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The question of whether one can consistently define and extract nucleon-delta scattering parame-
ters, phase shifts, and inelasticities from the partial-wave NN~NA amplitudes is discussed. We
have studied the unitarity relation and identified the conditions under which the extraction of such
quantities is meaningful. Then these conditions were tested in several coupled-channel models of
the NN-Nh system.

I. INTRODUCTION

The reaction pp~npm. + was analyzed by Wicklund
et al. ' and by Shypit et al. ' in the kinematic domain in
which the proton and pion form a delta resonance in the
final state. The analysis determined the major NN-Nh
partial-wave amplitudes, and from them Nb-Nh phase
shifts were extracted whose energy dependence turned
out to be smooth. That fact is taken as proof against the
existence of broad dibaryon resonances.

Since the 5 is not a stable particle but a rather wide
AN resonance (I t, -114 MeV at the resonance position),
the NA phase shift does not appear to be well defined. In
fact, by looking at the formal structure of the NN~Nh
amplitude in his coupled-channels model rewritten in a
distorted-wave form, Lee has concluded that due to the
width of the delta, the quantities extracted in Refs. 1-3
may not be identified as the Nd phases, but something
more intricate, the physical meaning of which could only
be disentangled with the help of models.

Although the phase shifts are not the observables, they
provide us with quite valuable information concerning
the nature of the underlying interaction in a given
scattering process. For example, if they could be defined
properly, the phase shifts (and inelasticities) allow for a
natural representation of the NN Nh amplitude linked -by
unitarity to the NN-NN amplitude, which then enables us
to determine the Nh-XA amplitude which is otherwise
not accessible experimentally.

As an attempt to clarify this situation, we have decided
to study the scattering problem of a nucleon and an un-
stable delta within a (meson-exchange) potential model.
This may allow us to establish under which conditions
the NA phase shift can be consistently defined. We then

have studied how well these conditions may be satisfied
by exploiting several realistic models for the coupled
NN-NA system.

II. TWO-CHANNEL CASE
WITH A STABLE 5 PARTICLE

1
G)(F., q) ) =

E q i /2pi+ 1 6
(2)

1
G2(E, q2)=

E (me —m~) ——q~/2@~+i e

with the reduced masses

In order to facilitate our later discussion, let us first
consider a simple NN-NA coupled-channel problem with
a stable 6 and with real interaction potentials. For sim-
plicity, let us further assume that one NN partial wave
couples to only one Nh partial wave. We denote the NN
system as channel 1 and the Nh system as channel 2.
Then the off-shell coupled-channel equations in the
overall c.m. system, upon suppressing the partial-wave
indices, read

T; (q;, q )= V&(q;, q )

2

+ g f "qkdqkV;k(q; qk)
k=1

XGk(E, qk)Tk (qk, q ), (1)

where q, and q2 are the NN and NA ofF-'shell relative mo-
menta, respectively. The Green's functions are
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m~
P1 (4)

III. T%0-CHANNEL CASE
WITH UNSTABLE h, PARTICLE

m~mg
P2 m~+mg

The redefinitions

F;,(q;,q, )= Q—mp;q; T; (q;, q, )Qm. pjqj,

lj( ql& qj} + pq 'lj ql&qj)+ pjqj

gk(E qk } Gk(E qk )
7TP k

(8)

make our subsequent discussion somewhat simpler, and
lead to the equations for the new amplitudes I',":

F,"(q, , q, ) = U,, (q, , qj )

2

+ g f dqkU;k(q; qk}
k=i

Xgk(E, qk }Fk,(qk, q, },
while the new propagators (8}obey

imgk(E qk ) ~(qk kk }

so that

(9)

(10)

2

ImF, (k, , k )= g "F;k(k, , kk)Fk'(kk, k ) .
k=1

(13)

From Eq. (13) it follows that the amplitudes F, (k, , k, )

can be represented as

f dqkImgk(E, qk)=1 . (11)
0

In Eq. (10) k, and k2 are the on-shell momenta for the
NN and Nh channels, respectively, determined by the
scattering energy E. Since we have assumed real poten-
tials, the solutions of Eq. (9) satisfy the off-shell unitarity
relations

2

IrnF, (q, , q )= g f dq„F,„(q,,q„)
k=1

XImgk(E, qk)Fkj(qk, qj) . (12)

Then, as a result of Eq. (10), the on-shell unitarity rela-
tions are simply

Let us now consider the case where the 6 is not a
stable particle so that the 5 propagator of Eq. (3) (in the
presence of a spectator nucleon) is to be replaced by

G2(E, q2)=
1

Sj,(E,q, )+ (i /2)I (E,q, )

2 . i533
sin533e

where I'j,(E,q2) is the width of the b, and Sa(E,q2) can
be obtained from a microscopic model of the pion-
nucleon P33 resonance or by fitting it directly to the P33
phase shift at pion-nucleon energies determined by E and

q2, the simplest form of Sj,(E,q2) may be identified as the
inverse of G2(E, q2) of Eq. (3). The reduced mass }Ljz in

Eqs. (6}—(8}will then be replaced by

pz= ——f q2dq2ImG2(E, q2), (16)

where p2 is now a function of the energy E which is
determined by the nucleon-nucleon on-shell momentum
k &. Thus Eqs. (6)—(8) remain unchanged. The only
change is that Eq. (10) no longer holds for the Nh (k =2)
channel, but Eq. (11)still is valid:

f dq2Img2(E, q2)=1 . (17)
0

We note that when E is below the mNN threshold,
ImG2(E, qz) is zero; thus Eq. (16) and the simplification
as exercised in Eqs. (6}—(8) do lose their meaning. Since
the Nh channel is closed in this case, the redefinition of
the amplitudes involving this channel is not needed any-
way. Since our present interest is concerned with the Nh
phases, we may safely assume that we are always above
the pion production threshold; thus no modification of
the formulas is required.

If we continue to assume real potentials, the unitarity
relations (12) now become [some discussion on the effect
of retarded (complex) potentials which are introduced by
the requirement of three-body unitarity will be given in
Sec. IV]

ImF„(k) k& ) = lF), (k„k) }I'

+f dq2lF&2(k&, qz)l Img2(E, qz),
0

(18a)
2i h~F„(k„k,) =—(ge "—1),
2i h~

F~2(k2, k2) = (re —1), —.
l

(14a)

(14b)

ImFzz(q2, qz ) =F2&(q2, k& )F&&(k~, q2 )

+ f "dq2'F22(qp q2
0

X Img2(E, q 2' )Fz2(q 2', q z ), (18b)

F (k k )= '(1 —g2)~ j2e (14c)

where the three real parameters g, 5&, and 6& are the
inelasticity, and the NN and NA phase shifts, respective-
ly, which are functions of the scattering energy. From
Eqs. (14a), (14b), and (14c), one may obtain F2& from the
knowledge of the amplitudes F» and F,2.

I~)q(k), qq) =F))(k),k) )F)2(k), qq )

+f dqq'F)q(k), qq' }
0

Xlmg2(E, qz')Fz2(qz', qz) . (18c)

We stress where that Imgz(E, q2 ) being not any more a 5
function is a manifestation that for a given energy E a
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unique on-shell momentum cannot be assigned to the NA
system due to the finite 6 decay width. It is thus ap-
propriate to keep the off-shell momenta q2's in the above
expressions.

To proceed further we note that Imgz(E, qz ) is normal-
ized to unity, and that from Eqs. (8) and (15)
Imgz(E, qz)rr. I ~(E,qz); thus this quantity may be re-

garded as a measure of the "on-shell" momentum distri-
bution of the NA system within the resonance width. So
the quantity

( 3 (E) &
=f dqzA (E,qz)™gz(E,qz)

0

ImF]](k] k] ) IFI] (k] k] )I + & IF]2(k] ) I'&

Im(F22& =I&F„(k,) &I +(F22F22&,

(20a)

(20b)

Im(F, 2(k, ) & =F„(k„k,)(F]2(k, ) &+ (F]2(k, )Fzz &,

language). Thus, in Eqs. (18), we are constructing prod-
ucts of amplitudes and averaging them over the 6 width.
We can now carry out this averaging procedure a little
bit further: We multiply Eq. (18b) by
Imgz(E, qz)Imgz(E, qz) and integrate over qz and qz,
and similarly multiply Eq. (18c) by Imgz(E, qz) and in-

tegrate over q2. We thus find

has the meaning of the expectation value of A over the
available width of the b, resonance (or, equivalently, aver-

age over the 5 mass distribution, in a covariant where the average quantities are defined as

(20c)

(F]2(k, ) &
=f dqzF]2(k, , qz)Imgz(E, qz),

0

(Fzz &
=f dqz f dqzImgz(E, qz)Fzz(qz, qz )Imgz(E, qz),

0 0

& IF]2(k])l'& =f dqzlF]2(k], qz)l'Imgz(E, qz),
0

(F22F22 &
= f dqz f dqz f dqz'Imgz(E, qz)F22(qz, qz')Imgz(E, qz')Fzz(qz', qz)Imgz(E, qz),

0 0 0

(F»(k, )F22&= f dq,
"f dq,'Img, (E,q,")F»(k, ,q,")Fzz(qz', qz)lmgz(E, qz) .

0 0

(21a)

(21b)

(21c)

(21d)

(21e)

Then, as in Eqs. (14), one is tempted to parametrize F]],
(Fzz&, and (F]2& as

I

be obtained from the average amplitudes (F,z& and
(Fzz &. This point will be touched upon later.

2i SNF]](k],k])=—(7)e "—1),
l

(22a)
IV. TESTING THE CONDITIONS

ribs

2l
7

(F (k ) &
—] (1 «2)1/2 ' N

(22b)

(22c)

g g g 7 (23a)

where the three inelasticity parameters g, g', and g" are
all independent as well as the two phases 5a and 52,. All
scattering parameters are functions of the scattering ener-
gy E. However, this representation only makes sense
physically, if all NA phase-shift parameters and all inelas-
ticity parameters become approximately equal, i.e.,
5a ——5a, and ri=ri'=2)". In fact, they become exactly
equal:

In the previous section we have identified the condi-
tions Eqs. (24) under which the Nb, phase parameters
may be defined consistently. So our task now is to find
out to what extent these conditions may be satisfied in
reality. We shall carry this out here in the context of
meson-exchange potential models of the coupled NN-Nh
system. In particular, we consider two dominant partial
waves, JP=2+: 'Dz(NN) Sz(N b ), and -JP=3
F3(NN)- P3(NE). Coupling to higher Nh orbital angu-

lar momentum states are disregarded since the effects are
quite small. Four different force models are employed.

(A) Realistic potentials which we have adopted are the
following: For the diagonal NN potential, we took

6q=6~, (23b)
v] 1 VParis V]2( 2+ G2 22G2 ) V21 IE =0 (25)

&IF (k, )I'&=I(F„(k,)&I',

(F„F,*, &
= l(F„&I',

&F]2(k, )F,*, &
= (F]2(k] ) & & F„&' .

(24a)

(24b)

(24c)

It is worth remarking here that the conditions Eqs. (24)
are equivalent to the following requirement: Physical ob-
servables identified as averages over the 6 width should

if the coupled unitarity relation Eq. (13) holds among F»,
(Fzz &, and (F,z(k, ) &, i.e., the following conditions are
met:

where

t22 V22+ V2262t22 . (26)

This guarantees that the solution of the coupled-channel
equations is identical to that of the Paris potential at
E =O. For the transition potentials V,z, we used the stat-
ic potential model with the m and p exchanges developed
by Hajduk et al. In this model all the meson-nucleon-
nucleon and meson-nucleon-delta vertices are regularized
by a square-root-monopole form factor with a cutoff mass
A = 1200 MeV/c.

For the Xh-Ã6 potential, we adopted a standard
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TABLE I. Phase parameters of the NN 'D2 and Nh 'S2 channels for models (A) —(D) at three
different nucleon-nucleon laboratory energies (in MeV). The experimental NA phases extracted in Ref.
3 at 643 and 796 MeV are, respectively, 5& =31'+3' and 5&= 13 +2'.

Model

(A)

(B)

(D)

y LAB
N

600
800

1000
600
800

1000
600
800

1000
600
800

1000

(deg)

17.4
—2.4

—16.5
16.7

—1.7
—15.2

12.8
1.5

—6.2
12.0
4.2

—3.5

0.72
0.54
0.69
0.72
0.57
0.70
0.85
0.74
0.85
0.89
0.78
0.81

0.72
0.55
0.71
0.72
0.58
0.72
0.85
0.74
0.86
0.89
0.79
0.82

0.72
0.56
0.71
0.73
0.59
0.72
0.85
0.75
0.86
0.89
0.79
0.82

5~
(deg)

—1.5
2.9
2.4

—0.4
0.5

—1.3
2.4

11.8
13.7

—1.5
—10.0
—18.5

5~
(deg)

—1.3
2.9
2.9

—0.3
0.6

—0.9
2.8

11.4
13.2

—1.5
—10.1
—18.5

three-body picture: the u-channel one-pion-exchange
(OPE) process which contains all the three-body singular-
ities, to which we added —,

' of the static OPE potential.
The n.Nh form factor was taken consistently with the
NN-NA transition potential, viz. , a square-root monopole
with A=1200 MeV/c. Relativistic kinematics was used
for the pion and nucleons, and the 5 propagator (15) was
constructed directly from the P33 phase shift and was ex-
trapolated to the subthreshold region as

G2(E, q2 )=, s2(q2 ) ((mz+ m „), (27)
s2 q2 +

where s2(qz) is the pion-nucleon invariant mass squared.
The constants n and p were determined such that, the
propagator and its first derivative are continuous at
s2(q2)=(mz+m„) The b. , propagator and the Nb, -Nb,
potential have been constructed consistently with the re-
quirements of three-body unitarity.

(B) From the model (A) described above, we construct-
ed a second model by adding a residual Nh-Nh interac-
tion. This interaction was assumed to be a static poten-

tial generated by the exchange of a p meson in the u
channel and by the t-channel exchange of ~, p, co, and o.
mesons, with the pNA and meson-delta-delta coupling
constants taken from the naive SU(3) quark model, and a
square-root-monopole form factor with A=1200 MeV/c
was used at every vertex.

(C) We have also considered the coupled-channel mod-
el developed recently by Bulla which is quite similar to
the model of Lee, ' in which the transition potentials
have a monopole cutoff form factor with A=650 MeV/c.
In this model the delta propagator is obtained from an
energy-dependent separable potential using a monopole
form factor with A=288 MeV/c and the Nb-Nh poten-
tial is constructed consistently with the delta propagator
so as to satisfy three-body unitarity.

(D) This is identical to model (C) except that the resid-
ual Nh-N5 interaction is added.

With the above interactions we have solved a coupled
Lippmann-Schwinger-type equation for F;, 's, and ex-
tracted the phase parameters according to Eqs. (22). The
result is presented in Tables I and II. Clearly, we find

TABLE II. Phase parameters of the NN 'F3 and Nh 'P3 channels for models (A) —(D) at three
different nucleon-nucleon laboratory energies (in MeV). The experimental Nh phases extracted in Ref.
3 at 643 and 796 MeV are, respectively, 5& =6'k3' and 5&=5'+2'.

Model

(A)

(D)

z hb

600
800

1000
600
800

1000
600
800

1000
600
800

1000

~N

(deg)

0.1
—5.4

—17.5
0.3

—5.5
—17.3
—3.2
—5.5

—10.9
—3.1
—5.6

—10.9

0.90
0.66
0.67
0.90
0.66
0.67
0.96
0.83
0.80
0.96
0.83
0.80

0.92
0.68
0.67
0.91
0.68
0.67
0.97
0.84
0.81
0.96
0.84
0.81

0.92
0.69
0.68
0.92
0.68
0.68
0.97
0.85
0.81
0.97
0.84
0.81

6~
(deg)

3.2
11.2
17.4
3.3

11.5
15.4

1.3
1.9
1.0
1.4
2.4
1.1

6~
(deg)

3.6
12.1
18.1

3.8
12.4
15.9
1.5
1.7
1.1
1.5
2.3
1.2



42 DOES IT MAKE SENSE TO TALK ABOUT Nh PHASE SHIFI'S? 2319

that within a given model the three inelasticity parame-
ters g, g', and g", all stay very close to each other. This
is true also with the two Nb phase shifts 5z and 5&. In-
cidentally, we remark that since our u-channel Nh-NA
potentials are nonstatic, there is an additional contribu-
tion to the unitarity relation Eqs. (18) due to three-body
unitarity. However, the fact that Eqs. (23) are well
satisfied (particularly the near equality of the inelasticity
parameters) means that this nonstatic effect is quite small.
So, in fact, conditions in Eqs. (24) are quite well satisfied

by the averaged amplitudes, which means that from the
knowledge of the NN-NN amplitude and the average
NN NA a-mplitude (F,z(k, ) ) one may indeed deduce the
average Nb;Nb, amplitude (F22). It is important to
stress here that Eqs. (24} are satisfied quite irrespective of
the model interactions employed here. This, we think, is
a rather important consequence of the present study.

It should be useful to plot some Argand diagrams of
the amplitudes we have obtained above. They are shown
in Figs. 1 and 2 for the NN-NN and NA-Nb, channels in
the J=2('D2, S2), and J=3( F3, P3) partial waves, re-
spectively. In the figures numbers signify the nucleon-
nucleon laboratory energies in the units of 100 MeV. At
400 MeV we are near the ~NN threshold and consequent-
ly the Nh-NA amplitude lies almost at the origin. In
some cases the Nh amplitudes rotate clockwise and in
other cases they rotate counterclockwise, whereas the NN

-03

-03

Im F

03
Re F

03
Re F

Irn F

FIG. 2. Argand diagrams for the NN 'F3 (dashed lines) and
NA 'P3 (solid lines) channels obtained from (a) model (A) and
(b) model (B). The numbers indicate the nucleon-nucleon labo-
ratory energies in units of hundreds of MeV.

-0 3

-0.3

0

Im F

03
Re F

03
Re F

amplitudes always move counterclockwise. This should
be due to the fact that while the adopted interactions are
constrained (not very strongly, though) by the NN phase
parameters from the existing phase-shift analyses, no
such constraint has been adopted from the available data
in the NN~Nb channel, ' although those data are quite
scarce. Therefore, the Argand amplitudes of Figs. 1 and
2 should be taken as illustration for the potential of the
method in extracting Nh-NA scattering amplitudes. In
this respect, we should also remind the reader that we
have not included the coupling to the rrd channel, which
is known to be very important and which will affect the
inelasticity in the 'D2- S2 channe1:" Its inclusion leads
to a three-channel problem adding the md —+m.d,
vrd ~NN, and ~d ~NA amplitudes. In this case the uni-
tary parametrization of the T matrix is more complicated
than Eqs. (14) since it involves six real parameters; how-
ever, one can still determine the NA-Nh amplitude from
the knowledge and the nondiagonal amplitudes once the
extended conditions of Eqs. (24}are still well satisfied.

FIG. 1. Argand diagrams for the NN 'D, (dashed lines) and
NA 'S2 (solid lines) channels obtained from (a) model (C) and
(b) model (D). The numbers indicate the nucleon-nucleon labo-
ratory energies in units of hundreds of MeV.

V. FINAL REMARKS

Our present study was triggered in part by Lee's for-
mal observation discussed in the Introduction. To the
extent of what we have found, his concern may be safely
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put away: The phase of a partial wave NN —+Nh ampli-
tude can indeed be identified as the sum of the NN and
NA phase shifts. As a matter of fact, it is our feeling that
the distorted-wave representation of the NN~NA am-
plitude devised in his discussion may not be particularly
suited for invoking a useful insight. As an example, let us
use our simple model of Sec. II with the stable 5 and re-
peat the derivation of the NN-NA amplitude following
the steps of Lee. Then one finds that the amplitude
takes the following form:

'~~x+~~iF',2(k„k2)=e f (k„k~,5~,5~), (28)

cr(NN +hN)= g —(2J+1)(iFi2(ki )i ),
k

(29)

and in fact requires the averaged NA amplitude as of Eq.
(21c). In contrast, the analysis of the experiinent' uses

cr(NN hN)=, y(2J+1)i(F„(k,))i',
Ic

1

(30)

for a comparison with data and extracts the averaged am-

where 5~ is a complex phase, the real part of which is
equal to 5~ of Eqs. (14) while 5~ is real in this simplified
model and is the NA phase shift in the absence of the
coupling to the NN channel. The fact that 5~ is complex
makes the function f also complex. Now the amplitude
Eq. (28) must be identical to the one in Eq. (14c). So the
sum of the phase of the function f in Eq. (28) and 5&
must give 5~, which cannot be inferred easily from this
distorted-wave formula, however.

Within the models we have adopted for the NN and
NA interactions, it is fair to conclude that the Nh phase
shifts (and the corresponding inelasticities) may be con-
sistently defined from the relevant partial-wave ampli-
tudes averaged over the 6 width. That this holds quite
well irrespective of the different behavior of the NA
phase shifts for different models supports that this con-
clusion may be rather model independent and thus gen-
eral. One of the possible reasons behind this fact might
be that the 6 could effectively be regarded as a narrow
resonance, although even at the mN threshold it cannot
be neglected.

Last, we need to clarify the following point: How can
one relate the phase parameters (or amplitudes) we have
defined above, viz. , (F,2(ki ) ), etc. , with those extracted
from data? Let us first discuss the case with the
NN ~Nb process. ' The total theoretical cross section
for the process NN~NA reads

plitudes (Fi2) and phase shifts corresponding to (Fiz)
from Eq. (30). When the conditions in Eqs. (24) are met,
as in the numerical study of this paper, Eqs. (29) and (30)
become the same (recall the remark towards the end of
Sec. III). This last expression is just identical to Eq. (30)
of Ref. 1 once 8', the amplitude extracted from the data,
is identified with (Fi2(k, ) ). We argue that this
identification is quite natural since 8' apparently de-
pends only on the total energy, which means that this is
certainly some averaged quantity (over the b, width). In
this respect we should stress here again that the essential
conditions are Eqs. (24), which give meaning to the ex-
tracted amplitudes 8', thus the phase parameters.

The relation to the phase parameters extracted from
other channels' ' is less clear: In Refs. 12-14 what is
called the coupled-channel E-matrix approach was em-
ployed to reproduce the phase parameters in the NN
channel, which at the same time provided the corre-
sponding quantities in the Nh channel. This method re-
lies principally on the multichannel unitarity relation,
and the finite-width effect is incorporated only into the
Chew-Mandelstam function, which is essentially the Nh
propagator like our g2(E, q2). References 15 and 16 at-
tempted to extract the NA phases from the discrepancy
between the data and the model results in the elastic md

channel. Apparently, the Nh~Nh amplitudes were
taken as if the 5 has a zero width, and the effect of the
finite width was simulated by introducing a complex on-
shell momentum in relating the amplitude and the corre-
sponding t matrix [the relation like Eq. (6}]. In both
cases, the relation to our averaged amplitudes (or phase
parameters) needs to be further investigated. Of course,
if it turns out that the 5 may be treated as a narrow reso-
nance, then all the different treatment of the finite-width
effect should give the same result.
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