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Abstract 
Purpose of Review The purpose of this review was to summarize recent advances in the 
genomics of type 2 diabetes (T2D) and to highlight current initiatives to advance precision 
health.  
Recent Findings Generation of multi-omic data to measure each of the ‘biologic layers’, 
developments in describing genomic function and annotation in T2D relevant tissue, along with 
the increasing recognition that T2D is a heterogeneous disease, and large-scale collaborations 
have all contributed to advancing our understanding of the molecular basis of T2D.  
Summary Substantial advances have been made in understanding the molecular basis of T2D 
pathogenesis, such that precision health diabetes is increasingly becoming a reality. For 
precision diabetes to become routine in clinical and public health, additional large-scale multi-
omic initiatives are needed along with better assessment of our environment to delineate an 
individual’s diabetes subtype for improved detection and management. 
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Introduction 
Diabetes has become a global pandemic and the burden of this disorder is enormous. The 
estimated worldwide prevalence of diabetes among adults is predicted to be as high as 439 
million (7.7%) by 2030, with type 2 diabetes (T2D), the predominant form of diabetes, 
accounting for at least 90% of cases [1]. As a complex disease, the importance of genetic 
contributions to T2D, and their interaction with pervasive environmental exposures, has long 
been accepted [2]. However, in nearly every case, the factors that affect disease causation are 
still largely unknown, and the mechanistic understanding we have of T2D is lacking [3]. Now it is 
increasingly being recognized that T2D is a highly heterogeneous syndrome. Individuals may 
share the same diagnostic label but have very heterogeneous presentations and clinical 
courses; resulting in very different responses to the suite of available lifestyle or therapeutic 
interventions [4]. These observations motivate research in the field of precision diabetes, which 
ideally will tailor T2D prevention and therapy to individual patients for enhanced tolerability and 
effectiveness.  

Genomics of T2D 
Our knowledge of the human genome has increased substantially since the completion of the 
Human Genome [5] and HapMap Projects [6]. This heralded advances in genotyping 
technology, and along with rapid improvements in computing technology, the implementation of 
genome-wide association studies (GWAS) for complex diseases has become a reality. The 
study of the genetics of T2D has been at the forefront of this genetic revolution. To date, over 
400 loci have been robustly associated with T2D; and hundreds of loci have been identified as 
contributing to variation in T2D-related traits [7, 8].  

Integration of genetic and genomic information, followed up with well-designed functional 
studies, provide increased resolution of the molecular mechanisms through which variants 
underlying association signals exert their effects on T2D pathogenesis. For instance, one study 
conducted a comprehensive fine-mapping of 39 established T2D loci in 27,206 cases and 
57,574 controls of European ancestry. Through statistical fine-mapping (e.g. conditional, 
credible set and genomic enrichment analyses) 49 distinct association signals were identified. 
To interrogate the 39 non-coding variants, credible set results were overlapped with islet and 
liver specific functional and regulatory annotation sites, of which only 11 could be shown to be in 
transcriptionally active regions. To demonstrate how diabetes-specific genomic enrichment 
analyses can be used to highlight regulatory mechanisms the MTNR1B locus was chosen for 
functional validation. The MTNR1B rs10830963-G allele was shown to affect NEUROD1 binding 
ability in human islet cells [9]. The pursuit of causal variants at genetic loci is shedding light on 
the underlying mechanisms; however, to date, biological function has been determined for only 
a handful of loci, highlighting the challenge of going from association to function.  

Collectively, genome-wide-significant and validated SNPs account for 10-15% of overall 
heritability of T2D susceptibility [10]. This “missing heritability” led to next generation sequencing 
of whole exomes and genomes to identify rare variants with presumably larger genetic effect 
sizes [11]. Initial results from these studies did not support the idea that rare variants have a 
major role in predisposition to T2D [12]; however as was observed with GWAS, increasing 
sample size, along with better imputation panels, has led to additional rare variants being 
identified, and their effect sizes actually range from modest to large (1.08-8.05) [7].  

At the same time, in-depth genetic association studies in specific ancestries or populations 
have highlighted the heterogeneity of the genetic basis of T2D. Variants that are rare in the 
global population account for a small overall burden of diabetes, but are found to be common in 
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specific ancestral populations and are associated with a greater increase in diabetes risk. For 
example, a variant at the HNF1A [13] locus has only been associated with T2D in Latino 
populations, or a TBC1D4 variant only confers T2D risk in the Inuit populations of Greenland 
[14], and a PAX4 risk allele that was only observed in individuals of East Asian ancestry [12].  

The discovery of multiple variants associated with risk for T2D has resulted in the 
development of genetic risk scores (GRS), a widely used approach to assess the overall 
contribution of known genetic susceptibility loci to complex diseases. While the GRS is a simple 
and effective tool, early use of GRS did not improve the prediction of diabetes beyond traditional 
nongenetic risk factors, and therefore showed limited clinical validity [15]. Recently a genome-
wide polygenic score (GPS) has been created to identify individuals at clinically significant 
increased risk of common diseases with polygenic inheritance, including T2D [16]. Clinically 
significant risk was defined as threefold increased risk, equivalent to the risk observed in 
monogenic or familial inheritance of common diseases. The polygenic predictor for T2D 
identified 3.5% of the population with at least threefold increased risk and the top 1% had 3.30-
fold increased risk compared to the remainder of the UK Biobank study participants. The most 
recent study aggregating genome-wide genotyping and imputed data (~27M variants) from 32 
European-descent GWAS (74,124 T2D cases, 824,006 controls) identified 403 T2D-risk signals, 
including both common and rare variants. Leveraging the combined set of GWAS data, a GPS 
was generated and further validated in the UK Biobank population. Individuals in the top 2.5% of 
the score distribution (T2D prevalence=11.2%) were at >9-fold increased risk compared to the 
bottom 2.5% (T2D prevalence=1.2%)[7]. This finding suggests the increasing value of polygenic 
risk prediction. 
Multi-omics: Beyond Genetic Variation 
Led by genomics, other high-throughput technologies have been applied more recently to 
search for new biomarkers of T2D beyond the individually static genome. A promising approach, 
metabolomics, has shown its value in the identification of circulating small molecules, such as 
branched-chain amino acids, acylcarnitines and aromatic amino acids, that can serve early 
detection and diagnosis of T2D [17-21]. Advances have also occurred in proteomics; the Human 
Proteome Organization is opening a new door to better understand T2D pathology through the 
application of proteomics to improve identification of persons at risk and improvement of current 
therapies [22]. At the same time, modulation of gene expression by epigenetic modifications and 
the action of microRNAs have been recognized as critical processes affecting T2D risk [23]. 
Moreover, convincing evidence suggests that compared to healthy controls, profiles of the gut 
microbiome in patients with T2D have compositionally changed [24]. These approaches are 
allowing investigators to explore complementary biological axes in greater breadth and depth. 
These efforts are promising but are still emerging in terms of developing a framework of 
accepted standards e.g. analytic methods, interpretation and reproducibility of results. 
 
The Precision Problem in Diabetes 
Precision health considers the unique genetic and environmental risks factors of an individual to 
prevent and treat disease. T2D and prediabetes represent multifactorial disease states on a 
continuum between normal and disrupted control of glucose metabolism. The pathophysiologies 
underlying T2D largely separate into features related to impairment of insulin secretion (i.e. 
pancreatic islet β-cell dysfunction) and features related to impairment in insulin sensitivity (i.e. 
tissue responses to insulin). The goal of delivering targeted care to individuals with T2D, and 
targeted prevention to individuals with prediabetes, is hampered by a lack of specificity and 
precision in these diagnoses (Figure 1). Individuals differ in the relative contributions of impaired 
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β-cell function versus impaired insulin sensitivity, and simple disease state definitions do not 
reflect the balance between these components.  
T2D is a Heterogeneous Disease 
Historically, T2D has been seen as a homogeneous condition. As a result, therapeutic 
interventions (i.e. lifestyle or medications) have largely been applied to the population as though 
it is uniform in its pathology. There is increasing evidence, however, that there are a myriad of 
factors that differentiate what we currently term T2D, and in fact we now know that what has 
historically been viewed as a single disease may best be thought of as deriving from distinct 
mechanisms that result in similar clinical manifestations [2, 25, 26]. There are multiple lines of 
evidence that point towards T2D as being heterogeneous. Epidemiologic studies describe 
disparate distributions of diabetes across groups (e.g. ethnicity, weight trajectories, lean vs. 
obese) [26-28]. Studies comparing the prevalence of impaired fasting glucose (IFG) and 
impaired glucose tolerance (IGT) have consistently reported that these define two distinct and 
only partially overlapping populations [29-32]. This suggests that IFG and IGT represent 
intermediate states of glucose intolerance resulting from different pathophysiologic etiologies 
that result in the same diagnosis. This is further supported by animal models of diverging 
susceptibilities resulting in changes in expression of metabolic phenotypes or T2D development 
[33-36]. Functional follow-up studies from GWAS results have shown that a range of biological 
processes (e.g. glucagon-like peptide 1-stimulated insulin secretion, insulin exocytosis to post-
transcriptional processing of insulin) are involved in the pathogenesis of T2D [37-40]. 
Additionally, the impact of T2D susceptibility variants on quantitative glycemic traits reveals 
mechanistic heterogeneity in T2D [41]. Lastly, differential response to lifestyle [42-45] and drug 
[46] therapies have been established.  
Characterizing the heterogeneity of T2D 
Recently, “integrative” (or systems) approaches have been used to successfully identify disease 
subtypes that correlate with meaningful clinical outcomes, most notably with cancer. For 
example, integrating genomics data to define subtypes of luminal breast cancer identified a 
clinical subset known to be non-responsive to available treatments [47]. Specific molecular 
aberrations were found that were unique to the clinical subset, which pointed to promising drug 
targets.  

In an effort to define the heterogeneity observed in T2D, four recent studies have used a 
number of methods, measures and populations to identify T2D subtypes [48-51]. First, a 'pure' 
electronic medical record (EMR) approach has been applied in a data-agnostic manner to 
identify clinical features of individuals with T2D that self-aggregate and identify different clinical 
prognoses [48]; these clusters were subsequently associated with genetic signatures based on 
GWAS-derived T2D associated gene variants. The second approach integrated molecular multi-
omic genome-wide gene expression and methylation data to define molecular subtypes of T2D; 
two subtypes were identified and associated with different clinical characteristics [49]. Third, a 
targeted set of clinical and biochemical data collected at the time of diagnosis of T2D was used 
to identify diabetes subtypes [50]. This method produced clinically meaningful diagnostic 
clusters, in particular identifying groups with distinct clinical prognoses. A subsequent GWAS-
based gene variant association analysis identified some genetic signatures that related to these 
clinical diagnostic clusters. A fourth study applied a purely genetic approach since germline 
genetic markers have the advantage of being static; i.e. do not change with disease progression 
or treatment. T2D-genetic loci were first clustered into groups representing different mechanistic 
pathways, related to insulin secretion, anthropomorphic, and insulin response traits. These 
clusters of genetic loci were then used to deconstruct T2D heterogeneity by associating these 
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clusters with T2D clinical outcomes; i.e. coronary artery disease, stroke and blood pressure [51]. 
These approaches represent advances in our ability to sub-classify individuals with T2D.  

Indeed the ‘palette’ model for diabetes was recently proposed [4]. The model centers on a 
molecular taxonomy and shifts the focus of understanding the disease architecture to the major 
pathophysiological processes of an individual (e.g. obesity, fat distribution, islet development 
and function, and insulin sensitivity) that contribute to diabetes risk and progression. Individuals 
with diabetes will have multiple parallel defects that affect several of these processes, and each 
of these processes is under multifactorial (genetic and nongenetic) control. This review 
proposed that research efforts should, at least initially, be targeted towards identifying and 
characterizing individuals whose adverse metabolic trajectory is dominated by perturbations in a 
restricted set of processes. 
 
Opportunities to Advance Precision Health of T2D 
‘Big Data’ Approaches 
An abundance of “omic” data and deeper annotations of the human genome are available 
through consortia and public resources; and new methods have been developed for integrating 
and analyzing “omic” data. Technological advances have created multiple genome-scale 
molecular platforms of genetic variation, sequence, gene expression, methylation, miRNA, 
proteomic and metabolomic data that is increasingly easy to measure in population studies. 
Elucidating the molecular drivers of T2D requires a strategy that can integrate multiple forms of 
molecular or “omic” data on large sample sizes that are most likely mechanistically 
heterogeneous. An “integrative genomics” approach has been proposed as a method that could 
change our understanding and treatment of diabetes [52, 53]. A number of integrative 
approaches have been developed [54, 55] and effectively applied to identify cancer subtypes 
[47, 56] demonstrating significant improvement over histologic subtyping [57] and novel 
mechanisms for developing drug targets [55]. To better characterize subtypes of T2D, 
integration of multi-platform “omic” data can be leveraged against rich physiologic and clinical 
data on multiple study populations that is available to investigators (e.g. dbGaP or consortia). 
Large-scale projects have improved annotation of functional elements of the human genome 
[58], gene expression and regulation across multiple tissues [59-61]. Relevant to T2D is 
understanding the regulation of genes in islet cells [62-64]. Investigating each biologic ‘layer’ 
(e.g. DNA, transcription, protein) can provide a clearer picture of the pathophysiologic 
processes contributing to overt T2D. Technological advances have created genome-scale data 
of these biologic layers.  
Large-scale Collaborations 
 The T2D Knowledge Portal (www.type2diabetesgenetics.org/) is a worldwide scientific 
consortium of collaborators from academia, industry, government, and non-profit organizations. 
The portal provides access to comprehensive human genetic information (results from GWAS, 
exome chip, exome sequencing, and whole-genome sequencing (WGS) studies) associated 
with T2D, glycemic measures and other related traits. Functional and epigenomic data, and 
clinical outcome studies on T2D and its macro- and microvascular complications are being 
integrated into the database with the goal of identifying and validating genetic determinants of 
the onset of T2D, disease severity, or disease progression, creating analytic tools to benefit 
customized analyses, and further assist in the selection of new diabetes targets for drug design 
[65]. 

Global research consortia and collaborative networks are also rapidly growing in the field of 
precision health in diabetes (adapted from [66]). In 2005, a national and international health 
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resource, the UK Biobank (https://www.ukbiobank.ac.uk/about-biobank-uk/) was established 
with the aims of improving the prevention, diagnosis and treatment of a wide range of serious 
illnesses – including diabetes. UK Biobank leverages medical history questionnaire data and 
electronic health records on 500,000 volunteers, which allows for follow up of clinical outcomes. 
In addition, blood samples have been collected for detailed measures, such as, genotyping and 
biomarkers (e.g. hormones and cholesterol). Data collected by the UK Biobank are made 
available for approved researchers in the UK and overseas to undertake health research for 
public benefit. Another European partnership program for health, the Innovative Medicines 
Initiative (IMI), launched 10 years ago with the focus on the major diseases affecting European 
citizens. IMI is investigating multiple biomarkers to identify patients who can be stratified by 
treatment efficacy. Since 2010, more countries have become involved in precision health of 
diabetes, with the implementation of national precision health programs (including the U.S. 
Precision Medicine Initiative, Australian Precision Medicine Initiative, Chinese Precision 
Medicine Initiative, Nordic Precision Medicine Initiative and Saudi Human Genome Project).  

As the overarching goal of precision health is to personalize approaches toward improving 
health and treating disease, implementation of clinical trials with innovative evidence generated 
from research is a crucial intermediate link. There is a great need for strengthening the national 
capacity to implement cost-effective large-scale clinical trials. The NIH Health Care Systems 
Research Collaboratory (http://rethinkingclinicaltrials.org/) is making such efforts by improving 
the way clinical trials are conducted. The Collaboratory creates a new infrastructure for 
collaborative research with healthcare systems and supports the design and rapid execution of 
pragmatic clinical trials. The ultimate goal is to ensure that healthcare providers and patients 
can make decisions based on the best available clinical evidence. 
New efforts in precision diabetes 
President Obama announced the launch of a new precision health initiative to “bring us closer to 
curing diseases like …. diabetes” in 2015 [67]. Since then, a number of large-scale projects 
have emerged from the National Institutes of Health and others. For example, a diabetes 
precision health effort, local to the authors, is the Indiana University Grand Challenge Precision 
Health Initiative (PHI) launched in 2016 [68]. $120 million is being invested to transform 
biomedical research and public health by building research and educational capacities, to lead 
research in diabetes precision health. The Diabetes PHI began in 2018 with the aim of 
characterizing individuals according to their precision diabetes subtype, which will inform risk 
assessment and guide the clinician to individualized approaches to prevention and therapy. 

The National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine 
(TOPMed) project began in 2014 with the goal of improving the understanding of heart, lung 
blood and sleep disorders, and to advance precision medicine [69]. The innovation of the project 
is the collection and generation of WGS and multi-omic data, e.g. gene expression, metabolome 
and proteome. The generation of these data is ongoing and currently over 150,000 individuals 
will have their genomes sequenced and many will have multi-omic data measured that will be 
integrated with extensive phenotyping data already generated on the NHLBI prospective and 
case-control studies. Analyses of T2D and glycemic traits using the recent release of WGS data 
(n up to 47,000) are nearing completion and investigators are expected to publish their initial 
discovery papers in 2019. Data will also be available to eligible investigators who can access 
dbGaP.  

The enormous volume of genetic and multi-omics data that are being derived from diverse 
population studies, large multi-study collaborations and big-data efforts have become the next 
stage in contemporary genetic epidemiology. The TOPMed program has created a big-data 
environment on a cloud-based platform, Analysis Commons, which combines multi-omic data, 
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phenotypic data as well as clinical information across studies [70]. This setting relies on a new 
team-science model, which incorporates collaborative resources into a single shared analytic 
platform with computationally efficient analysis and methodological developments. The Analysis 
Commons is a blueprint of how to address the practical issues of both large-scale computing 
and collaboration that many studies are now facing.  
 
Applying Precision to Treatment and Prevention of T2D 
Precision in diabetes prevention today consists of individualizing the approach to lifestyle 
intervention (Figure 1). Lifestyle modification has been demonstrated to be effective at reducing 
T2D risk [71-73]. More so, several studies observed that lifestyle interventions can attenuate the 
risk of T2D even among individuals with a higher genetic susceptibility, suggesting the effects 
are independent of genetic burden [45, 74].  In light of the increasing prevalence of obesity and 
T2D along with the difficulty in changing and sustaining healthy lifestyles, it might be helpful to 
understand whether genetic information or other precision measures can be used to predict the 
individual-level benefits of lifestyle modifications [75]. Moreover, it is of greater value to 
determine which specific behaviors an individual could modify that will deliver the biggest return 
and sustainability of healthy behaviors. One example of such an effort related to diabetes has 
been published recently [76]. Incorporating data on dietary habits, blood parameters, physical 
activity, anthropomorphic, and gut microbiota, the postprandial glycemic response can be 
predicted by a machine-learning algorithm. A clinical trial applied this new approach and 
demonstrated improvement in glycemic outcomes. Mutie et al. systematically reviewed the 
literature on lifestyle interventions and diabetes prevention, discussing the limitations of existing 
approaches and describing the ideas behind precision lifestyle interventions, for instance, 
differential response to lifestyle interventions based on unique genetic traits [77]. Now that the 
concept of lifestyle precision health is becoming increasingly accepted, the National Institutes of 
Health’s Common Fund Initiative on the Molecular Transducers of Physical Activity in Humans 
is currently underway. This effort is designed to determine the molecular mechanisms that 
define how physical activity benefits human health. Over the course of the program, up to 3,000 
participants across the U.S. from diverse cultural and ethnic backgrounds with varying degrees 
of physical activity will participate in the study to generate a molecular map of changes that 
occur with physical activity. This knowledge will, in the future, allow researchers and clinicians to 
develop individually targeted exercise recommendations as well as develop therapeutics for 
those unable to exercise. 

The leading-edge application of precision health in diabetes treatment consists of evaluating 
whether genetic information or other precision measures can be used to predict treatment 
response (Figure 1). Beyond T2D status, efforts have been made to identify genetic markers of 
treatment response, specifically related to action or pharmacology of traditional diabetes 
treatments [78, 79, 46, 80-83]. Unfortunately, to date, these efforts have failed to reveal gene 
variants relating specifically to pharmacology or treatment response to diabetes medicines that 
meaningfully inform genetically-guided therapeutic strategies. Similarly, while modest efforts 
have been made to prospectively define treatment response according to simple clinical 
features or according to detailed physiologic measures, these have not been successful overall 
[84-86]. 
 
Areas for future research 
One obvious need is to scale up projects like TOPMed, IUGC PHI, and UK Biobank, which are 
the next wave of ambitious projects in T2D genomics and precision health. For these efforts to 
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become a reality, the scale that has been observed in GWAS studies will be needed. 
Additionally, many of these omics are influenced by environment and timing of measurement in 
the disease course. Along these lines is the need for better measures of environment and also 
measurement at multiple times across the lifespan.  

One opportunity for understanding the interplay of environment on genetics is afforded by 
populations with distinct patterns of environmental exposure, which has been discussed in a 
detailed review [87]. WGS and thorough temporal assessments of exposures and outcomes 
conducted in ever larger biobanks and health care settings will greatly advance our 
understanding of interactions, causal exposures and mechanisms [87].  

The most common form of diabetes in children and adolescents historically has been type 1 
diabetes (T1D), but this is no longer the case as youth are increasingly being diagnosed with 
T2D. In the USA, findings from the SEARCH for Diabetes in Youth study showed a substantial 
increase in the prevalence of T2D from 2001 to 2009 [88], with the incidence of T2D in Asian 
and Pacific Islander youth and in African American youth now greater than that of T1D [89, 90]. 
Over 90% of young patients report a family history of diabetes, which suggests a significant 
genetic contribution to the incidence in youth [90]. The role of genetic factors contributing to the 
development of T2D in youth is further supported by epidemiological evidence observing rates 
are most common in high diabetes prevalence racial groups [91]. At the same time, the 
unabated increase in childhood obesity is also tightly linked to the emergence of T2D as a new 
type of pediatric diabetes [92]. Early results from the RISE study show the clinical course is 
markedly different in adolescents compared to adults suggesting the need for further research 
to better prevent and manage this unique and increasingly important population [93-96]. 
 
Conclusions 
The main concept of ‘precision health’ in T2D is to move away from generalized treatment 
approaches to prevention and treatment decisions that are personalized and based on 
individual variability in genes, environment, and lifestyle. The achievements accomplished by 
genomics holds promise for identifying novel mechanisms and classifying T2D into 
homogeneous clinical subtypes. In the new era in which technological developments coupled 
with expanded computational power and increased statistical sophistication, a number of major 
initiatives are underway with the objective of creating big-data environments for the global query 
of discrete biological axes. Efforts are also being made in translating the enormous quantity of 
information into useful health knowledge and applying this to define the most appropriate 
therapeutic strategies for both disease prevention and management. Meanwhile, before 
precision diabetes becomes common clinical and public health practice, there is much to 
resolve, for instance, how to improve the reproducibility of results from big data, and what is the 
best multidisciplinary approach to leverage big data in precision health. 
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Fig. 1 Precision health of diabetes: the molecular and epidemiologic heterogeneity of 
T2D and the need for re-defining T2D into mechanistic and clinical subtypes. An overview 
of our current understanding of T2D and how future research can transform T2D into 
mechanistically similar subtypes for improved prevention and management.  
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