 
(101) 

3.83% 
(11) 

3.89% 
(98) -10.05% 0.927 0.998 

* The average analyte concentration (µM) is listed in parenthesis       
 

  



 

Fig. 1.  Total ion chromatograms are shown for pure 75 µM amino acid solutions subjected to our 
sample preparation and LC-MS/MS analysis protocol.   

  



 

Fig. 2.  Representative positive results from plasma analyses.  (A)  Plasma alloisoleucine concentration of 
130 µM in a patient with MSUD.  (B)  Plasma ASA concentration of 55 µM in a patient with ASL 
deficiency.  Integrated areas are shown in grey. Transitions and integrated peak areas are listed.   

 



 

 Fig. 3.  Representative suppression profiles for (A) alloisoleucine and (B) ASA are shown for post column 
infusion studies of plasma (black line) compared to blank specimens containing only solvent A (grey 
line).   (C)    The combined effects of suppression and analyte loss were studied by monitoring spiked 
amino acid isotope signals in plasma vs blank specimens.  Plotted values indicate the percent signal loss 
caused by matrix effects (calculated as 100 x [(signal in plasma/ signal in blank)-1]).  The dotted line 
indicates no difference in signal between plasma and blank.   

  



 

 

Fig. 4.  Retention time Levey-Jennings plots of plasma controls are shown for (A) ASA and (B) 
Alloisoleucine over a period of ~5 months.  Dashed lines indicate 2 standard deviations from the mean 
(solid line).   

  



 

Fig. 5.  Plasma (A) alloisoleucine and (B) ASA values are shown for the first 257 clinical analyses.  “Other” 
indicates patients with no diagnosis or a diagnosis other than that being compared.  Inset plots show a 
zoomed in view of the other subgroup.     MSUD = maple syrup urine disease, ASL = argininosuccinic 
lyase deficiency, IVA = isovaleric acidemia, HMG = HMG CoA lyase deficiency, OTC = ornithine 
transcarbamylase deficiency 
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