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Three-body force from kinematical effects in the three-nucleon system
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A Galilean-noninvariant correction to ordinary one-boson-exchange potentials is derived. It gives rise to a three-
body force in the three-nucleon system. Its importance for the properties of the three-nucleon bound state is tested
and found to be small. This result justifies the common practice which neglects the dependence of the one-boson-
exchange potentials on the total momentum of the interacting pair in many-nucleon systems.

NUCLEAR STRUCTURE Three-body gound state dependence of nucleon-nucle-
on potential on total pair momentum.

A two-body potential arising from particle ex-
change has a part which depends on the total mo-
mentum of the interacting pair P, . This Gali-
lean-noninvariant piece of the potential is known
for the one-photon exchange and is usua, lly taken
into account when the Breit interaction' is applied.
The corresponding piece of the two-nucleon one-
boson-exchange potential has never been employed
yet, It is unnecessary when the potential v(P, )
is fitted to the two-nucleon data, since in this case
a. coordinate system can always be chosen in which
the tota. l pair momentum is zero. The Galilean-
noninvariant part of the one-boson-exchange poten-
tial, i.e. ,

&v(P, ) = v(P, ) —v(0),

will only show up in the description of a many-nu-
cleon system. In this paper we explore its impor-
tance and choose as an example its effects on the
three-nucleon bound state. What is the interest in
this particular case?

The three-nucleon bound state is considered for
vanishing overall c.m. momentum. In this case the
total momentum of the interacting pair P, equals
-q, the negative momentum of the spectator nu-
cleon. The Galilean-noninvariant part of the one-
boson-exchange potential therefore depends on the
relative momentum p of the interacting nucleon
pair and on the spectator momentum q. Therefore,
it is a qenuine three-body force (p'q'l Vlpq), i.e. ,

(p'q'I vlpq&= f(q' —q)(p lv(-q&lp&. (2)

As will become evident from its explicit form, it
is repulsive when the spectator nucleon approaches
the three-body c.m. , even for fairly large spatial
separations of the interacting pair. This spatial
distribution of repulsive potential energy is quite
different from the way the repulsive cores of the
two-nucleon potentials act, and therefore deserves
investigation. Next, the explicit form of the three-
body force'is given, then its effect on the 'H bind-

„1( „ )' (3)

The plus (minus) sign holds for scalar (vector)
coupling, g' is the coupling constant, m the mass
of the exchanged meson, and M the nucleon mass.
The meson parameters used are listed in Table I.
There is no contribution from pseudoscalar coup-
ling. The contributions of Eq. (3) arise from the
coupling vertices, not from the meson propagator.
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FIG. 1. Notation of the momenta used for the descrip-

tion of the one-boson-exchange potential.

ing energy and the 'He charge form factor is pre-
sented, and finally the physical implications of the
results are discussed.

The ordinary derivation' of the one-boson-ex-
change potentials is redone assuming nonvanishing
pair momentum P, as in Fig. 1. The derivation
is not carried out in helicity representation; the
spin dependence of the coupling vertices is kept
in operator form. The derivation is sketched in
the Appendix. Scalar and vector coupling yield the
following contributions to Av(P, ) up to the order
[5,./(Mc)I':
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TABLE I. Meson parameters used for the Galilean
noninvariant contribution in the one-boson-exchange
potential. The parameters are taken from Ref. 3. J
and T denote the spin, parity, and isospin of the meson.

O
O

Meson J T gpss (MeV) g, 2/4~ [(MeV fm) ] f/g

0+

0+ 1
1
1 0
1 0

520
960
711
783

1020

5.66
0.82
0.50

10.00
0.00

0
0
6.2
0
0

O
O

In the same order (Mc) ' there are also (partly
spin dependent) cross terms of the form p P,
and p x 5, which are not kept in the present ex-
ploration. Their effect is hoped to be suppressed
due to an effective averaging over the angle be-
tween p and I~, in the nuclear many-body sys-
tem. The correction potentials 6v(g, ) are dis-
played in Figs. 2 and 3 in a mixed representation.
As compared to the ordinary two-body potentials
there is a reversed spatial distribution of repul-
sion and attraction. The potentials 5v(P, ) are
relativistic corrections. We are well aware that
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FIG. 3. Three-body force of Eqs. (2) and (3) and of
Table I in configuration space. The nucleon pair inter-

, acts in 3S~. The $~ Reid soft-core potential is shown
for comparison as solid curve. For details see Fig. 2
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FIG. 2. Three-body force of Eqs. (2) and (3)'with the

parameters of Table I in a mixed representation, i.e. ,
(r']5v( —q)]r) =6(r' —r)v(r, q). The nucleon pair inter-
acts in ~SO, the corresponding relative distance is r.
The potential is shown as dotted curve for q= qMc, a
value close to the cutoff q~ in the solution of the Fad-
deev equations. In coordinate space the potential is
nonlocal with respect to the distance of the spectator
from the c.m. of the pair. The right scale refers to
e(r, q). The So Reid soft-core potential is shown for
comparison as solid curve, the left scale refers to it.

the naive derivation of 6v(P, ) does not yield the
relativistic corrections in a systematic way.
However, it clearly yields an order of magnitude
estimate sufficient for the present investigation.
If need arises for an improved derivation, it
should follow the ideas of Ref. 4.

The three-body force of Eqs. (2) and (3) is used
in a calculation of the three-nucleon bound state.
The Heid soft-core potential' in the partial waves

Sp and 'S, —'D, is taken as the standard two- nu-

cleon interaction v(P, = 0). An ordinary three-
body potential (p'q'] V~ pq} is regular in three-body
space and therefore must be treated differently from
two-body potentials in the Faddeev equations for the
three-nucleon bound state. The special three-body
force of Eqs. (2) and (3) considered here has, how-

ever, with respect to the spectator momentum q, the
same singular behavior as atwo-bodypotential. It
can therefore be treated on the same level as the
two-body potential. It is summed together with
the two-body potential into a two-body transition
matrix, whose parametrfcal dependence on the
spectator momentum now arises from the potential
as well as from the three-body Green's function.

Thus, thethree-body force of Eqs. (2) and (3) is
included in a calculation of the three-nucleon
bound state without any technical complication as
it stands, taking into account all three possible
combinations of interacting pairs and spectating
nucleons. The momentum cutoff for the spectator
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momentum q, used when solving the Faddeev equa-
tions, ' i.e. , q =3.6 fm ' for the Jacobi coordin-
ate q, prevents the three-body force from being
used for large q when its behavior becomes irregu-
lar. Consistent with the spatial shape of the three-
body potential, shown in Figs. 2 and 3, its effect
on the binding energy is repulsive, but the repul-
sive effect is very small. The inclusion of the
three-body force decreases the binding energy by
0.05 MeV compared to a calculation based on the
Reid soft-core potential without the three-body
force. The relative changes in the 'He charge
form factor are up to momentum transfers Q'
= 100 fm ', outside the diffraction minima, always
smaller than 10, usually of the order of 10 '.
The diffraction minima shift by less than 0.1 fm
We also note that the used meson parameters of
Table I refer to a one-boson-exchange potential
with eikonal form factors. In contrast, the meson
parameters of Ref. 7 decrease the overall size
of the three-body force gv in the spatial region of
importance. In the latter parameter set the coup-

ling constants of the vector mesons are compara-
tively large. The attraction in 5v at small relative
distances is therefore increased as compared to
Figs. 2 and 3, pushing the zero of 5v out to 1 fm
and simultaneously reducing the maximum repul-
sion by a factor of 10. Thus, our calculation can
even be interpreted to yield an upper bound to the
effect of the studied three-body force 5v.

We conclude that the studied three-body force
affects the properties of the three-nucleon bound
state in an entirely insignificant way. We do not
take this as a negative result, but rather as a grat-
ifying illustrative proof, that the standard proced-
ure, which uses the one-boson-exchange poten-
tails with P, =0 also in a many-nucleon system,
is quite well founded.

The authors are grateful. to K. Holinde for useful
discussions on this problem and for his help in
deriving the results of Eq. (3). The calculations
were performed at Regionales Rechenzentrum fGr
Niedersachsen. The work was supported by funds
of the Deutsche Forschungsgemeinschaft (DFG).

APPENDIX

g
2 Mc2 Mc2 Mc2 Mc2 P 1/4 u&~ (P&)L'u& (P, )u@(P2)t'u&(P2)

4~ . (P') E(p') &(P~) &(P2) [E(p,) E(p, )] —-(p, - p, ) c -m'c'
In Eq. (A1) u~. (p,.) denotes the positive-energy Dirac spinor with the normalization u, (p) u, .(p) = 5&, , I
the meson-nucleon vertex, p, =2 0, +p, p, =-,'P, —p, and E(p, ) =(Mc'+p,.'c')"'. The plus (minus) sign
holds for scalar and pseudoscalar (vector) couplings. The spinor normalization factors, i.e. , the power
—,
' of the square bracket, appears strangely chosen. With this choice, however, the matrix element (Al)
reduces in the two-body c.m. system to that form of the potential, which makes' the Blankenbecler-Sugar
approximation to the Bethe-Salpeter equation formally identical with the Lippmann-Schwinger equation.
Thus, the potential (A1) is to be employed together with the nonrelativistic kinetic-energy operator. In
this way it is used in the calculation of this paper.

In contrast to (Al), the ordinary derivation of the Breit interaction —the original motivation for the
present work —interprets the Born term in the perturbation expansion for the S matrix as potential. This
Born term differs from (A1) by spinor normalization factors, i.e., it contains the power —, for the square
bracket, and it should be used together with a relativistically corrected kinetic-energy operator. The
resulting potential would be larger by a factor of 2 than that of Eq. (2) without changing the conclusion of
this paper.

For the explicit evaluation of the potential (Al) the spinors are needed in the combination
u&(p,.)IMc'/E(p, .)]'/ . They are expanded up to the order (Mc) ', i.e.,

(Al )

The potential corresponding to the one-boson-exchange process of Fig. 1 is given by the following matrix
element

Mc" /

u, , (p, ) =I o, P, ~X...
E(P&) ( 2Mc l

(A2)

g~. being two-component Pauli spinors. The vertices
i

'
-E(p,'. ) &(P;)-

u, ,(p,')f'u. . (P;)

in Eq. (Al) are calculated up to the same order (Mc) ' and their dependence on the c.m. momentum P, is
made explicit:
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P' P+ i&i(t)'x P) + a (1)'+ P) ' ~ .g(p!) g p
~I 2Mc/

+~4 p. '+—o,((V'- p) x p, ) X, (AS)

(A4)

M 2 ~ 1/4 P

ii)„(p,'.)you, .(p, ) = g, , + p' p+ pc (p' x p)~-,' (p'+ p)g(p!) E(p ) i 2MC

+~P. '~
2

c,((P'-P)xp, ) X&, ,
al

(A5)

+&, (p'. )yii& (pi) = &z, [+P'+ p+ &e, x (P' —P)+ P )X
g(p ) g(p )

'c 2Mc

The upper (lower) sign refers to i =1(2). The meson propagator takes the form

1

[&(p,') —&(p, )]'- (p,' —p )'c' -m'c'
l

(-1) (»~' (p"-p')' ((p'-p) &,.)')
(p', —p, )'c'+m'c ( 2Mc j .(p' —p) +m'c' (p'- p)'+m'c' .

(AT)

The results (AS)-(AT), when inserted into (A1), yield Eil. (S), provided the following approximations are
(I) Terms of the order (Mc) and higher are neglected. (ii) It is assumed, though numerically not

checked, that the c.m. dependences (p'+ p) 5, and (p'- p) x 0, of order (Mc) are effectively averaged
to zero in the many-nucleon system. (iii) Since a correction in p, is calculated, the nonrelativistic form
of the propagator is used, i. e., the term [1/(2Mc)'](p'- p )'/[(p' —p)'+m'c']' is also dropped. According to
(A4) there is no contribution to &v(P, ) from pseudoscalar coupling. For the vector coupling case the
gradient contribution is included. There is, however, no dependence of 5v(P, ) on the coupling constant
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