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Charge symmetry of the nuclear force as off-shell constraint*

P. U. Sauer~

(Received 19 August 1974)

Off-shell changes are generated in the 'So nucleon-nucleon interaction using the Reid soft-core
potential and unitary transformations of short range, Charge symmetry is assumed for the nuclear force.
The same off-shell variations of the Reid potential are employed as the hadronic part of the ';

proton-proton interaction and as neutron-neutron interaction. The Reid potential fits the experimental

proton-proton data. It also accounts for the neutron-neutron scattering length with satisfying accuracy.
The off-shell behavior of the Reid potential is varied in two different ways. First, off-shell changes are
performed which preserve the fit to the proton-proton data. Most transformed potentials of the type
attempted here are unable to yield the correct experimental value of the neutron-neutron scattering
length and have to be rejected. A simple practical rule is given according to which the off-shell

changes consistent with the neutron-neutron scattering length can be selected. Second, off-shell

changes are performed which leave the neutron-neutron scattering length unaltered. Transformed
potentials of this type have usually been employed in nuclear-structure calculations. The potentials
which exhibit large off-shell effects in nuclear structure are unable to account for the experimental

proton-proton data. Their off-shell effects are therefore of no physical significance, and the potentials
have to be rejected. A simple practical rule is given according to which the off-shell changes consistent
with the experimental proton-proton data can be selected.

I. INTRODUCTION

Microscopic nuclear -structure calculations re-
quire the knowledge of the two-nucleon interaction,
on shell and off shell. Since the experimental and
theoretical information on the nucleon-nucleon
interaction is incomplete, significant parts of the
nuclear force have to be parametrized without real
physical guidance. The parametrization can be
performed by continuing the two-nucleon transi-
tion matrix' ' off the energy shell or by fitting a
potential model to the experimental two-nucleon
data. Both approaches allow the parametrization
of the unknown parts of the nuclear force to be
varied' keeping the fit to experiment exactly un-
changed. The dependence of current nuclear-
structure results on the choice of the parametri-
zation has been demonstrated. The dependence is
quite strong for nuclear matter, ' ' the ground state
of finite nuclei, "and the shell-model spectra. ' "
It appears much smaller for the properties of the
three-nucleon bound state. "' "

Nuclear-structure results that are sensitive with
respect to changes in the parametrization of the
nuclear force are interesting in themselves. They
are not useful yet for determining the unknown
force parameters, since the basic many-body
theory underlying the results —with the exception
of the three-body system —is not established be-
yond doubt. And even if the reliability of the theo-
ry and the accuracy of the computations were
proven, it will still remain difficult to extract de-
tailed information about the nucleon-nucleon inter-

action from the results of lengthy calculations.
The nuclear force, whose potential representation
can become nonlocal at small distances, contains
too vast a number of degrees of freedom to be
easily determined this way.

As long as the nucleon-nucleon interaction re-
mains largely unknown, constraints on its param-
etrization, which can simply be implemented but
are physically well motivated, are badly needed.
The subject of this paper is such a constraint for
the isospin-triplet partial waves. It is derived
from the isospin symmetries of the nuclear force.
The physically most important partial wave to
which the constraint applies is S,. It is also the
only one for which experimental data exist in all
charge states. In the following we restrict our-
selves to the 'S, partial wave.

The constraint is based on the simplifying as-
sumptions: (i) Charge symmetry holds exactly
for the nucleon-nucleon interaction, i.e. , the ha-
dronic part of the proton-proton (pp) and neutron-
neutron (nn) forces are the same; and (ti) all
electromagnetic effects appear in the PP system
and are solely due to the Coulomb force. Accord-
ing to this model two neutrons interact via the nu-
clear force only. Thus, nn scattering yields direct
information on the nuclear on-shell part. In con-
trast, PP scattering is not simply determined by
the on-shell part of the nucleon-nucleon interac-
tion. PP scattering arises from the interference
of the nuclear force with the Coulomb interaction
and therefore partially depends on the nuclear off-
shell behavior. The requirement that the same
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nuclear force accounts both for the experimental
nn scattering data and together with the Coulomb
force for the experimental PP scattering data
places a constraint on the parametrization of the
nucleon-nucleon interaction. The effectiveness of
this constraint is explored in this paper.

Are the assumptions (i) and (ii) about the nu-
clear force well founded' Surely, charge symme-
try is broken for real nucleons and, though the
Coulomb force is by far the dominant electromag-
netic interaction, vacuum polarization, the mag-
netic-moment interaction, and the neutron-proton
(nP) mass splitting add to the experimental differ-
ences" between pp and nn scattering. However,
in view of the vast uncertainty in the hadronic part
of the nuclear force, the idealized force model of
exact charge symmetry and of a simplified electro-
magnetic interaction between the protons appears
to be a very useful working hypothesis.

Can the charge-symmetry constraint work ef-
fectively to narrow the arbitrariness in the param-
etrization of the nuclear force? One might be
doubtful. Whereas PP experiments have been per-
formed with great precision at a variety of ener-
gies, the experimental nn data are still very
scarce. They consist essentially of the 'S, effec-
tive-range parameters, scattering length a„„and
effective range r„„, and their best values, "

a„„=-16.4 + 0.9 fm, r„„=2.8 + 0.5 fm,

are still plagued with large uncertainties. The
uncertainty of the effective range is so large that
r„„appears really undetermined. Nevertheless,
as we shall demonstrate, even the single-num-
bered nn information on the scattering length a„„
can rule out a variety of off-shell parametriza-
tions of the 'S, nucleon-nucleon interaction. Ob-
viously, a comparison of the pp data with the
equally rich nP data in 'S, could be done in much
more detail. But such a comparison would have
to be based on the charge independence of the nu-
clear force and charge independence is not as
justified" as charge symmetry. The difference
between the PP and nP interactions does not solely
arise from known direct electromagnetic effects,
but also from indirect ones, e.g. , the charge de-
pendence of the exchanged mesons. The charge-
dependent part of the nuclear force, however, is
as little known as the complete nuclear force it-
self. Only if the violation of charge independence
is specified on shell and off shell can the compari-
son between PP and nP .cattering yield additional
information on the off-shell behavior of the charge-
independent part of the nucleon-nucleon interac-
tion. This is the reason why we remain content in
this study to exploit the effect of charge symmetry
as an off-shell constraint in the 'S, partial wave.

II So NUCLEON NUCLEON POTENT IALS
EQUIVALENT WITH RESPECT TO THE

EXPERIMENTAL PROTON-PROTON DATA

A. How are appropriate off-shell changes generated?

In this section 'S, nuclear potential models are
generated that are equivalent to each other and to
the local soft-core Reid potential V„. All poten-
tials must have the theoretically required local
one-pion exchange tail and must account, together
with the Coulomb force V~, for the exPerimental
'S, Pp phase shift in exactly the same way.

The nuclear potentials V„,

VR = U(K+ Vc + V„)Ut —K —Vc, (2)

have the desired properties by construction. In

Ecl. (2), K denotes the kinetic energy operator of
relative motion (the corresponding momentum is

The effect of charge symmetry as a constraint
for the parametrization of the nucleon-nucleon in-
teraction is studied in the context of potential mod-
els. The same investigation using the two-nucleon
transition matrix directly is underway. " Here,
we start out from the Reid soft-core potential"
V„which accounts together with the Coulomb force
for the experimental Pp scattering data and also
for the nn data (1) with satisfying accuracy. Using
the technique of short-ranged unitary transforma-
tions' the potential V~ is varied in two ways.

First, in Sec. II families of nuclear PP potentials
are generated which together with the Coulomb
force reproduce the experimental PP data as ex-
actly as V~ at all energies. Assuming charge
symmetry, the transformed potentials are also
used as nn potentials. A great number of them
turn out to be inconsistent with the nn data (1).
They are therefore judged as not acceptable. A
simple rule is given that allows one to sort out
these unacceptable potential parametrizations
without lengthy calculations.

Second, in Sec. III families of potentials are
generated which are exactly equivalent with re-
spect to purely nuclear on-shell scattering. By
construction they all account for the nn data as
well as the Reid potential does. However, many
do not fit the PP data and therefore have to be
ruled out. Transformed potentials of this type
have usually been employed in nuclear-structure
calculations. ' "" A simple practical rule is
given that allows one to sort out the unacceptable
potentials.

Both methods are complementary and simply
approach the charge-symmetry constraint on the
off-shell parametrization of the isospin-triplet
nucleon-nucleon potential from opposite directions.
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k), and U is an arbitrary unitary operator of
short range.

(i) Together with the Coulomb potential they
yield the same phase q~~»(k) as the Reid potential
at all energies. The scattering states ~$(k)) of
V„are related to those of Vs, ~Q(k)), by ~p(k))
=U~P(k)), and both

~ Q(k)) and ~Q(k)) take on the

q,',R- qc, (exp)

-0.5

Reid 'So Phase Shift

same asymptotic form (r ~ Q, (k)),

(&
~ P, (k)) = C, (y) [cotqc~»(k)E, (y, k~) +G, (y, kr)],

C, '(y) =2wy/[e"& —1], y=e'~/(2h'k) . (3)

In Eq. (3) F,(G,) is the regular (irregular) Coulomb
wave function" of orbital momentum 0, x is the

PP distance, and M(e) is the proton mass (charge).
The phase shift q~~»(k) is displayed in Fig. 1. It
is calculated with the point Coulomb interaction
Vg=e'/x It .matches the experimental one" with

satisfying accuracy. " Its scattering length a»~,
obtained from the effective-range expansion" ' "
of the phase shift qc»~(k),

C,'(y)k cotrf~ „(k) +2kyk(y) = — c + 2r~~»k'—+ 8(k'),
a~pR

(4)

is -7.78 fm and is only slightly less attractive
than the experimental value" of -7.823 + 0.01 fm.
Its effective range x»~ is 2.72 fm and differs quite
seriously from the experimental value" of 2.794
+0.015 fm. Nevertheless, the Reid potential V~
and the potentials V~ represent identical and, for
our purposes, sufficiently good fits to the experi-
mental 'S, PP data. The function k(y) needed for
Eg. (4) is defined as follows:

y
(y) Q (

2 Q)
Y yE

n=l

20

C
~ppR

~ppR

0
0

I

0.5
k (fm ')

l.0

FIG. 1. Phase shift of the 80 Reid soft-core potential. .
The phase shift with Coulomb is denoted by q~~&. It is
the same for the Reid potential and the potentials Vz

defined in Eq. (2). The effective-range parameters
corresponding to Z&&z are a&&z

———7.78 fm and x&&&=2.72C C

fm. The point Coulomb potential is used for the results
of this figure. The high quality of the fit of the Reid
potential to the experimental pp phase shift g&& (exp) is
shown in the upper part of the figure, where the phase
shift difference g~&&z —q~ (exp) is plotted. The experi-
mental phase shift is taken from Ref. 19, its effective-
range parameters (Ref. 20) are a»= —7.823+0.01 fm
and ~pp=2 ~ 794+015 fm. The Coul. omb-subtracted purely
nuclear phase shift of the Reid potential is al.so shown
and denoted by p~& in the figure. The purely nuclear
effective-range parameters are a&&&

——-17.2 fm and

x&&z
= 2.80 fm. All phase shifts are shown as function of

the relative momentum k. The maximum momentum 1
fm ~ corresponds to 83 MeV energy in the l.ab system.

(r ~g) =Cr(l —Pr)e (6)

is employed in this paper. With the extra. factor
r included in Eq. (6) the radial part of the volume
element for integration is Ch. The constant C en-
sures the normalization of ~g). The range of U is
controlled by a. The potentials V~ have the one-
pion exchange tail of V~ as required by theory, if
a is chosen sufficiently large.

Except for Ref. 21, the present method (2) of
generating off-shell changes in the nucleon-nu-
cleon interaction has not been tried before. In-
stead of V„, the potential models U(K+ V„)Ut —K
have usually been used in nuclear-structure cal-
culations' '' "to study off-shell effects. They

with y~ being Euler's constant 0.5772.
(ii) The long-range Coulomb potential Vc ap-

pears in Eq. (2) only to guarantee the same pP
phase q»z(k) for all Vz. The potentials Vz are
purely nuclear &without Coulomb. They contain
neither off-shell changes of the known Coulomb
force nor other unwanted electromagnetic effects.
The potentials V~ are nonlocal at small distances,
but reduce to the local tail of V~ where tJ reduces
to unity. The simple form'
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B. Do the potentials VR account for thr the nn scattering length?

In this section the Coulomb-subtracted Ham&i-
n K+ V is studied. Its Schrodinger equation

is solved in momentum space. The resu g
scattering states

i ((k)) have the asymptotic form

(r I g, (k)) = coty»(k) sinkr + coeur,
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preserve the purely nuclear, ii.e. Coulomb-sub-
tracted phase g»R&(k) which is not an observable
in P scattering and which differs substantially
f om the experimental phase and g»~, a
ergies. The latter fact is demonstrated in g.Fi. 1
for the Reid potential. We shall return to the po-

III. In con-tential models U(K+V~)U -K in Sec.
trast to them the method of Eq. (2) for generating

ntial kee s theoff-shell changes in the nuclear potent a p
fit of V„ to the experimental PP data unaltered and
is therefore clearly preferable.
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FIG. 3. Effective range x~ of the Coe Coul. omb-subtracted
hifts (k) resulting from the potentials Vz.
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6 used with two different rangetar transformation 6 is usea y

its are shown as function of theparameters n. The resu s are
eter „. The corresponding effective range r&&z

of the untransformed Reid potentia is
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FIG. 2. Scattering l,ength a&& of theof the Coulomb-sub-
tracted pp phase shifts g&&(k) resulting from the

1. V . The point Coulomb potential is takenpotentia s &. e
for V . The unitary transformation (6y is use wior

he results are shown asd'ff t range parameters G. T„e re
function of the parameter P. The correspond gin scatter-
in le th a z of the untransformed Reid potential is
—17.2 fm. The experimental va ue oI {1)of the nn scatter-
ing length is indicated by the dotted l,ine.

FIG. 4. Coulomb-subtracted pp phase shifts qI,& (k)
resulting from selected potentials VR. pThe oint Cou-

r V . The unitary transforma-lomb potential is taken for &. e
d with o. being 3 fm ~ and with three i-tion (6) is used wi & e'

f ~ The corre-ferent P values, 1.25, 1.45, and 2.00 m
ift (k) of the untransformed Reidsponding phase shi t g~

e lotted as'
l is also shown. The phase shifts are p o epotential is a so s own.

The maximumfu t' of the relative momentum . enc ion
ner in themomentum m co1 f ~ rresponds to 83 MeV en gy

lab system.
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which yields the purely nuclear PP phase shift
q»(k). The effective-range parameters of q»(k),
scattering length a» and effective range ~», are
obtained from the low-energy expansion of 7)»(k):

k coty»(k) = ——+2r ~k'+8(k4) .
1

(8)

The phase shift q»(k) is not an observable. The
assumption of charge symmetry, however, equates
q»(k) with the observable nn phase shift 7)„„(k).
Unfortunately, only the scattering length a„„of
7)„„(k) has been reliably measured. How well do
the potentials V~ account for the experimental val-
ue (1) of a„„'? This is the question we want to
answer when calculating 7)»(k) in the present sec-
tion.

Since the Reid potential is fitted to yield the ex-
perimental PP data together with the point Coulomb
potential, the point Coulomb potential Vc is also
used for Vc in Eq. (2). The Coulomb-subtracted

PP scattering length a» resulting from V~ is dis-
played in Fig. 2 for a wide range of parameters
in the unitary transformation U. The correspond-
ing effective range r» is given in Fig. 3. Figure 4
shows the phase shifts q»(k) themselves for se-
lected parameter sets. Though the phase shift
q~~»(k) is exactly the same for the potentials V„,
the nuclear phase shifts q»(k) and their effective-
range parameters do not at all stay the same but
depend strongly on V~. The scattering length a»
exhibits the most dramatic variation with V~. As
can be read off from Fig. 2, only potentials ob-
tained from transformations U within a very small
parameter range around P=0.9 fm ' for n=3 fm '
and around P=1.1 fm ' for o. =4 fm ' are consis-
tent with a„„. Most other potentials V~ are unable
to account for a„„with satisfying accuracy. They
therefore have to be rejected. The spread in the
results is smaller for the effective range and the
low-energy phase shift, but it remains sizable
even for them. For the latter quantities, however,
no corresyonding nn data are presently available
to yield additional charge-symmetry constraints.

The theoretical subtraction of the Coulomb ef-
fects from the experimental pP data is a strongly
potential-dependent procedure. This is surprising
in view of the fact, that the Coulomb interaction is
known and much weaker than the nuclear force.
What is the reason for the strong potential depen-
dence? One might suspect, that for the VR the
Coulomb subtraction exploits the unphysical 1/r
singularity of V~ in an improper way. If this were
the case, the Coulomb potential should be appro-
priately modified for the finite size of the proton,
and the finite-size" Coulomb potential Vc~, i.e. ,

2

V~~(r) = —[I —e "(1+—',~+—,',x'+ —,',x')] (9)
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FIG. 5. Effective-range parameters a&& and r&& of the
Coulomb-subtracted PP phase shift g&&(k). Results are
given for the potential Vz using o = 3 fm and P = 2.0
fm in the unitary transformation (6) . The finite-size
Coulomb potential is taken for V&. The effective-range
parameters are shown as function of the proton size R&.
The experimental. proton size 0.8 fm is indicated by the
arrow.

should be used in Eq. (2) instead of Vc~. In Eq. (9)
x= M12 r/R, and R~ denotes the proton rms radius.
In Fig. 5, the Coulomb-subtracted effective-range
parameters a» and r» are therefore recomputed
as function of the proton size R~ for one selected
potential VR arising from the unitary transforma-
tion (6) with n = 3 fm ' and P = 2 fm '. Indeed, the
results depend strongly on R~. Their deviation
from the corresponding Reid values, a»R = -17.2
fm and x»~ =2.80 fm, is largest for the point Cou-
lomb potential and decreases rapidly with increas-
ing R~. This trend confirms the dominating role
of the I/r singularity for the results of Figs. 2-4.
It forces us to repeat the Coulomb subtraction
using the more physical Coulomb potential V~ with
the experimental proton size R~=0.8 fm in Eq. (2).
The Coulomb potentials Vc and V~ are compared
in Fig. 6. Figure 6 also demonstrates that toge-
ther with V~ the Reid potential V~ and the poten-
tials V„of Eq. (2) still reproduce the experimental
Pp data" "well; though the quality of the fit has
slightly deteriorated. We observe in the displayed
errors of Fig. 6 that V„and V~ with V~ are too
repulsive at low energies, whereas with V~ they
are too attractive. E.g. , the scattering length of
7)»z(k) with Ve is —7.89 fm, it is by about 1% too
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large in magnitude.
The Coulomb subtraction in the 'S, bP data is

repeated for the potentials V~ using V~. The re-
sults for the effective-range parameters are given
in Figs. 7 and 8. As compared to the correspond-
ing results of Figs. 2 and 3 with V~, the spread in
the results is generally much reduced consistent
with the trend found in Fig. 5 for a particular po-
tential V~. However, the variation in the results

still remains substantial. The subtraction of Cou-
lomb effects from the experimental PP data strong-
ly depends on the parametrization of the theo-
retically unknown short-distance part of the nu-
clear force. From this we had now to conclude,
as in Ref. 24, that the charge symmetry of the nu-
clear force cannot be confirmed by nucleon-nu-
cleon scattering experiments in a model-indepen-
dent way. However, in contrast to Ref. 24 we have
assumed charge symmetry to hold and use the po-
tentials V„as nn potentials. The nn potentials V~,
except those within a small parameter range
around P = 0.9 t'm ' for n =3 fm ' and around P
=1.1 fm ' for @=4 fm ', are unable to account for
the experimental nn scattering length. Thus, most
V~ are unacceptable nn potentials and have to be
discarded; though they account well for all pP data.
Only if a sizable amount of charge asymmetry
were allowed in the nuclear force could a wider
class of potentials V~ be judged acceptable. Pro-
vided the errors in the experimental nn scattering
length are as reliable as quoted in Eq. (1), the
requirement of charge symmetry is an effective
constraint on the off-shell parametrization of the
'S, pP interaction, independent of the choice of V~
or Vc

The charge-symmetry constraint has a bene-
ficial theoretical side effect. Though it is based
on low-energy scattering data, it constrains the
parametrization of the nucleon-nucleon interaction

-IO
I I I I I I

Finite Size Coulomb

2=

0
0

I

I

f' ( fm)

FIG. 6. Comparison of the point Coul. omb (V&) and
the finite-size Coulomb (V&) potentials. The experi-
mental proton size 0.8 fm is used in V&. The quality of
the fit of the ~SO Reid soft-core potential to the experi-
mental. pp phase shift q&& (exp) is shown in the upper
part of the figure. The Reid phase shifts are obtained
with the point Coulomb and the finite-size Coulomb po-
tentials and are denoted by g&&z(V&) and g&&z(V&),
respectively. Their deviation from the experimental
phase shift is plotted as function of the relative momen-
tum k. The maximum momentum 1 fm ~ corresponds
to 83 MeV energy in the lab system.

-40 I
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I

-2
I I

0
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FIG. 7. Scattering l.ength a&& of the Coulomb-subtract-
ed pp phase shifts g&&(k) resulting from the potentials
V&. The finite-size Coulomb potential is taken for V&.
The unitary transformation (6) is used with two different
range parameters 0.. The results are shown as function
of the parameter P . The corresponding scattering length

a~+ of the untransformed Reid potential is -17.2 fm.
The cross-hatched strip indicates the range of values
consistent with the nn scattering length of Eq. (1) and
charge symmetry.
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in the core region. This will become evident later
in Sec. IIC. Furthermore, many potentials VR,
which are ruled out by this constraint, would pro-
duce disastrous nuclear -structure results. Figure
9 displays some 'S, reaction matrix elements ap-
propriate for shell-model calculations in "0.
Their variation with V„ is very large indeed. The
matrix elements are generally far more repulsive
than the corresponding elements of the Reid po-
tential V~. This is surprising, since the purely
nuclear scattering amplitude of the potentials V~
shows the opposite trend according to Figs. 2-4,
7, and 8. What is the reason? Changing the nu-
cleon-nucleon potential from V„ to V~ affects the
purely nuclear 'S, phase shift q»(k) and the wound

integral. The wave functions displayed in Figs.
11 and 12 of Sec. II C indicate the latter effect on
the radial shape of the short-range correlations.
They correspond to increased wound integrals.
According to Ref. 10 there is a simple linear re-
lation between a decreased attraction in the shell-
model interaction of phase-equivalent potentials
and an increased wound integral. However, this
relation is not immediately applicable to the po-
tentials V~ and V~, since they are not equivalent
with respect to the nuclear phase t)»(k). Compared
to V~, V~ therefore gains some additional attrac-
tion for its shell-model reaction matrix due to
variations in i)»(k). On the other hand, the in-
crease in its wound integral is generally so dra-
matic that the combined result is a substantial re-

I I I I I

'S Reaction Matrix

for 0

40—
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0
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20
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pulsive shift in the shell-model interaction as
shown in Fig. 9 ~ The matrix elements of Fig. 9
are obtained with V~~ in Eq. (2), but matrix ele-
ments calculated with V~ and with the potentials
U(K+ Vs)Ut —K of Sec. III agree with those of Fig.
9 within 1 MeV for corresponding transformation
parameters. Consistent with the trend of the pure-
ly nuclear scattering amplitude, the matrix ele-
ments of V„are usually more attractive than the
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FIG. 8. Effective range x~ of the Coulomb-subtracted
pp phase shifts g (k) resulting from thepotentials Vz.
The finite-size Coulomb potential is taken for V(-. The
unitary transformation (6) is used with two different
range parameters &. The results are shown as function
of the parameter P. The corresponding effective range
r&&z of the untransformed Reid potential is 2.80 fm. The
experimental value (1) of the nn effective range is not
indicated; its error is still. too large.
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4
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FIG. 9. Diagonal '$0 reaction matrix elements
(n tSONL~G~n iSONL) in oscillator representation for a
shell-model calculation of '80. The matrix elements
are obtained from the potentials Vz using the method
of Ref. 25. The point Coulomb potential is taken for Vz.
The unitary transformation (6) is used with the range
parameter 0: being 3 fm ~. The results are shown as
function of the parameter P. In the matrix elements the
available energy is taken to be —10 MeV, the oscillator
parameter is 1.72 fm. The oscillator quantum number
n refers to the relative motion; the radial quantum
number N and the orbital. momentum L refer to the
c.m. motion. The quantum-number combination (120)
and (220) do not arise in computing the bare effective
shell-model. interaction. The matrix elements obtained
with the finite-size Coulomb potential and the matrix
el.ements obtained from the potentials V& of Sec. III
agree with those of the figure within the accuracy of
the plot.
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corresponding ones of U(K+ Vz)Ut —K.
Since the reaction matrix elements calculated

with the potentials Vs and U(K+ Vs) U —K are very
similar, already existing' ' ' "nuclear-structure
results with U(K+ V~)U~ —K should be characteris-
tic, except in details, for results with VR. Known
and additionally calculated results for some pote n-
tials U(K+ V„)Ut —K are compiled in the table in
Sec. III. Since, however, existing nuclear -struc-
ture results do not span a wide range in the trans-
formation parameters of Eq. (6), one "O spectrum
is shown in Fig. 10 as an example derived from a
potential VR outside the previously explored pa-
rameter range. The spectrum looks indeed dis-
turbingly unfamiliar. We expect similarly shock-
ing results for other nuclear-structure calcula-

tions with the same V~; though they have not been
performed. But strange nuclear -structure results
are an indication not an undisputable proof that
the parametrization of the nucleon-nucleon inter-
action used is unacceptable. In contrast, the re-
quirement of charge symmetry, which rules out
the potential V„employed in Fig. 10, appears to
be a clear, effective, and much simpler off -shell
constraint in the 'S, partial wave.

C. Can the charge-symmetry constraint easily be implemented?

&& (Ut)(k) I
UVcUt —Vc I g(k)) . (10)

In the previous section we were able to deter-
mine the acceptability of a potential V~ after its
Coulomb-subtracted scattering length was calcu-
lated and compared with the experimental nn value
(1). This is a straightforward method, much
easier to use, for instance, than a decision on the
nuclear force at the end of a lengthy three-body
calculation. Still, we would like to select the al-
lowed potentials V~ by even simpler means. Such
a simplified method of selecting the acceptable V„
is the subject of this section.

First, we give an exact relation between the
purely nuclear phases q»(k) and q»s(k) of Vs and

VR, respectively. We apply the two -potential for-
mula for the on-shell two-nucleon transition ma-
trix to the nuclear potentials Vs of Eq. (2) and

U(K+ V„)U —K. The latter has the same Coulomb-
subtracted phase shift rl»„(k) as Vs. Their poten-
tial difference UV~ U~ —V~ depends on V~, but in
accordance with Sec. II A UV~ U~ —V~ has to be
interpreted as the difference between two purely
nuclear potentials . The two -potential formula
yields

M
k coty»(k) =k cotq~t„(k) + —,

2+

0+

0+

Reid VR Exp.

FIG . 10. Shel. l-model spectrum of ~ 0, The results
represent a calculation with the bare effective interac-
tion without core-polarization correction. The technical.
details are those of Ref. 10. The spectrum correspond-
ing to the Reid soft-core potential is compared with a
spectrum obtained by using Vz as 'So potential with
e =3 fm ~ and p =2.0 fm ~ and with V& in Eq. (2). It is
considered entirely unlikely that higher-order correc-
tion in the effective interaction shift the two spectra
into better mutual. agreement. The experimental spec-
trum is also shown.

Equation (10) is derived in Appendix A. It em-
ploys wave functions in the effective -range normal-
ization (7). The scattering wave functions of the
Reid potential V„are denoted by Ig(k)); the wave
functions of U(K+ V„)U —K are UI g(k)). Second,
if g(k)) could be approximated by UI g(k)), then
the phase shifts q»(k) were given in a transparent
and easily discussible way,

M
k coty»(k) = k coty»„(k) ——,

x(|I(k) IU~ VcU Vc I g(k)) ~ (11a)

sin'q»~(k) M
'g»(k) R»R(k) k ga

x(g(k) I
U' V, U —V, I ((k)), (11b)
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Furthermore, the charge-symmetry constraint
can now easily be implemented in the choice of V~.

If U is chosen to leave the zero-energy wave func-
tion of V~ unaltered,

Ul((0)&= lq(0)&, (12)

then, according to Eq. (11a), the Coulomb-sub-
tracted scattering length does not change, i.e. ,
a» =a»~. Given the range n ' of the unitary
transformation (6), the condition (12) is satisfied
for one value of P. For n=3 fm ' it occurs at
P=0.9 fm ', for o. =4 fm ' it occurs at P =1.1
fm '. The small parameter range around these
special P values, whose corresponding potentials
V~ account for the nn scattering length as well as
the Reid potential according to Figs. 2 and 7, is
now understood. Condition (12) can easily be
imposed on any unitary transformation. It is a
simple practical device to meet the charge-sym-
metry constraint on the off-shell parametrization
of the nucleon-nucleon interaction.

Constraining the potentials V~ by condition (12)
assures that the fit of V~ to the PP data and the nn
scattering length will remain close. But let us as-
sume that nn data become as abundant and accurate
as PP data and V~ accounts for all existing PP and
nn data with satisfying accuracy. How can we then
preserve such a precious fit in the off-shell chang-
es (2)? The surprising answer is that the single
condition (12) is still enough to leave the nn phase
shift at all energies approximately unaltered. What
is the reason?

With condition (12) satisfied, Ui g(k)& —
i ((k)&, and

therefore also the matrix element (11), remains
very small up to about 0 =1 fm '. For momenta k

larger than 1 fm ' the extra factor 1/k decreases
the right side of Eq. (lib) and keeps its value of
the order of one degree. Thus, the condition (12)
makes V~ and V„approximately phase equivalent
also with respect to the Coulomb-subtracted phase
at all energies. If VR accounts for all pt) and ~n
data, then V„will account for them also, provided
V~ is chosen in accordance with condition (12).
The extra factor 1/k in (11b) furthermore ensures
that the model dependence of the Coulomb-sub-
tracted scattering amplitude is essentially a low-
energy phenomenon. As shown in Fig. 1, the dif-
ference between q~»~(k) and q»„(k) is small at
higher energies anyhow.

In this section, we have shown that the Coulomb
subtraction in the PP data is quite ambiguous,
since it strongly depends on the parametrization
of the theoretically unknown short-distance part
of the nuclear force. Thus, the isospin symme-
tries of the nucleon-nucleon interaction cannot be
proven'4 in a model-independent way by comparing
nP or nn scattering data with pP scattering data.

However, charge symmetry assumed to hold as a
theoretical principle is a very effective off-
shell constraint in the 'S, partial wave. Many po-
tentials V~, which fit the PP data as well as the
Reid potential but introduce exotic short-range
correlations into the low-energy wave functions,
are unable to account for the experimentally mea-
sured nn scattering length and therefore have to
be ruled out. In contrast, the potentials V~ of
Ecl. (2) that are consistent with the simple condi-
tion (12) reproduce the nn data as well as V„does
at all energies. The off-shell constraint (12) can
easily be implemented in the choice of V~.

III So NUCLEON NUCLEON POTENTIALS

EQUIVALENT WITH RESPECT TO THE
EXPERIMENTAL NEUTRON-NEUTRON DATA

The standard way of generating off-shell changes
in the 'S, nucleon-nucleon potential has been to
keep the purely nuclear phase shift q»„(k) un-
altered. '' " The potentials V„,

V~ =U(K+V~)U -K (13)

have this property, and the potentials V~ and V~
reproduce the experimental nn scattering length

a„„ in exactly the same way. If U is chosen to be
of sufficiently short range, V~ and V~ have the
theoretically required one pion exchange tail. Thus,
V„and V~ are equally acceptable nn potentials. If
we assume charge symmetry to hold, the V„and
V„can also be taken as hadronic parts for the PP
interaction. In fact, they always have been used
this way in nuclear-structure calculations.
However, do the potentials V~ and V„account for
the experimental PP data~ The Heid potential does;
for it was fitted to do so. Does V~ account for the
experimental PP data equally well~

We study the scattering problem for the Hamil-
tonian K+V~+V~. The potentials V„are most con-
veniently given in momentum space, and according
to the method of Ref. 26 the scattering problem
with Coulomb could indeed be solved exactly in
momentum space. However, we prefer to rely on
the approximate method of Sec. IIC for estimating
the phase shifts qf&(k) of Vs. In this way trans-
parent relations between q~~ (k) and the phase shift
rl~c~~(k) of the Reid potential Vz arise, which can
easily be discussed. Using the two-potential for-
mula the potentials VR are compared with the po-
tentials Vz of Eq. (2). As in Sec. IIC the difference
between the purely nuclear potentials V~ and VR is
UVc~~ c T e exact re a ion

C,'(y)k coty~~ (k) = C,'(y)k coty~~ „(k)

——„.(Ue(k)l «cU'-VclAk)&
(14)



CHARGE SYMMETRY OF THE NUCLEAR FORCE AS. . . 1'797

is derived in Appendix A. In Eq. (14) i P(k)) denotes
the scattering states of the Hamiltonian &+V~+ V„
with the asymptotic normalization (3) and q»„( )~ ~a~

replaced by q~~ (k). Equivalent in spirit to Sec. IIC,
~ P(k}) is approximated by U

~ Q(k}) and the phase
shifts C(k) are obtained entirely in terms of U

and of quantities referring to the original Beid
potential V~:

C,'(y)k coty~~(k) =C,'(y)k cotq~~s(k)

+, &Q(k)l U'V, U V,-I y(k)&,

(15a)

sin'q f~ „(k) 1 M
Rnn (k} 4nz(k) k C 2( ) @2

(15b)

The validity of the crucial approximation ~P(k)}

I i I i I I l I l

Point Coulomb

=U~p(k)) has not been checked. There is, how-
ever, no apparent reason to believe that the pres-
ent approximation is less accurate than the equiv-
alent one on which Eqs. (11) are based and which
was demonstrated to be very reliable. Thus, we
assume (15}also to be trustworthy relations for

(k) at least if the changes in the phase shifts%p
are small. For our purposes this is sufficien,
since in the case of large changes the potential fit
of V„ to the experimental data is spoiled anyhow.
A drastic deviation of q~c~(k) from q~»(k) and there-
fore from the experimental 'S, PP phase shift is
a compelling reason to discard the potential V~
as unrealistic; the accurate quantitative extent of
the disagreement with experiment is not of inter-
est.

Using the point Coulomb and the finite-size Cou-
lomb potentials, respectively, with their corre-
sponding Reid wave functions

~ Q(k)) in Eq. (15},
the PP phase shifts q~~(k) are calculated for a
variety of potentials V~. Their scattering lengths

Qpp 0obtained from the effective-range expansion
(4} f q (k) are given in Figs. 15 and 16. The low-

lsenergy phase shifts of some selected potentia s
V~ are shown in Fig. 17. In Figs. 18 and 19 the
experimental phase shifts at 25 and 50 MeV energy
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m' = 4frn '
Finite Size Coulomb

+

c 5
(D

C:
L

0
O

(A

I

I

I

I
I

l
I
)

c-7
QP

C:

+0
O
M

i

-4
I

-2
I I

0
P (frn ')

I

4
l

-4
I

-2
I I

0
P (fm ')

FIG. 15. Scattering length a&& of the pp phase shifts
(k) r suiting from the potentials V&. The approxi-

mate relation (15a) is used. The point Coulomb poten-
tial is taken for V&. The unitary transformation (6) is
employed with two different range parameters G. . The
results are shown as function of the parameter P.
Th scattering length a ~ z of the untransformed Reid

ofpotential is -7.78 fm. It corresponds to the minima o
the curves and is sl.ightly less attractive than the experi-
mental value —7.823+ 0.01 fm, which is indicated by
the dotted line.

FIG. 16. Scattering length a~ of the pp phase shifts

happ

(k) resulting from the potentials V&. The approxi-
mate relation (15a) is used. The finite-size Coulomb
potential is taken for V&. The unitary transformation (6)
is employed with two different range parameters a.. The
results are shown as function of the parameter P . The
scattering length a &&& of the untransformed Reid poten-
tial is -7.89 fm. It corresponds to the minima of the
curves and is slightly more attractive than the experi-
mental value —7.823+ 0.01 fm which is indicated by the
cross-hatched strip.
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FEG. 19. PP phase shifts g&& (k) at 25 and 50 MeV
energy in e a sythe lab s stem resulting from the potentials
Uz. The approximate relation (15b) is used. T e
finite-size Coulomb potential is taken for V~. The uni-
tary trans orma ionf t (6) is employed with two differen
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Figs. 18 and 19. Thus, the off-shell parametriza-
tions of V are consistent with the experimental

ondition 16PP data and charge symmetry, once condition (
is met. The condition (16) can easily be incorpo-
rated in the unitary transformations U as a con-
straint. If condition (16) is not fulfilled, the vari-
ations of the scattering length a~~~ and of the phase
s 1 s 'gyph ft (k) go into the direction of repulsion,
since the relevant matrix element (P(k)IU VcU
—V J Q(k)) of Eq. (15) is positive as in Sec. IIC.
This trend is opposite to that of the potentials V~,
because there is a crucial sign difference between
the relations (11) and (15).

What is the significance of the present results
for the nuclear -structure calculations previously
performed with the potentials V~& The parame-
ters, which were c osen ihosen in Ref. 6 for the potentials

mate agreement with the experimental values. In
the case of the scattering length the results of the
potentials „o e .f R f 6 are indicated by the crosses
in Fig. 20. There are, however, two potentials,
U1 and U2, which do not account for the experimen-

tal scattering engt ' l gth a at all and therefore have
to be rejec e . is 't d It ' important to realize that these
are the two '~0 potentials, which exhibit the most
dramatic off-shell effects in nuclear-structure
calcula ions.l t' 6 ' " Since these two potentials
d t f't the experimental PP data, their off-0 no 1

shell effects are of no physical relevancy. e
table suggests the remarkable correlation, that
th 'S otentials V~ which account for the ex-

oderateperimental PP scattering data allow only mode
variations of nuclear-structure results due to off-
shell changes. Similar results are expected or
the phase-equivalent potentials used in Re s.i Refs. 5 and

7. The charge symmetry of the nuclear force ap-
pears as a very e ec ive
decreases otherwise disturbingly large off-shell
variations to still tolerable magnitudes.

IV. CONCLUSION
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Off-shell changes are generated in the 'So nu-
cleon-nuc eon in erl

' t action using the Reid soft-core
shortpo en ia ant t' 1 d unitary transformations o s

1range. T e eih R 'd potential fits the experimenta
It also accounts for the nn scatteringPP data. ' a so

length with satisfying accuracy. The of -s e
havior of the Reid potential is varied in two dif-
ferent ways.

First, off-shell changes are performed which

preserve the fit to the PP data. However, the Cou-
lomb-subtracted, purely nuclear scattering amp i-
tude is quite mo e - et d l-dependent" and varies strong y
with the parametrization of the theoretically un-
known s or - isshort-distance part of the nuclear force.
Th have to conclude that the isospin symme-Thus, we ave

nnot be' s of the nucleon-nucleon interaction canno
b corn ar-f' ed in a model-independent way y c p
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TABLE I. Scattering length a&& of thePP phase shifts q&&(k) and nuclear-structure results
obtained with the potentials Vz of Eq. {13). The special potentials chosen in Ref. 6 are used,
their transformation parameters are given in columns 2 and 3. The scattering length calcu-
lated according to Eq. (15a) with the point Coulomb (Vz) and the finite-size Coulomb {Vz)
potentials is listed in columns 4 and 5. The variation of the nuclear-matter binding energy
per particle, of the ~~0 binding energy per particle, of the total 3H binding energy, and of the
~80 ground-state energy as compared to the Reid potential are given in columns 6-9, respec-
tively. The results presented in column 6 for U1 to U4 are taken from Fig. 1 of Ref. 6. Limits
on the range of the nuclear-matter energy variation for U5 to U7 can be estimated from Fig.
4 of Ref. 6; the variation should be smaller than 1.5 MeV. The results of column 7 are partly
taken from Ref. 9, partly calculated for the purposes of this paper. The results of column 8
for the potentials U1, U3, and U4 are given in Ref. 11, Haftel (Ref. 27) calculated the remain-
ing SH results. The slight different trends for U1 and U2 as compared to nuclear matter and
~60 are presumably due to still existing inaccuracies in the three-body calculations. The re-
sults of column 9 are calculated here using the bare effective shell-model interaction as in
Fig. 10. Reference 10 gives the same results for U1 and U6 corrected by core polarization.
They are with 0.4 and 1.2 MeV in good agreement with the results of the table. All shifts of
the ~80 ground-state energy given in the table are much smaller than for the spectrum of Fig.
10. There, the corresponding shift is 11.1 MeV. As observed in Ref. 10 and borne out in the
table, the off-shell changes in the 0 shell-model spectrum might show different trends com-
pared to other nuclear-structure results. The reason is that the shell-model spectrum is
sensitive towards the state dependence in the off-shell variation of the reaction matrix.

P app(V& ) ap&(V&)
(fm ) (fm ) (fm) (fm)

Nuclear matter 0 '

AE/A AE/A AE
(MeV) (MeV) (Me V)

0+ ground
state of 0

AE
(MeV)

Reid
U1
U2
U3
U4
U5
U6
U7

3.0
4.0
3.0
4.0
4.0
3.0
3.0

—7.78
1.20 -6.20
1.60 —6.42
1.00 -7.59
1.00 —7.76
1.04 -7.78
0.90 —7.79
0.95 -7.73

-7.89
—7.55

7072
-7.84
—7.89
-7.89
-7.89
-7.87

0
6.5
4.8

-0.2
1.5

(&1.5)
(& 1.5)
(&1.5)

0
2.0
1.6

—0.3
0.5
0.4
0.3

—0.1

0
0.8
1.0

—0.2
0.3
0.2
0.3
0.2

0
0.3
0.8
0.2
0.8
0.6
1.2
0.3

ing nP and nn scattering data with PP scattering
data. However, charge symmetry is assumed to
hold as a theoretical principle and then the trans-
formed PP potentials are also nn potentials. Most
of them are unable to yield the correct value for
the nn scattering length and therefore have to be
rejected. A simple practical rule is given accord-
ing to which the off-shell changes consistent with
the experimental nn scattering length can be selec-
ted. This rule does not allow dramatic variations
in the short-range correlations of the low-energy
wave functions.

Second, off-shell changes are performed which
leave the purely nuclear phase shift and therefore
the nn scattering length unaltered. The transform-
ed potentials are acceptable nn potentials. As-
suming charge symmetry they are also PP poten-
tials. However, most of them are unable to yield
the correct experimentalPP phase shift and on this
ground have to be rejected. A simple practical
rule is given according to which the off-shell
changes consistent with the experimental PP data

can be selected.
Transformed 'S, nucleon-nucleon potentials of

the second type have usually been employed in

nuclear -structure calculations. Potentials which
exhibit the largest off-shell effects are found to be
in disagreement with the experimental PP data.
Their off-shell effects are therefore of no physical
significance. The charge symmetry of the nuclear
force is a simple off-shell constraint in the '~,
partial wave which, by the conditions (12) and (16),
can easily be implemented in unitary transforma-
tions and which effectively rules out ~p potentials
with large off-shell effects in nuclear structure.

It is a pleasure to thank M. I. Haftel for calcula-
ting and communicating the results of column 8 in
the table, D. W. L. Sprung for pointing out the
deficiency of the Reid soft-core potential as in-
dicated in Ref. 17, B. Giraud for a suggestion
which led to the computational technique of Appen-
dix B, and M. Baranger, J. Gillespie, J. W.
Negele, J. P. Vary, and H. Walliser for fruitful
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discussions. The author is grateful to C. McKinnis
for her help in performing part of the calculations.

k2 2k
T —k'+io

i sing (k)e'"&(

(As)

The wave functions j P, (k)) in the effective-range
normalization (7) are given in terms of the wave
operators 0&[(k'/M}k' ai0],

&~ In;(~) @2
) k, (k)) = (-'c)'i' ik. k' ciO) k

sin7l, (k) ' M

(A4)

Since z, (k) and l g, (k)) are denoted by rl» (k) and

l g(k)), respectively, and q, (k) and j P, (k)) equal
rl»„(k} and IJj )1)(k)), respectively, and since, fur-
thermore, the potential difference V, —V, is UVcU~
—Ve, Eq. (10}follows immediately from (A2).

The transition matrices T(e(&),

APPENDIX A: DERIVATION OF EQS. (10)AND (14)

The purely nuclear transition matrices,

T, ((d) = V, + V,. ((d K)-'T, ((d), (Ala)

0,{~)=1+{~-K) 'T, ((d), (Alb)

corresponding to the two potentials V, =V~ of (2)
and V, = V„of Eq. (13) are related by the identity

T, ((d) =T,(~)+Q, (»)t[V, —V, ]Q, ((d) . (A2)

The two '~0 transition matrices in momentum
representation (rj k) =(2/v)'~'sinkr are compared
on-shell,

= (2/v)'~'F, (y, kr) are compared on shell

c(k) )
~ ( k*ciO) fc(k

k2 2k singe (k}e'"» '" ' . (A'I}

The wave functions j (t), (k)) in the effective-range
normalization (3) are given in terms of the wave

operators A&~[(h /M)k' ai0],

z~ &n c(~ ) k2
=(—')'' ' ' 0 k' '0 f (k)

(A6)

Since ri~e(k) and j p, (k)) equal q~~„(k) and Ijj p(k)),
respectively, and &2e(k) and I 0,(k)) are denoted by
q~e&(k) and j Q(k)), respectively, since, further-
more, the poten'tial difference V, —V, is UVcU
—Ve, Eq. (14) follows immediately from (A6).

APPENDIX B: CALCULATION OF THE VfAVE FUNCTIONS

IQ(k)& OF Vz IN CONFIGURATION SPACE

The method of Ref. 22 solves the Lippman-
Schwinger equation (A1a) in momentum space. It
is very suitable for the potential V„which has a
complicated momentum dependence. It yields the
corresponding half -shell transition matrix
(k'

l T[( k' /M) k' +i 0] j k) at mesh points k'. From
the half-shell transition matrix the wave function

( rj g(k)) has to be obtained by integration.

( j~(k))= „.„„
T,'(~) = V, + V, (~ -K Vg) 'T,'((d), -
Ae((d) =1+(~ —K V~e) 'Te(~)—,

-
(A5a)

(A5b)

sink' r
(k 2/M)(k~ kkm+;0)

include the point-Coulomb part V~ of the Coulomb
potential in the propagator. They refer to the two
potentials (2) and (13), but the corresponding po-
tentials V, in Eq. (A5) have to consist of the com-
plete interaction except Vc, i.e., Vg Vg+Vc Vc
and V, = Vz+Vc- Vc The transition matrices
T(e(~) are related by the identity

T ((d)=T (~)+0 (&ok') [V —V ]0 (&) (A6)

The two (Sp transition matrices in the representa-
tion of the regular Coulomb wave functions (rife(k))

Using (81) it is difficult to achieve accurate re-
sults for (rj (1)(k)) over a large range of r, even
if the half-shell transition matrix is known at a
great number of mesh points. However, the ac-
curacy is dramatically improved by comparing
(rj ((k)) with an auxiliary wave function (rl(I), (k)),
which is analytically known, has the same phase
shift as ( rj )t)(k)) at the energy of interest and
whose transition matrix T,„„(&)can easily be given.
The difference between the wave functions (rjg(k))
and ( rj g,„„(k)) is then obtained by the singularity-

free relation

2k "dk, sink'r (k'lT, [(h'/M)k'+iO] —T, [( I' /M) k+i )0l k)
k' k" (kj-T,[(1 /M)k +TO]j k) (B2)



1802 P. U. SAUE R

For the calculations of Sec. IIC the wave functions and transition matrix of the Yamaguchi potential with
the range parameter g chosen to be 0.7 fm ' are used as auxiliary quantities. Then Eq. (B2) takes on

the form

2k
( r~ g(k)) =coty» (k)sinkr+coskr —e ~"— sink'r (k'

~ T,[ (8'/M)k'+i0j [ k) g'+k'
k2 k" (k~z [(a /~)k+~0]~ k) i +k"

(B3)
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