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A technique for constructing the nucleon-nucleon transition matrices T in the presence of inelastic channels is

given. The present technique avoids the usual potential fit and continues T off the energy shell directly

consistent with the two-body scattering data and consistent with the properties of possible two-body bound

states. The respective T matrices are determined by a real symmetric matrix function (E,a JoIE,a,) of the

continuous energy variable E and the discrete eigenchannel label a. The on-shell part of cr is given by the

eigenphases; the arbitrariness of T is the off-shell continuation of the phase-shift matrix (Ea&i+Ea,) into

two dimensions. The present technique of constructing T makes the experimental nucleon-nucleon and meson-

nucleon scattering data readily available as input for nuclear theory extended to include baryon resonances.

NUCLEAR STRUCTURE nucleon-nucleon and meson-nucleon interactions, on
shell and off shell with inelasticities.

I. INTRODUCTION

A Hermitian potential between nucleons in the
baryon ground state has been the standard descrip-
tion of the nucleon-nucleon (NN} interaction' for
the purposes of microscopic nuclear-structure
calculations. Such a description neglects the ex-
istence of inelastic interaction channels which at
high enough scattering energies open and in which
at least one nucleon is in a baryon resonance
state, e.g. , is a h(1236}, or (and} in which free
mesons are created. Neglecting the inelasticchan-
nels in NN scattering has usually been considered
a safe approximation when accounting for theprop-
erties of many-nucleon systems at low energies,
a belief which appears now shaken in the light of
the neutron-matter results of Ref. 2. Thus, there
is evidence that calls for an extension of ordinary
realistic NN potentials to inelastic channels —even
in the case of low-energy nuclear phenomena. The
necessity of a corresponding inclusion of inelas-
ticities in the meson-nucleon (MN} interactions,
e.g. , of a pion plus baryon resonance channel in
the pion-nucleon interaction' or of a pion-Z chan-
nel in the kaon-nucleon interaction' is well rec-
ognized. The present paper suggests the direct
off-shell continuation of the respective two-body
transition matrices T as a convenient tool of ac-
complishing this aim for the NN and MN interac-
tions.

The phenomenological technique of parametrizing
T off shell, previously used" in the elastic NN

channels only, is generalized to the presence of
inelasticities. Only the inelastic channels with

two-body fragmentations will be considered. The
lifetime of the fragments is assumed infinite. The
difference in the channel threshold energies is
properly taken into account. The technique of
constructing T solves the inverse scattering prob-
lem exactly and is in this sense a realistic descrip-
tion of the NN and MN interactions in the elastic
and inelastic scattering domains. It is therefore
well suited to digest the expected wealth of high-
precision nucleon-nucleon and pion-nucleon scat-
tering data produced by the new generation of ac-
celerators. It will make these experimental data
readily usable as input to nuclear theory extended
to include baryon resonances. The T matrices are
employed rather than the corresponding potentials
in order to avoid the ordinary potential fit. Such
a fit is already cumbersome when inelasticities are
neglected; it presumably constitutes a formidable
task when inelasticities are taken into account.
The direct construction of T therefore appears to
offer a welcome economical advantage.

The construction of the NN and MN transition
matrices requires a phenomenological assumption
on the off-shell behavior of T. The present gener-
al technique is therefore more flexible than the
simple separable models suggested in Refs. 3 and
4. The off-shell part of T has to be parametrized,
since the fundamental NN and MN interactions are
theoretically poorly known and scattering experi-
ments can only yield information about the on-
shell values of the respective transition matrices.
In contrast, the properties of many-body systems,
e.g. , nuclear observables as binding energies,
radii, electromagnetic form factors and spectra,

13 720



13 OFF- ENERGY-SHELL CONTINUATION OF THE NUC LEON-NUCLEON. . .

and the meson-nucleus optical potentials, depend
upon the experimentally undetermined and theo-
retically almost unknown off-shell behavior of T.
Ideally, one would therefore like to derive the
basic interactions, on shell and off shell, from
field theory first before proceeding to the study of
many-body systems. In practice, however, the
hadronic force problem is discouragingly involved
and, though important progress has recently been
made" for the NN interaction, its complete solu-
tion is still in the very far future. This frustrating
situation, of course, should not prevent attempts
to understand the properties of many-body systems
in terms of the fundamental interactions between
their constituents even though the interaction has
to be parametrized phenomenologically. Thus we
feel that in light of nuclear-structure applications
the present phenomenological approach to the
hadronic forces is a worthwhile alternative as long
as the force problem remains unsolved in a more
fundamental and therefore more satisfying way.

The present work generalizes the theoretical
methods' ' ' that have been developed for elastic
scattering to inelasticities. The fact, that the
threshold energies of inelastic channels, in gener-
al, are different renders the coupled-channelprob-
lem of inelasticities essentially different from the
coupled-channel problem arising from tensor
forces. ' This is one important reason for the
present account of the extended theory. This dif-
ference in threshold energies makes the relative
two-body momentum channel-dependent. The use
of an energy representation ((Ec&}for the T ma-
trices, in contrast to the momentum representa-
tion previously used, is therefore required. The
energy representation will also easily allow one to
introduce corrections to the nonrelativistic kinetic
energies in the spirit of "minimal relativity. " Sec-
tion II defines the complete set of basis states
(~Ec)}of any channel c and gives some other use-
ful definitions involving the T matrix and the cor-
responding multichannel scattering wave functions.
The transition matrix is then continued off the en-
ergy shell in See. III for the case in which the
multichannel scattering states form a complete
set. The possible presence of a bound state and
the possibility of a hard core interaction are neg-
lected in Sec. III in order to present clearly the
modifications of the previous work necessary be-
cause of inelasticities. The problem of the com-
pleteness defect of the scattering states due to a
possible bound state or (and) a possible hard core
interaction is then taken up in Sec. IV. There,
the off-shell extension of the T matrix is studied
for this more general case. In Sec.V we indicate
how the presented formalism will be used in prac-
tice.

II. DEFINITIONS

= g g t" '&A,,o(6,)(E,c,QIT(~)IE.c,Q&A,', o(&,).
Q C~C2

(1)

The A, o(k) are the surface functions which account
for the angular and isospin dependence of the chan-
nels and which specify their type of fragmentation,
l.e.y

A, (k) = g (fm, sm, (jm, & y, , (k))sm, &(tm, &(L&

fft) mg
2}

The vector ~sm, & (~tm, &) denotes the iwo-body spin
(isospin) state. The vector

~ g& differentiates be-
tween the various two-body partitions. The rep-
resentation

(r~Ec, ,Q&g A, o (r)(rc,Q, ~E Qc, &

with the radial channel functions

(«,Q, IEc,Q, &=f...&,,, —p, (E)
2 S/2

A {I, r)

(4)

The inelastic channels considered here for the
NN and MN scattering process are those with two-
body fragmentations. For our purposes, a chan-
nel is defined as a set of two-body states with
definite quantum numbers, some being conserved,
the others not being conserved, in the scattering
process. The two-body interaction is assumed to
conserve total angular momentum j, parity p,
isospin t, and isospin projection m, . It is indepen-
dent of the angular-momentum projection m j. How-
ever, the two-body interaction is allowed to mix
orbital momenta l, the two-body spin s, and dif-
ferent partitions g of the two-body system with the
iwo fragment masses m~(1) and mz(2). The set of
conserved quantum numbers (j m& ptm, ) is denoted
by Q, the set of nonconserved quantum numbers
(lsd'} by c. The channels with common conserved
quantum numbers Q are coupled by the two-body
interaction; they form the partial wave Q.

The two-body transition matrix in the c.m. sys-
tem (E,k, ~T(&u) ~E, k, & is an operator in channel
space and a function of the relative energies and
the directions of relative momenta before the scat-
tering process, i.e., F., and the unit vector 5, and
after it, i.e., E, and k, . The energy available for
the scattering process is v. The terminology "on
shell, " "half shell, " and "off shell" is the same as
in Ref. 5. The channel decomposition of
(E,k, ~T(&u}~E,k, & is

(E,k, iT((u) iE,k, &
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is used. It ensures the simple volume elements
dr d~ and dE dk in the integrations. The relation
between the energy F in the c.m. system and the
magnitude of the relative momentum k~ is chan-
nel-dependent. The theory described in the fol-
lowing is independent of its particular form. Thus,
the relativistically correct relation

E={[ts (I)c ] +g k c

+ {[m,(2)c']'+ fi'k, 'c')"

can be used for NN and MN scattering. The density
of states with fragmentation I;, p, (E), is k&'dkt;/dE.
The radial channel functions &rc,glEc, Q& of Eq. (4)
are defined for all energies larger than the thres-
hold energy e, = [mt (1)c'+m& (2)c']'~'. They are
orthogonal and complete in each partial wave Q.
The two-body potential V has the same channel
decomposition as the transition matrix T(&t&) The.
T matrix and the potential V are matrices as far

as their dependence on the coupled channels c is
concerned. They factorize according to partial
waves. Since we treat each partial wave sepa-
rately, the partial wave label Q will be dropped
from now on.

The scattering states with outgoing waves are
obtained from the potential V by means of the
Lippmann-Schwinger equation

lt}&" (E)c& = lEc)+(E H'+f0} 'Vlf'(E)c&. (6)

In Eq. (6) H contains the kinetic energy operator
of relative motion and the rest energy of the chan-
nels normalized such that the lowest threshold
energy c, coincides with the zero of the chosen
energy scale. The usual identity between T ma-
trix, potential, and scattering wave function

T(E+f 0)lEc& = Vlf'(E)c&

yields, together with Eq. (6), a variety of relation!
between the channel-projected properties:

&e,c, l&'t&.', ~ &0&tlat, c,&=+ f as&z, c, tl&'tlzc&&act~&'ts, &c&,
c &c

(8a)

&E,c, lt('(E2)c2& =6(E, —E,)5, , +(E, —E, +f0) '&E,c,lT(E, +f0)lE, c,&, (8b)

&E,c& IT(&t&) lE,c,&
= &E,c& IV IE,c,) + g I dE(E c& I VIEc& (&t& E) '(Ecl-T(~) lE,c,&. (8c)

Equation (8c) follows from the I ippmann-Schwinger equation for the T matrix.
In the asymptotic region the scattering wave function takes on the form

(rlt}&'(E}c,& - ——. S, (E, r)A, (r) —g &3, (E, r)A, (r)(c, lS(E)lc)
Cy

where the sum over c, only includes the channels open at energy E and where S,(E, r) [@,(E,r)] are the
asymptotic forms of the incoming [outgoing] waves in channel c, i.e.,

( ) ( )
2

( )
exp[-f(kyar —2l,r)] (10}

The amplitude of the outgoing wave yields the S
matrix which is related to the on-shell T matrix
by

(c,lS(E)lc,) =5, , —2vi&Ec, lT(E+f0}lEc,&. (11)

Instead of the basis states lEc) of Eqs. (3) and

(4), the eigenchannel states

which diagonalizes the S matrix. The threshold
energies for the eigenchannels and the physical
channels are the same, i.e., e =e, . The matrix
O(E} is real and orthogonal, since the S matrix is
unitary and symmetric. As the basis states lEc),
the eigenchannel states lEc» are eigenstates of H
and are orthogonal and complete,

&E,o., lE,o.,& =6(E, —E,)5„.,

lE,a& = g ) dE, lE,c) (E,clE, c&&,

C
6'C

&EiclE.~& =6(E -E }&clO(E.) l~&

(12) p f usta-&&Eat=~
cx

(13}

will frequently be used. This is the representation
In eigenchannel representation the S matrix and
the T matrix take on the forms
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(n„IS(E)In,) =5~ „,exp[2ig(En, )],

(En, IT(E+i0) IEn, &
= —(I/v)5, ,sing(zn, }exp[ig(zn, )],

(14)

where g(En) is the eigenchannel phase shift. The asymptotic behavior (9) of the coordinate-space scatter-
ing wave function is

1

(rI&I&'(E)c,&- g p, (E—) A, ,(r) g (c, IO(E)In) r' „' exp[ig(zn)](nIO (E)Ic,). (15)
Cy CX

The unitarily transformed scattering wave func-
tions

Iq(z&n& = Q Iq'(E)c& &clO(E}ln) exp[ —ig{zn)]

create an additional completeness defect due to a
hard core. If there is a bound states IB& in the

partial wave Q considered and if there is an addi-
tional completeness defect D, the completeness
relation takes on the form

remain eigenstates of the full Hamiltonian. They
have the representation

(E,n, I&t&(E,)n, & =5(E, —E,)5,cosg(E, n, )

+d(z, -z,)-'&E, nIyIE, &n

(17)

Q f d&l &&E»1&«&z& I+ IB&&ail a=&. &21&

a

In Eq. (21) D has the configuration space repre-
sentation (rIDIr') =5(r-r')8(r, -r), where r, is
the radius of the possibly present hard core. The
reality of the wave functions (E,n, I&(&(E,}n,& and

their orthogonality and completeness relations are
the corner stones for the theory presented in the

following sections.

III. OFF-ENERGY SHELL CONTINUATION OF THE

MULTICHANNEL T MATRIX %HEN THE SCATTERING

STATES ARE COMPI. ETE

= (E,n, IT(E, + i0) IE,n, ) exp[ —ig(E, n, )]. (18)

The wave functions of Eq. (16}are real. This fact
is plausible from Eq. (15), but follows rigorously
from the reality" of {IJ). When using momentum-
space wave functions of ordinary normalization,
the transformation to real wave functions cannot
be achieved as in Eq. (17). %'e shall. frequently
refer to Q as the half-shell T matrix. Its on-shell
part is

(E,n, I &}& Iz, n, ) = —{I/v)5 sing(zn, ). (19)

($(E,)n, I&} (E,)n, &
= 5(E, —E,)6„„,. (20)

They are also complete provided there is no bound

state and the nature of the interaction does not

Whenever a Hermitian potential exists, which we
want to assume, the wave functions of Eq. (16) are
orthogonal,

In this section the multichannel transition matrix
is contiuned off the energy shell in the absence of
bound states and a hard core component in the in-
teraction. Our aim is to generalize the previously
developed techniques"" to those cases where
inelastic channels with different thresholds are
present and also to include relativistic corrections
to the kinetic energy. Hence, to clarify these
points we do not consider in this section the com-
plications of unitarity defects. However, most
NN and MN partial waves do not contain a bound

state, and the assumption of a hard core in either
the NN or the MN interaction appears unnecessary.
Thus, the results of this section also attain prac-
tical value.

The scattering states of Eq. (15), assumed to be
complete, are inserted as intermediate states into
the relation T(&d) = V+ V(&d —H —V) 'V. The un-
known Hermitian potential is eliminated in favor of
the half-shell T. The complete off-shell T matrix
is uniquely determined by the half-shell elements:

(E,c, Ir(~&lz, c,)= g &c, I o(E,) In, & &z,n, l r(~) Iz,n, )(n, Io'(z, & Ic,&, (22a)
CX~ +

&E,n, lT(~) Iz.n. &
= &E.n&l@IE2n2& «»g{E2n.) + Q J

«[(~-E& '- &P{z.-z} '] (E|nilylzn&(E2n21@lzn&
a

(22b)
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Thus, the arbitrariness in T is the arbitrariness
in fII), the half-shell T matrix in eigenchannel rep-
resentation. Its construction is the main objective
of this section.

In the absence of a unitarity defect, the scatter-
ing states are orthogonal and complete. Thus, the

i

wave operator

&E,a, lUlE, a, ) = (E,a, l(1)(E,)a, & (28)

is real and orthogonal. The singularities of U are
given by the phase shifts:

(~, , l lo.o. =&o,. Io(E —). )oooo,()(o)+o ,o(E —))) 'Io' tao, ,) ~ ooto*o.)II ~ (o o Ix(lo. .&.

(24)

The regular part X is related to the half-shell T
matrix (j):

&Eia, l&IE.a2)

&E, al@l E, a. &=(E. -E,)&E,a, lxlE, a, &

—i} , (I/2v)[sinr}(E, a,)

—sin)I(E, a, ) ].
(28)

Qne possible technique for constructing T cal-
culates the wave operator U of the form Eq. (24}
from its antisymmetric part A

(E,a, l&l E.a, &
= 4 (E. E,) '&E,a,-lelE. a.&,

(2'I)

which contains the symmetric part cr of Q, i.e.,

o = 2(4+4 '). (28)

Qn shell, cr reduces to a diagonal matrix in the
eigenchannel representation,

&Ea, l
a lEa, ) = —(I/w}5„„sin))}(Ea,). (29)

The antisymmetric part A determines thecomplete

=(E E) '[-&E a, l@IE,a,&
—l&E,a l@IE,a, &

,'&E,—a—,lqlE, a,&) . (28)

If one knew the scattering states lit)'(E)c&, not just
their asymptotic behavior, one would know U and

from Eq. (17) also the half-shell T matrix. Con-
versely, any orthogonal operator with singularities
as in Eq. (24) corresponds to an acceptable half-
shell T matrix with correct on-shell values. We
therefore construct half-shell T matrices by con-
structing orthogonal operators which have the
form of Eq. (24). The off-shell arbitrariness in

the T matrix is the arbitrariness in the regular
part X of these orthogonal operators. From X the
half-shell T matrix is obtained:

U through the unitarity conditions U U= UU = 1.
The numerical technique is described in Appendix
A.

Since A determines U, the half-shell T matrix
and also the off-shell T matrix according to Eq.
(22) can be calculated from the real matrix func-
tion &E,a, lolE, a, &. The function o is symmetric
and has the same number of degrees of freedom
as the underlying potential. The matrix dimension
of 0 is the number of coupled channels. The on-
shell elements of o are essentially the phase shifts
as given by Eq. (2S). The arbitrariness in the T
matrix, which is needed off shell in nuclear-
structure calculations, consists of the off-shell
continuation of this phase shift matrix. The chan-
nel mixing matrix (clO(E) la) does not enter the
construction of U at all. It is only needed in the
final step Eq. (22a} when the T matrix is trans-
formed back to the representation in terms of
physical channels.

IV. OFF-ENERGY-SHELL CONTINUATION OF THE

MULTICHANNEL T MATRIX %(HEN THE SCATTERING

STATES ARE NOT COMPLETE

We do not know a practical way to construct the
wave operator U of Eq. (23) directly in the pres-
ence of bound states and other unitarity defects.
The real wave operator U is not unitary any longer.
In order to apply the methods of constructing T,
as developed in Sec. III, to this case, we have to
rewrite the physical problem by a mathematical
trick: We assume a two-particle transition ma-
trix To,

T'((u) = V'+ V '((d -H'} 'T'((d),

with the following properties: Its potential V' be
given such that (i) it have the same physical chan-
nels and eigenchannels, i.e., the same channel-
mixing matrix (cl 0(E) la&, (ii) it have the same
bound-state energy Ee and wave function (EclB&
as the unknown two-body potential V, and (iii) if
there are physical reasons demanding a hard core
component for the two-body potential V, the aux-
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iliary potential V' contain the same such that
(V- V') D= 0 holds for the hard core unitarity de-
fect of Eq. (21}. The assumptions on V are quite
strong. The Appendix of Ref. 10 discusses a prac-
tical way how such an auxiliary potential can be
obtained for the physically most interesting uni-
tarity defect of a bound state. The outgoing scat-
tering wave functions of the auxiliary Hamiltonian
H +V, i.e. , IX'(E)c), are transformed unitarily,
in a way similar to Eq. (17),

T'(u) = (V- V )+(V —V )(&u H -—V) '(V —V )

is related to the transition matrices T((d) and
T'(~) by

(33b)

T'(~) = (V - V') + (V - V')(~ -H'- V') 'T-'(~),

(33a)

&E,a, IX(E,)o,&
= 5(E, —E,)5„„cosi}'(E,o.,)

+5'(E -E } '«i~ill'IE2o2&

(31)

T((u) =T'((u)+ Q'((d) iT'((u)Q'((d)

The operator Q'( )(dis defined as

Q'((d) = 1+ ((d H') 'T—'((d)

(34)

and can be calculated from the knowledge of V

The eigenchannels of IX'(E)c& and of the physical
wave functions are the same by assumption. In
contrast, the eigenphases will differ in general,
those of V' are denoted by rI (Ec() The r.eal half-
shell T' matrix of V is Q'; its on-shell part is

&En, lp'IEn, &
= —(1/v)5„~ sin&7'(En, ). (32)

Since both sets of scattering states, l(I&'(E)c& and

IX'(E)c), have identical completeness defects, the
real operator &X(E,)a, lg(E,)a,& is orthogonal. The
objective is to construct this orthogonal operator
using the methods of Sec. GI. The physical T ma-
trix will then be obtained from it and from the
knowledge of T'.

The two-body transition matrix defined by

= ((d H' —V') '-((o —H'). (35)

The relation (34} holds for any two Hermitian po-
tentials V and V and is derived in Appendix B.
We note that because of Eq. (33b) and the proper-
ties of V, the projector conditions

I» &BIT'(~) = T'(~}I» &BI =0,

DT'((d) =T'((o)D =0

are satisfied for the bound state IB& and for a hard
core unitarity defect. Thus, the physical transi-
tion matrix T(u&) can be obtained from the knowl-
edge of the matrix elements &X(E,)o., lT'(((&}lx(E,)n, &

alone using Eq. (34):

&E,c, IT(~}IE,c,&
= g &c, I o(E,) I o,& &E,~, IT(~) IE,~,& «, I

o'(E, ) lc, &, (37a)

&E,~, IT(~) IE2o2& = &E,~ilT'(~) IE.~.&

g J uz; 1 &zl x((zl &&l I&T'(»Ix(&l&ran&(x(~l& ll (&&ED-&(x(El l»~, (,»IE...&

ag'fx2'
(37b)

The matrix elements &x(E,)a, lQ ((d)IE,n, & are given in terms of the wave functions (31}according to Eq.
(35)

&x(E2)n2IQ'((d) IE&oi& = (~-E.} '((d —Ei)&E&(rilx(E, )o.& (38)

The construction of the matrix elements (x(E,)n, IT'((&)lx(E(,)n, & is therefore the remaining task.
The physical scattering wave functions lg'(E)c& and those of the auxiliary Hamiltonian are related by the

transition matrix T'((d) of Eq. (33):

l(I&'(E)c& = [1+(E -H —v +i0) 'T'(E+ iO)]l x'(E)c&. (39)

From Eq. (39), the singularity structure of the real unitary operator &X(E,)n, l $(E,)n, & can easily be ob-
tained,
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(xN )~ l&}(E.)~.& =tt(E -E )t} cos[t}(E c& ) -&V'(E2o'2)]+tp(E2-Ei) '&x(Ei)~ily'Ixw2)~. )&

where P' is defined to be

&x(E,)u, lt'Ix(E. )o.) = &x(E,)o, lT'(E, +f0)lx(E, )o.&exp(- f[&V(E,~,) - t}'(E,~,)]]

and reduces on shell to

& x(E)o', l O'Ix (E)u.) = - (l/v) t&, ,»n[t}(Eo.,) - &V'(E o.,) ]

(40)

(4l)

(42)

according to Eq. (34). The real unitary operator
(40} is identical in form to the physical wave op-
erator of Eq. (lV). Only the phase shifts in the on-
shell clemente have to be replaced by the differ-
ence in eigenphasee of V and V . Thus, the con-
struction procedure for the half-shell T' matrix in
the representation of scattering states of V', i.e.,
Q', is identical to the construction procedure of
the physical half-sheQ T matrix f in Sec. III. Thus
Q' is deterxmned 66m its Iymrnetrie part o', i.e.,

I

I

o' = &(P'+ p't), whose diagonal elements are given
by the phase-shift difference»}(Eu) —t}'(Ec&) Due.
to the lack of knowledge on the two-body interac-
tion, the off-diagonal part of o' is not determined,
but has to be parametrized.

Given P' from the construction of the real unitary
operator & X(E,}c&,Ig(E, ) c&,) the complete off-shell
transition matrix &x(E,)a, lT'(&d) lx(E,)o,) needed for
Eq. (3Vb) is given in terms of &II&' using Eq. (33b).

(x(E,)&r, IT'(~) Ix(E,)~.&
= &x(E,}n, I @'Ix(E.)u, & cos [rl(E.&r.) —t}'(E.o, ) ]

~ p j ~«--z& ' —a'&z. —E& '&&x&,&a, l& &Ix&E»&X&z&a. l& Ix&z». &4»
a &a

The on-shell T does not depend on off-shell ele-
ments of p', and (II)' determines all elements
&x(E,)c&, IT'(&d)lx(E2)a2). The off-shell arbitrari-
ness in the physical two-body T matrix is there-
fore the arbitrariness in the symmetric part 0' of

The matrix 0' has the same number of de-
grees of freedom as the underlying potential. Thus
the two-body transition matrix can be constructed
consistent with all scattering data even in the
presence of bound states and other unitarity de-
fects.

V. CONCLUSION

In the case of a multichannel partial wave the
two-body transition matrix for NN and MN scat-
tering can be determined from the energy and
wave function of a possible bound state, the on-
shell channel-mixing matrix 0(E), and a real sym-
metric matrix function g or o'. The experimen-
tal information on the eigenphases g(Ea} is incor-
porated in the on-shell elements of o or 0'; the
channel-mixing matrix is needed only to perform
the necessary transformation of the two-body
transition matrix from eigenchannel representa-
tion to the representation of physical channels.
The off-shell part of o or 0' is the part of the NN
and MN interactions not determined by scattering
experiments. This limitation of scattering infor-
mation requires the off-shell part of cr or 0' to be
parametrized. Otherwise one has to hope for a

q(Ec,) = f&(Ec,)+ie(Ec,} (44)

accounts for the loss of flux from the elastic chan-
nel c, to the open inelastic channels at high enough
energies, i.e.,

sudden breakthrough in the hadronic force problem
or perform off-shell experiments to determine it.

The construction procedure for the transition
matrix T combined with a phenomenological choice
of the off-shell a or cr' avoids the usual compli-
cations of a potential fit. It neatly separates T
into elastic and inelastic on-shell information, the
only kind of data accessable at present, and un-
known off-shell behavior. The two-body T con-
structed this way can easily be used for micro-
scopic nuclear-structure calculations in the NN
case and for determining the meson-nucleus opti-
cal potentials in the MN case. It provides aneco-
nomical link between NN and MN elastic and in-
elastic scattering data on one side and nuclear
theory on the other side. Especially, the direct
construction technique for T will make the ex-
pected wealth of high-precision NN and MN scat-
tering data readily available for nuclear theory
and, on this ground alone, should deserve the
attention of experimentalists and theorists alike.

In the region of inelasticities NN and MN scat-
tering experiments are presently described"'" in
terms of phase shifts for the respective elastic
channels c, only. The complex nature of the phase
shifts,
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2 ~/

(rl(»'(E)c, &- -p, (E)

x A, (r) exp[i5(Ec,)]exp[ —e(Ec,)]

sin[k( r ——,'l, v+6(Ec,}+is(Ec,)]

~x

(45)

In Eqs. (44) and (45) and in the remainder of this
section a possible coupling of NN channels due to

the tensor force is neglected for reasons of sim-
plicity in the presentation. The parametrization
of the scattering data according to Eq. (44) does
not yield the full multichannel S matrix rather its
nonunitary part in the direct channel c, only. It
therefore appears to be theoretically sufficient-
and it is also simplest for a start —to replace all
inelasticities in NN and MN scattering by one
dominant inelastic channel and treat this two-chan-
nel problem according to the methods of thispaper.
The full unitary Smatrix in this two-channel case is

S(E) =
2 i S (ECy )~

-2 E(EC y )

I& I Lb (ac
&

) + 6 ( a(2 ) 3 [I 8 -4dsc |I](/2

(I6(gc~) + h(ac2) j[I e 4E(a(;&) ]x/2

2 &S (SC2) -2~('SC, )
(46)

As long as the inelastic channels are not observed
directly, but only in their effect on the elastic
channel c„ the phase shift 5(Ec,} in the inelastic
channel remains experimentally undetermined and

has to be parametrized along with the off-shell
part of the basic quantity o or e'. E.g. , in a first
primitive description of the NN interaction one

may take v in the elastic channel c, from an ordi-
nary NN potential, ' on shell adjusted to the experi-
mental phase shift 6(Ec,) Assumi. ng that NC&, pro-
duction is the dominant source for inelasticity and

that NA scattering is dynamically similar to NN

scattering on and off shell, the same e may be used
in the inelastic channel c2 as in cg its energy de-
pendence properly shifted to account for the dif-
ferent channel threshold, e.g. , on shell 6(Ec,}
=5(E —e„c,). The coupling part of c may be ob-
tained from the one-pion exchange potential'4 in
Born approximation, the experimental inelasticity
parameter is required for the necessary transfor-
mation to eigenchannels. Numerical work along
these ideas are in progress. The ability to per-
form nuclear-structure calculations consistent
with all available scattering data on the basis in-
teraction between nucleons and between mesons
and nucleons appears to make such efforts worth-
while.

APPENDIX A. CONSTRUCTION OF (t& FROM THE
KNOWLEDGE OF THE PHASE-SHIFT MATRIX o

Here we assume that the phase-shift matrix 0 of
Eq. (28) is known, i.e., that a choice has been
made of its off-shell behavior and of its unknown

on-shell phase shifts at high energies or at ener-
gies where the experiments are incomplete
(see Sec. V). The technique for practically
performing the step from 0 to P in the ab-
sence of unitarity defects is the subject of this
Appendix. The knowledge of P enables us then to
calculate the off-shell extension of the T matrix
according to Eq. (22}.

The wave operator U of Eq. (23) splits into a
symmetric and an antisymmetric part, i.e., U=S
+A. The phase-shift matrix 0 determines the anti-
symmetric part A of U through Eq. (27), which in
turn determines the symmetric part S of U through
the unitarity conditions

S =1+A

SA —AS =0.

The first step in solving Eqs. (Al) is therefore the
computation of the matrix elements of A', i.e.,

(& l~' ~.-.(=-&g I «(K ("(& &(E. *I&I&
a ~a

(A2)

The matrix elements of A have principal value singularities. It is desirable to separate out the singulari-
ties of the matrix A. There is no unique way of doing so, however, that way of separation is chosen which

gives well-studied integrals in the computation' of A', when the thresholds are degenerate and relativistic
effects are neglected:

(E&~&l/IIE. ~2& =(P(E.-E,) '«. —e,) '"(E,-e )"«,~, lclEio2&+(E. -e.,) "«,~, l&IE2~.&

The matrix elements of A are smooth functions of energy,

«|~ilftlE, ~.& =(E2-E,) '[(E2-e~)"'(E',~il&IE2~2& —(E, —~~)"(E,~, lolE&~2&].

(A3)

(A4)
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The matrix elements of A' can now be computed:

«, I&'I&* .&
=- Q(&, — .&"«.— &".«I,~l,&&,(& .I.(& &.J dE(z- .&

"a'(E —&& '(E —E I
'

a &a

—Q (E, -ed"«,~, lolE,~) ««-e. ) "(E E,)-'(«.~, 1&1(E~) &E.-o. l&IE,~)l
&a

dE(E-e ) "(E,o(, )H(Ec()(E,c(, (H)Zc().
a "E'a

(A5)

In order to regularize the integrals in the second
and third terms of Eq. (A5), the vanishing expres-
sion

(E,~, I @IE2~2) = «io, lo lE2~2)

+ (E, —E,)(E,c(,~(S~E2c(,) . (A9}

(A6)

multiplied with an appropriate constant matrix
element is subtracted. The integral in the first
term can be evaluated as in Ref. 5 and we obtain

The alternative methods for constructing Q dis-
cussed in Ref. 10 can also be used in the present
context.

APPENDIX B. TWO POTENTIAL FORMULA FOR THE
OFF-SHELL TRANSITION MATRIX

= 'v(5E, E,)( E, —~-.) "(E,-e.) "'. (A7)

(E,c(,
~
A'~E, a,}= —6(E, —E,)6 , ,sin'ri(E, n, )

-«' ~ lgl,E,~,), (A8)

which also serves as a definition of the matrix g
whose elements are smooth functions of energy as
can be seen from Eqs. (A5) and (A8). Equation
(A5) manifestly shows that A' and g are symmetric
operators. All infinite energy integrations in Eq.
(A5) and those when Eqs. (Al) are numerically
solved are approximated by integrations with a
finite number of meshpoints. The operators g and
S therefore become finite matrices. Their matrix
elements vanish for all energy meshpoints below
the threshold energies in either basis state. Using
these finite matrices the algorithm of Ref. 5 which
solves Eqs. (Al} for S carries over unchanged to
the present case and is therefore not repeated
here. From S, Q is obtained according to

yhe factors (E —e )
'~' in the other three integrals

of (A5) do not create any convergence problems.
Using Eq. (29) the operator A' can be rewritten in
a compact form

Equation (34) is proven using identities between
the following propagators relevant for the transi-
tion matrices T, T, T' of Sec. IV:

G((d) =((d H' —V) ', —

G'(«&) = ((d -H' —V'} ',

g(«&) = ((d -H') '.
(Bl)

The propagators G and G' satisfy the following
relation with the transition matrix T' defined in
Eq. (33}:

G(«&) =G'((d)+G'((d)(V —V'}G(«&),

G(«&) = G'((d) + G'((d) T'((d)G'((d)

(B2a)

(B2b)

Two more relations involving the physical two-
body transition matrix T and the auxiliary one, T',
follow from (B2b) by specialization

G(«&) =g((d) +g((d)T(~)g((d)

G'((d) =g((d)+g(«)T'((d)g((d)

(B3a)

(B3b)

+g '((d)G'(~)T'((d)G'(«&)g '(u&) (B4)

The term in square brackets is T as can be seen
from Eq. (B3b). Furthermore, since Qo(«&) defined
in Eq. (35) is Go(«&}g '(«&), the Eq. (34) is proven.

When solving (B3a}for T and using (B2b), one ob-
tains

T(«&) = la' '(«&)G'((d)g '((d)-g '((d)l
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