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A relativistic description of polarized deep-inelastic lepton scattering from polarized nuclei is presented. It is
based on front form dynamics. Convolution formulas for the nuclear spin structure functionsg1

A and g2
A are

derived. They require the front form spin distributions of nuclei and the nucleonic spin structure functions. The
description is applied to the deuteron and the trinucleon bound states. The numerical calculations show that
relativistic effects arising from the consistent quantum mechanical treatment of spin are small. Simple approxi-
mations to the convolution formulas forg1

A andg2
A are justified. The approximative convolution formulas allow

the subtraction of nuclear effects from measured spin structure functions and therefore the experimental
determination of the neutron spin structure functions. Polarized3He turns out to be a rather reliable effective
neutron spin target for deep-inelastic scattering of polarized leptons. The differences between descriptions
based on front form and on instant form dynamics are also discussed.@S0556-2813~97!03908-3#

PACS number~s!: 25.30.2c, 24.70.1s, 25.10.1s, 29.25.Pj
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I. INTRODUCTION

When 3He is described as a system of three nucle
interacting through instantaneous potentials, the total ang
momentum of3He is carried to a large extent by the neutro
Employing realistic two-nucleon potentials the calculat
neutron contribution to the nuclear spin ranges@1# from 0.85
to 0.90. This theoretical observation motivated experimen
ists @2# to use polarized3He targets as substitutes for u
available neutron spin targets. The tacid assumption is
the impurities present in the substitute neutron spin targ
i.e., the unwanted contributions to the3He total angular mo-
mentum arising from the proton spins and from the nucleo
orbital motion will not blur the neutron properties one wou
like to see. Reference@3# discusses an unfavorable case:
inclusive quasielastic scattering of polarized electrons fr
polarized 3He @4–9#, the spin-dependent responseRTL8 car-
ries some information on the poorly known neutron cha
form factor. However, the neutron signal inRTL8 remains
weak and gets overwhelmed by the proton one at small
mentum transfers. The neutron charge form factor is sm
compared to the proton one and therefore contributes li
despite the fact that the neutron makes up most of the3He
total angular momentum.

This paper discusses deep-inelastic scattering of polar
leptons from polarized3He. Experiments measure the bea
asymmetry, in particular@10,11# the 3He spin structure func-
tion g1

A ; from g1
A the neutron contribution should get un

folded and the neutron spin structure functiong1
n should get

extracted. The conclusion of the paper will be that indeed
neutron spin structure functiong1

n can successfully be ob
tained in these experiments. In deep-inelastic lepton sca
ing polarized3He is a reliable neutron spin target in contra
to the experience of Ref.@3#. However, the theoretical dis
cussion of the paper will often be kept general in order
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describe deep-inelastic lepton scattering from the deute
@12–14# and the three-nucleon bound state simultaneous

Deep-inelastic lepton scattering from nuclei is describ
in front form dynamics. Front form dynamics allows the u
of impulse approximation consistently@15–17#. This is a for-
mal quantum mechanical consistency. We believe that
pulse approximation is also physically reliable for the d
scription of deep-inelastic lepton scattering. The form
plane wave impulse approximation~PWIA! used neglects the
interaction between the hadrons, produced on the str
nucleon, and the spectator residual nucleus in the final s
and it neglects all many-hadron currents. The paper exte
the successful description, given previously@18# for deep-
inelastic scattering of unpolarized leptons from unpolariz
3He, to the case with polarization. Section II recalls so
facts on front form dynamics needed for the actual calcu
tion. Section III parametrizes the nuclear current tensor o
spin-12 target; it introduces the spin-averaged and the sp
dependent structure functions; the generalization to sp
targets, e.g., to the deuteron, is given in the Appendixe
and B. Section IV describes the cross section for longitudi
lepton polarization in terms of the nuclear structure fun
tions. Section V derives convolution formulas for the sp
dependent structure functions in PWIA. They require t
spin distributions of the deuteron and the trinucleon bou
states in terms of front form variables; those front form sp
distributions are determined in Sec. VI for the trinucle
bound state and in Appendix C for the deuteron. Our res
are discussed in Sec. VII. Conclusions are given in Sec. V

II. ELEMENTS OF FRONT FORM DYNAMICS

First, we give our notation. We exhibit the instant for
components of any four-vectorA in round brackets as usua
i.e.,

A5~A0,A1,A2,A3!, ~2.1!

and abbreviate the three spatial components (A1,A2,A3) by
AW . We use the metricgmn5(1,21,21,21) and the four-

D-
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2294 56R.-W. SCHULZE AND P. U. SAUER
dimensional totally antisymmetric tensoremnab with
e012352e012351. For the description of front form dynam
ics we choose the following basis vectors:

n5~1,2n̂!, ~2.2a!

l 5~1,n̂!, ~2.2b!

e15~0,ê1!, ~2.2c!

e25~0,ê2!. ~2.2d!

They satisfy the conditionsn25 l 250, ei•ej52d i j ,
1
2 n• l 51 and n•ei5 l •ei50. The vectorsn and l are null
vectors. The three-dimensional vectorsê1 , ê2, andn̂ form a
positively oriented three-dimensional set of orthonormal
sis vectors such that

1

2
e1me2nemnabnal b51, ~2.3!

the carets over vector symbols indicate three-dimensio
unit vectors. Four-dimensional vectors are built up fro
those basis vectors, i.e.,

A5
1

2
A2n1

1

2
A1l 1A1e11A2e2 , ~2.4a!

where the front form components

A25 l •A5A02n̂•AW , ~2.4b!

A15n•A5A01n̂•AW , ~2.4c!

A152e1•A, ~2.4d!

A252e2•A ~2.4e!

are introduced. We arrange the front form components o
vector in curly brackets, i.e.,

A5$A2,A1,A2,A1%, ~2.5a!

A5$A2,A%, ~2.5b!

and abbreviate the three kinematic compone
$A1,A2,A1% by A and the transverse components$A1,A2%
among them byA' . The three-dimensional basis vecto
ê1 , ê2, and n̂ of front form dynamics may be assumed
differ from those of instant form dynamics; thus, the comp
nents$A1,A2% and (A1,A2) may be different; in this pape
we choose them to be identical. The four-dimensional v
ume element of integration is

d4A5dA0dA1dA2dA3, ~2.6a!

d4A5
1

2
dA2dA1dA2dA1, ~2.6b!

we shall use the abbreviationsd3AW 5dA1dA2dA3 and
d3A5dA1dA2dA15dA'dA1.
-

al

a

s

-

l-

In the description of deep-inelastic lepton scattering
front form null vectorsn and l are chosen by

n̂52S Q0

A~Q0!22Q2
Q̂1A 2Q2

~Q0!22Q2

k̂e2~ k̂e•Q̂!Q̂

A12~ k̂e•Q̂!2
D ,

~2.7!

ke being the initial four-momentum of the lepton andQ its
momentum transfer to the target nucleus. The choice~2.7!
yields Q15Q01n̂•QW 50. The basis vectore1 is defined by

ê15
Q'

uQ'u
, ~2.8!

the definition ofe2 follows then from the requirement~2.3!.
Thus, the momentum transferQ has the representation

Q5$2Q0,A2Q2,0,0%. ~2.9!

Second, we need the description of states for the nucle
target and for the constituents of the nuclear target. For
description we use eigenstates of the mass operatorM , of the
front form componentsP of the four-momentumP and of
the spinJW f . The spin operatorJW f is defined in terms of the
Pauli-Lubanski vectorW @16#, i.e.,

~0,JW f !
m5

1

M
L f

21S P

M D m

n

Wn. ~2.10!

The Lorentz transformationL f(P/M ) boosts a particle of
massM from rest to four-momentumP. In Eq. ~2.10! the
Lorentz transformationL f(P/M ) is still operator valued in
its dependence on massM and momentumP. The corre-
sponding boostsL f(P/M ) belong to the front form kine-
matic subgroup of the Lorentz group; thus, even for comp
ite systems with interactions between constituents, the bo
L f(P/M ) are interaction free; this is why the componen
P of the momentum are called kinematic. The eigenstates
chosen in the form

S M2

P

2W2/M2

2v•W/M

D upl&5S m2

p

j ~ j 11!

l

D upl&. ~2.11!

The defining spin operators are given covariantly, e
2W2/M25JW f

2 . The spin projection2v•W/M is chosen
with respect to the direction of quantizationv, v taken as a
spacelike vector which satisfiesv2521 and v•p50. The
standard choice ofv for front form dynamics is

v5
p

m
2

m

n•p
n. ~2.12!

In this case the spin projection operator becom
2v•W/M5n̂•JW f . For a spin-12 particle the operatorJW f is
realized by the vector of Pauli matricessW /2. The notation of
states does not keep the eigenvalues of mass and spin,m and
j ; it only indicates the kinematic components of the mome
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56 2295POLARIZED DEEP-INELASTIC LEPTON SCATTERING . . .
tum and the spin projection,p and l. The states~2.11! are
orthonormal and complete, i.e.,

^p8l8upl&5d~p82p!dl8l , ~2.13a!

(
l
E d3pupl&^plu5I . ~2.13b!

They are connected to the statesupRl& in the particles rest
frame with pR5$m,0,0,m% by the unitary transformation
U@L f(p/m)# according to

upl&5Am

p1
UFL f S p

mD G upRl&, ~2.14!

the extra factorAm/p1 ensuring orthogonality in the form
~2.13a!. The transformation does not change the eigenva
l.

Need will arise to also use basis statesupW s& in the quan-
tum mechanical framework of instant form dynamics. T
latter states are defined in the same way as the correspon
front form statesupl& are in Eq.~2.11!. Differences are due
to the different choice of kinematic components of the m
mentum. Though the componentspW are called kinematic, the
instant form boostsLc(p/m) are not interactionfree for com
posite systems, in contrast to the properties of the front fo
boostsL f(p/m); the indicesc and f differentiate the form of
dynamics,c standing forcanonical represents the instan
form, f standing forfront represents the front form of dy
namics. In addition, the instant form boostsLc(p/m) of a
particle with massm from rest to the momentump are rota-
tionless, whereas the corresponding front form boo
L f(p/m) contain a rotation. Thus, the same four-vectorW
;
l

-
o
T

r

ey
e

e

ing

-

m

ts

corresponds to different rest frame vectorsJW c in instant and
JW f in front form dynamics. They are related@16# by the
Melosh rotationRM(p), i.e.,

RM~p!5L f
21S p

mDLcS p

mD , ~2.15a!

Jc
i 5(

j
RM~p! i

j Jf
j . ~2.15b!

The Melosh rotation is an operator in spin space. For a s
1
2 particle it takes the explicit form

RM~p!5
m1p11 i n̂•~sW 3pW !

A~m1p1!21p'
2

. ~2.15c!

The quantum mechanical states are related to each othe

upW s&5(
l

upl&AU]p

]pW
U^luRM

1~p!us&. ~2.16!

In Eq. ~2.16! u]p/]pW u5p1/p0 is the Jacobian for the trans
formation of momentum variables. The instant form sta
upW s& are also chosen to be orthogonal and complete with
extra weight factors in their phase space as the front fo
states are chosen according to Eqs.~2.13a! and ~2.13b!.

III. NUCLEAR CURRENT TENSOR

The current tensor̂nAuWA
mn(Q,PA)unA& of the targetA

with massmA , four-momentumPA , and polarizationnA is
required for the description of inclusive processes; it is
fined by
^nAuWA
mn~Q,PA!unA&5~2p!6(

bX

E d3PXAPA
1

mA
^PAnAuJA

m~0!uPXbX&2d3~PX2Q2PA!d~PX
22Q22PA

2!

3^PXbXuJA
n ~0!uPAnA&APA

1

mA
~3.1!
e,
s
.
me-

on
tor
a

erty

ard
in terms of the nuclear currentJA
m(0) at time-space point 0

the proton chargeep is split off from the current. Genera
final statesuPXbX& of c.m. momentumPX can be reached in
the scattering process,bX describing discrete quantum num
bers and also the modes of internal excitation; they are
mass shell, they are not observed in inclusive processes.
momentum transfer to the target nucleus isQ. The current
tensor ^nAuWA

mn(Q,PA)unA& is obtained from its spin-
operator formWA

mn(Q,PA) and from the density operato
rA(nAPA) by

^nAuWA
mn~Q,PA!unA&5Tr@WA

mn~Q,PA!rA~nAPA!#.
~3.2!

Deuteron and3He are the considered target nuclei. Th
have spin 1 and1

2, respectively; for calculations they ar
n
he

assumed to be in pure quantum mechanical statesuPAnA&.
They are defined as eigenstates of the massM , the momen-
tum P, the spin 2W2/M2, and of the spin projection
2nA•W/M in the direction of polarizationnA with eigen-
value j , i.e., 1 and1

2, respectively. Unless stated otherwis
the plane-waved-function producing part of the state
uPAnA& will be considered to be split off in the following
Though the target states are assumed to be quantum
chanically pure for the purpose of calculation, polarizati
will nevertheless be described by the density opera
rA(nAPA). It is an operator in nuclear spin space. It is
Lorentz scalar and normalized by Tr@rA(nAPA)#51. When
referring to pure states as assumed, it has the prop
rA

2(nAPA)5rA(nAPA). The polarizationnA chosen by ex-
perimentalists does in general not coincide with the stand
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2296 56R.-W. SCHULZE AND P. U. SAUER
direction v of quantization in Eq.~2.12!. Thus, the target
statesuPAnA& are to be expanded in terms of the target ba
statesuPAlA& of Eq. ~2.11!, i.e.,

uPAnA&5(
lA

uPAlA&^lAunA&, ~3.3!

the transformation parameters^lAunA& depend on the mo
mentumPA ; the trace operation in Eq.~3.2! is carried out
with respect to matrix elements of the basis statesuPAlA& at
fixed target momentumPA .

A. Trinucleon density operator

The full density operatorrA(nA) commutes with the mo-
mentum operatorP. Its projectionrA(nAPA), i.e.,

^PAlA8 urA~nA!uPAlA&5^lA8 urA~nAPA!ulA&, ~3.4!

onto the Hilbert sector of momentum eigenstates with eig
value PA is needed in Eq.~3.2!. The density operator of a
spin-12 target is parametrized in the form

rA~nAPA!5
1

2F12
2

mA
nA•WG . ~3.5!

The parametrization satisfies all required constraints. It i
most linear in the Pauli-Lubanski vectorW which is trace-
less, i.e., Tr@W#50. The vectornA is the polarization vector
according to which target polarization is defined. The para
etrization ~3.5! satisfies all required constraints for a qua
tum mechanically pure target state, providednA

2521 and
nA•PA50.

Matrix elements of the density operator of any moment
PA are related to those of the rest frame, i.e.,

^lA8 urA~nAPA!ulA&5^lA8 u 1
2 @11n̂R•sW A#ulA&. ~3.6!

For Eq.~3.6! the identities

Wm

mA
uPAlA&5AmA

PA
1

UFL f S PA

mA
D GFL f S PA

mA
D m

n

S 0,
sW A

2
D nG

3uPRlA&, ~3.7a!

nA
m5L f S PA

mA
D

n

m

~0,n̂R!n, ~3.7b!

are used,PR5$mA,0,0,mA% denoting the target rest fram
momentum, nR5(0,n̂R) its rest frame polarization an
sW A /2 its angular momentum operator. The constraints
rA(nAPA) are best proven in the rest frame.

The corresponding density operator of a spin-1 targe
given in Appendix A.

B. Trinucleon current tensor operator

The current tensor operatorWA
mn(Q,PA) is Hermitian and

conserved, it preserves parity and time-reversal invaria
is

-

at

-
-

n

is

e.

Its Lorentz structure is built from the three four-vectorsQ,
PA , andW. The current tensor operatorWA

mn(Q,PA) has the
general form

WA
mn~Q,PA!5FQmQn

Q2
2gmnGF1

A~x,Q2!
A

mA

1
P̃A

mP̃A
n

Q•PA
F2

A~x,Q2!
1

mA

1 i
1

j

emnab

Q•PA
QaFWbg1

A~x,Q2!

1S Wb2
Q•W

Q•PA
PAbDg2

A~x,Q2!G A

mA

~3.8!

with

P̃A
m :5PA

m2
Q•PA

Q2
Qm, ~3.9a!

x:52
AQ2

2Q•PA
, ~3.9b!

x being the Bjorken scaling variable. The dependence of
current tensor operator on the Pauli-Lubanski vectorW is
linear for a spin-12 target, j 5 1

2 being the spin quantum num
ber. The current tensor operator is built from four basic te
sor forms which satisfy all symmetry requirements. Tho
basic tensor forms get augmented by structure functi
which are real-valued Lorentz scalars and therefore dep
on the nontrivial scalarsQ2 and Q•PA or, equivalently, on
the Bjorken scaling variablex andQ2.

The current tensor̂nAuWA
mn(Q,PA)unA& follows from the

current tensor operatorWA
mn(Q,PA) of Eq. ~3.8! and from the

density operatorrA(nAPA) of Eq. ~3.5! according to Eq.
~3.2!. In fact, the current tensor̂nAuWA

mn(Q,PA)unA& is ob-
tained from the operator~3.8! by replacing the Pauli-
Lubanski vectorW by the polarization vectornA according
to the relation

nA
m5~1/ jmA!Tr@WmrA~nA ,PA!#. ~3.10!

The two spin-averaged structure functionsF1
A andF2

A and
the two spin-dependent structure functionsg1

A andg2
A deter-

mine the current tensor in full; they are used in the notat
standard for deep-inelastic lepton scattering; they are rel
to the corresponding structure functionsW1

A , W2
A , G1

A , and
G2

A of Ref. @3#, usually employed at lower energy and m
mentum transfers, by

F1
A~x,Q2!5

mA

A
W1

A~Q2,Q•PA /mA!, ~3.11a!

F2
A~x,Q2!5

Q•PA

mA
W2

A~Q2,Q•PA /mA!, ~3.11b!
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g1
A~x,Q2!5

Q•PA

AmA
G1

A~Q2,Q•PA /mA!, ~3.11c!

g2
A~x,Q2!5

~Q•PA!2

AmA
3

G2
A~Q2,Q•PA /mA!. ~3.11d!

We are interested in describing asymmetry measuremen
deep-inelastic lepton scattering; they are carried out in o
to determine the spin-structure functionsg1

A andg2
A .

All structure functions can be obtained from a given c
rent tensor by contractions with other tensors. The deute
current tensor is—as current tensor of a spin-1 target—q
different from Eq.~3.8! as Appendix B shows. Nevertheles
its dependence on the spin-structure functionsg1

A and g2
A ,

being contained in the part proportional toemnab, is the same
also for the deuteron. Thus, the relations by which the s
structure functionsg1

A andg2
A are recovered from a compute

current tensor will hold for the deuteron in identical form

C. Trinucleon current tensor in the nuclear c.m. system

The nuclear current tensorWA
mn(Q,PA) is evaluated in the

nuclear c.m. system. We shall now use the notational ide
fications PA5PR for the four-momentum of the target an
nA5nR for its polarization, i.e.,PA5$mA,0,0,mA%5(mA ,0W )
in
er

-
n

te

in

ti-

and nA5$2(n•nA),nA
1 ,nA

2 ,(n•nA)%5(0,n̂R). The momen-
tum transfer is used in the form~2.9!. The kinematically
needed four-vectors can be given in terms of the basis v
tors n, l , e1, ande2, i.e.,

PA5
1

2
mA~n1 l !, ~3.12a!

Q5
1

2
Q2n1A2Q2e1 , ~3.12b!

nA5
1

2
~n•nA!~n2 l !2~e1•nA!e12~e2•nA!e2 ,

~3.12c!

nA2
Q•nA

Q•PA
PA52S ~n•nA!1

A2Q2

Q2
~e1•nA!D n

2
A2Q2

Q2
~e1•nA!l 2~e1•nA!e1

2~e2•nA!e2 . ~3.12d!

The nuclear current tensor takes the form
he

our-
e

ar
^nAuWA
mn~Q,PA!unA&5FQmQn

Q2
2gmnGF1

A~x,Q2!
A

mA
1

P̃A
mP̃A

n

Q•PA
F2

A~x,Q2!
1

mA
1

iA

mA
emnabS na1

2A2Q2

Q2
e1aD

3H 2nbF1

2
~n•nA!g1

A~x,Q2!1S ~n•nA!1
A2Q2

Q2
~e1•nA!D g2

A~x,Q2!G1 l bS 1

2
~n•nA!g1

A~x,Q2!

2
A2Q2

Q2
~e1•nA!g2

A~x,Q2!D 2e1b~e1•nA!@g1
A~x,Q2!1g2

A~x,Q2!#

2e2b~e2•nA!@g1
A~x,Q2!1g2

A~x,Q2!#J . ~3.13!

Equation~3.13! rewrites Eq.~3.8!—after the trace operation~3.2! is carried out—with respect to the antisymmetric part of t
nuclear current tensor; only that part matters for the extraction of the spin-structure functionsg1

A andg2
A ; it is the same for the

current tensors of the three-nucleon bound states and of the deuteron.

D. Extraction of spin-structure functions

The spin-structure functionsg1
A and g2

A can be extracted from particular matrix elements or by contractions with f
vectors and tensors available from the kinematic setup of the experiment as in Ref.@3#. We label the first extraction schem
by I, the second extraction scheme by II.

The extraction scheme I reads the nuclear spin-structure functionsg1
A andg2

A off from selected components of the nucle
current tensor. The considered matrix element is written covariantly as a contraction with the basis vectorse1 ande2, i.e.,

e1me2n^nAuWA
mn~Q,PA!unA&52

iA

mA
S ~n•nA!g1

A~x,Q2!12
A2Q2

Q2
~e1•nA!g2

A~x,Q2!D , ~3.14!

it refers to the kinematic components of the current. When specifying the nuclear polarizationnA in the target rest frame, both
nuclear spin-structure functions can be extracted separately from that single relation, i.e.,

g1
A~x,Q2!52~ imA /A!e1me2n^nAuWA

mn~PA ,Q!unA&unW Ai n̂ , ~3.15a!
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g2
A~x,Q2!52~ imA /A!

Q2

2A2Q2
e1me2n^nAuWA

mn~PA ,Q!unA&unW Ai ê1
. ~3.15b!

The extraction scheme II contracts the full current tensor with the tensors of other physical variables and extr
spin-structure functions from the resulting scalars, i.e.,

g1
A~x,Q2!5

2 i

2A

Q•PA

Q•nA

Q•nAPA
2QanA

b2Q•PAQaPA
b

PA
2@Q21~Q•nA!2#2~Q•PA!2

eabmn^nAuWA
mn~Q,PA!unA&, ~3.16a!

g2
A~x,Q2!5

i

2A

~Q•PA!2

Q2Q•nA

Q•nAQ•PAQanA
b2@Q21~Q•nA!2#QaPA

b

PA
2@Q21~Q•nA!2#2~Q•PA!2

eabmn^nAuWA
mn~Q,PA!unA&. ~3.16b!
ar
sfi
he
th
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The extraction scheme II uses relations~3.11c! and ~3.11d!
for the spin-structure functionsGi

A of Ref. @3#. Both extrac-
tion schemes—and all possible variants of them—
equivalent as long as the current tensor is exact, i.e., sati
Lorentz covariance and current conservation. However, t
are inequivalent for approximate current tensors. And
nuclear current tensor of this paper will only be calcula
approximately in PWIA and with wave functions which d
not exhibit all required symmetry properties as Sec. VI w
explain in more detail.

IV. CROSS SECTION

The derivation of the inclusive cross section for inelas
lepton scattering is recalled. Letke5(E,kWe) and
ke85(E8,VW e8E8) be the initial and final momenta of the lep
ton andQ5ke2ke8 the four-momentum transfer. The cro
section is determined by the nuclear current ten
^nAuWA

mn(Q,PA)unA& of Sec. III and by the correspondin
lepton current tensor̂neuhmnune& with

^neuhmnune&52~ke8
mke

n1ke8
nke

m2gmnke•ke8

1 imee
mnabQaneb!. ~4.1!

When the lepton is longitudinally polarized before scatteri
its polarization vectorne gets

ne5he

ke

me
~4.2!

with he561 being the helicity andme the mass of the lep
ton. In the rest frame of the target the cross section beco

d2s~he!

dVe8dE8
5

a2

Q4

E8

E
^neuhmnune&^nAuWA

mn~Q,PA!unA&.

~4.3!

It is split into a helicity-independent and a helicity-depend
part, i.e.,

d2s~he!

dVe8dE8
5

d2s~unpol!

dVe8dE8
1he

d2s~pol!

dVe8dE8
. ~4.4a!

Its polarization part has the form
e
es
y
e
d

l

r

,

es

t

d2s~pol!

dVe8dE8
5

1

2S d2s~11!

dVe8dE8
2

d2s~21!

dVe8dE8
D , ~4.4b!

d2s~pol!

dVe8dE8
5sMott2tan2

Qe

2 H @EcosuA1E8~cosQecosuA

1sinQesinuAcosfA!#
g1

A~x,Q2!

mAQ0

22EE8@cosuA2~cosQecosuA

1sinQesinuAcosfA!#
g2

A~x,Q2!

mA~Q0!2 J . ~4.4c!

It is the same for spin-1
2 and the spin-1 targets;Qe is the

scattering angle of the lepton,sMott the Mott cross section. In
both cases the target polarizationnA is described in the res
frame by the polarization anglesuA and fA , i.e.,
nA5(0,sinuAcosfA ,sinuAsinfA ,cosuA). The angles are mea
sured with respect to the incoming lepton beam.

V. PLANE WAVE IMPULSE APPROXIMATION

The calculations of this paper are carried out in PWI
They extend the work of Ref.@18# by the inclusion of beam
and target polarization. Reference@18# also uses PWIA. Su-
perficially, impulse approximationassumes that only one
nucleon currentsj N( i )

m (0) contribute to the complete nuclea
currentJA

m(0), i.e.,

JA
m~0!5(

i 51

A

j N~ i !
m . ~5.1a!

Stated in this manner, the assumption is clearly inconsis
because, for interacting systems, the current on the ri
hand side does not transform correctly as a four-vector
contrast, the restricted assumption

JA~0!5(
i 51

A

jN~ i ! ~5.1b!

is consistent: Both sides of the latter equation transform c
rectly under the front form kinematic subgroup of the Lo
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entz group; the full nuclear current can then be generate
translations and general Lorentz transformations. Furth
more, inclusive cross sections require knowledge of
nuclear current tensor which is quadratic in the current
erator and which therefore contains interference terms of
form j N( i )

m j N(k)
n . PWIA neglects those interference term

Reference@3# discusses this approximation of incoherence
an approximation on the accessible final states; this appr
by
r-
e
-
e

.
s
i-

mation is believed to be particularly reliable for dee
inelastic processes; it yields the convolution formula for t
nuclear current tensor.

A. Convolution formula for the nuclear current tensor

Using the nuclear density operatorrA(nAPA), the nuclear
current tensor~3.1! takes the convolution form
tter

l

ts
^nAuWA
mn~Q,PA!unA&5(

tN
E d3pN

mN

pN
1E

2mA1mA21

`

dMTr@WN~ tN!
mn ~QN~M !,pN!S~pNMtN!rA~nAPA!# ~5.2a!

in PWIA. Its spin matrix elements are

^lA8 uWA
mn~Q,PA!ulA&5(

tN
E d3pN

mN

pN
1E

2mA1mA21

`

dM (
lNlN8

^lN8 uWN~ tN!
mn @QN~M !,pN#ulN&^lNlA8 uS~pNMtN!ulN8 lA&.

~5.2b!

Because of the discussion on consistency at the beginning of this section, only the kinematic componentsm,n51,2,1 will be
taken from the convolution formula~5.2a!. In Eq. ~5.2a!, QN is the momentum transfer to the struck single nucleon; the la
momentum transfer

QN~M !:5$Q21PA
22PA21

2 ~M1mA!2pN
2 ,Q% ~5.2c!

is different from the momentum transferQ to the whole nucleus. The momentum componentPA21
2 (M1mA) of the spectator

(A21) nucleus is defined byPA21
2 (M1mA)5@(M1mA)21P(A21)'

2 #/PA21
1 , M1mA being the effective mass of the (A21)

nucleus,mA21 is its minimum value. In Eq.~5.2! the nucleonic current tensorWN(tN)
mn @QN(M ),pN# and the front form spectra

function S(pNMtN) are introduced; their definitions will be discussed next. This section uses the capitalM in a notational
meaning distinct from Sec. II.

B. Nucleonic current tensor

The nucleonic current tensorWN(tN)
mn (QN ,pN) is defined by

^lN8 uWN~ tN!
mn ~QN ,pN!ulN&5~2p!6

pN
1

mN
(
bx1

E d3px1
^pNlN8 tNu j N

m~0!upx1
bx1

&2d3~px1
2Q2pN!d@px1

2 2QN
2~M !2pN

2#

3^px1
bx1

u j N
n ~0!upNlNtN&. ~5.3!

It is an operator in nucleonic spin space and depends on isospintN . In Ref.@3# the corresponding instant form matrix elemen
are given. After transformation to front form spin states according to

^lN8 uWN~ tN!
mn ~QN ,pN!ulN&5 (

sN8 sN

^lN8 uRM
1~pN!usN8 &^sN8 uWN~ tN!

mn ~QN ,pN!usN&^sNuRM~pN!ulN&, ~5.4!

the nucleonic current tensor takes the form

^lN8 uWN~ tN!
mn ~QN ,pN!ulN&5dl

N8 lNF FQN
mQN

n

QN
2

2gmnGF1
N~ tN!

~xN ,QN
2 !

1

mN
1

p̃N
m p̃N

n

QN•pN
F2

N~ tN!
~xN ,QN

2 !
1

mN
G

1 i
emnab

QN•pN
QNaK lN8UFsb~sW N!g1

N~ tN!
~xN ,QN

2 !1S sb~sW N!2
QN•s~sW N!

QN•pN
pNbD g2

N~ tN!
~xN ,QN

2 !GUlNL
~5.5!

with the nucleonic Bjorken variablexN :52QN
2 /2QN•pN and with
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p̃N
m :5pN

m2
pN•QN

QN
2

QN
m , ~5.6a!

s~sW N!:5H mN

pN
1S pN'

2

mN
2

n̂•sW N12
pN'

mN
•sW N'2n̂•sW ND ,sW N'1

pN'

mN
n̂•sW N ,

pN
1

mN
n̂•sW NJ . ~5.6b!

In fact, s(sW N) acts like the Pauli-Lubanski vectorW, except for factors, i.e.,̂lN8 us(sW N)/2ulN&5^lN8 u(1/mN)WulN&.

C. Spectral function

The spectral function is defined as the probability of finding a nucleon of isospintN with momentumpN and the spectato
(A21) nucleus with an excitationf A21 of massmA21( f A21), i.e.,

^lNlA8 uS~pNMtN!ulN8 lA&5A (
lA21f A21

d@M1mA2mA21~ f A21!#^PAlA8 upNlN8 tN~PA2pN!lA21f A21&

3^pNlNtN~PA2pN!lA21f A21uPAlA&. ~5.7!

The spectral function is an operator in nucleonic and in nuclear spin space. Reference@18# defines it relativistically for the
spin-averaged case; the extension to spin dependence is minor. The spectral function is calculated here in the nu
system.

The spectral function is related to the front form momentum densityr(pNtN) according to the sum rule

E dM^lNlA8 uS~pNMtN!ulN8 lA&5^lNlA8 ur~pNtN!ulN8 lA& ~5.8a!

with

^lNlA8 ur~pNtN!ulN8 lA&5A (
lA21f A21

^PAlA8 upNlN8 tN~PA2pN!lA21f A21&^pNlNtN~PA2pN!lA21f A21uPAlA&. ~5.8b!

The front form momentum density will be calculated in Sec. VI.

D. Spin structure functions in deep-inelastic lepton scattering

The results of the previous subsections are now adapted to deep-inelastic lepton scattering.

1. Bjorken limit

We consider the Bjorken limit (Q0)2@2Q2@mN
2 under the condition that the Bjorken variablex52AQ2/2Q•PA remains

constant. In terms of front form components for the momentum transfer, (Q2)2@2Q2. In scattering from a many-nucleo
systemQN

2ÞQ2, in principle; however, in the Bjorken limit limB jQN5Q for all components@15#. In that limit the convolu-
tion formula for the nuclear current tensor of Eq.~5.2a! becomes

^nAuWA
mn~Q,PA!unA&5(

tN
E d3pN

mN

pN
1

Tr@WN~ tN!
mn ~Q,pN!r~pNtN!rA~nAPA!#. ~5.9!

The troublesome problem, that the nuclear current tensorWA
mn(Q,PA) when calculated in PWIA does not respect curre

conservation, disappears in that limit, i.e.,QmWA
mn(Q,PA)5WA

mn(Q,PA)Qn50. In the Bjorken limit the spin-structure func
tions scale; experimentally one should see them to become independent fromQ2. The convolution formula~5.9! yields that
scaling behavior; the nucleonic structure functions only depend on the nucleonic Bjorken variablexN and the resulting nuclea
structure functions will also turn out to depend on the nuclear Bjorken variablex only; the dependence of the spin-structu
functionsgi

N(tN) andgi
A on the momentum transfersQN

2 andQ2, respectively, will therefore be scratched from now on. The t
Bjorken variables are related by

xN5x
1

A

Q•PA

Q•pN
5x

PA
1

ApN
1

, ~5.10!

the momentum fractionpN
1/PA

15x/AxN will often be needed.
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2. Extraction from selected current tensor matrix elements

Extraction scheme I of Sec. III D only needs kinematic components of the nuclear current tensor; it can there
employed consistently in PWIA; it is our favorite extraction scheme in this paper. Using the convolution formula~5.9! for the
matrix element~3.14! of the nuclear current tensor, i.e.,

e1me2n^nAuWA
mn~Q,PA!unA&5 iA(

tN
E d3pN

mN

pN
1

1

pN
1

Tr F S n•s~sW N!g1
N~ tN!

~xN!22
A2Q2

Q2
e1•s~sW N!g2

N~ tN!
~xN!D

3r~pNtN!rA~nAPA!G , ~5.11!
d
in

ur
-

on
convolution formulas result forgi
A in the form

g1
A~x!5(

tN
E dj

Aj
g1

N~ tN!S x

Aj DnW A•sWN~jtNnA!unW Ai n̂ ,

~5.12a!

g2
A~x!5(

tN
E dj

Aj

1

Aj
g2

N~ tN!S x

Aj DnW A•sWN~jtNnA!unW Ai ê1
,

~5.12b!

provided the front form spin distribution is defined by

sWN~jtNnA!:5E d3pNdS j2
pN

1

PA
1D Tr@sW Nr~pNtN!rA~nAPA!#.

~5.13!

The assumptionnW Ai n̂ is essential for the derivation ofg1
A ,

the assumptionnW Ai ê1 is essential for the derivation ofg2
A .

The front form spin distributionsWN(jtNnA) will be calculated
in Sec. VI for the three-nucleon bound state and in Appen
C for the deuteron. It takes on the role which the sp
averaged front form momentum distributionf N(jtN), i.e.,

f N~jtN!:5E d3pNdS j2
pN

1

PA
1D Tr@r~pNtN!rA~nAPA!#,

~5.14a!

played for the calculation of the spin-independent struct
functionF2

A in Ref. @18#. Normalization and momentum con
servation implied
ix
-

e

(
tN

E dj f N~jtN!5A, ~5.14b!

(
tN

E djj f N~jtN!51. ~5.14c!

The front form spin distributionsWN(jtNnA) also satisfies a
sum rule, i.e.,

E djnW A•sWN~jtNnA!5^sN~ tN!&. ~5.15!

Thus, it is related to the spin expectation value^sN(tN)& in

the polarized trinucleon bound stateuPAnA&5uCBnA&, de-
fined by

^sN~ tN!&:5K CBnAU(
i 51

3 S 1

2
1tNtN~ i ! DnW A•sW N~ i !UCBnAL ,

~5.16a!

i.e., to the nucleonic contribution to the nuclear spin,sW N( i )
and tN( i ) being the nucleonic spin and isospin projecti
operators. The spin expectation value^sN(tN)& is given by

the S-, S8-, and D-state probabilitiesP(S), P(S8), and
P(D) of the trinucleon wave function according to
e

PWIA.
^sN~ tN!&5H 2
3 @P~S8!2P~D !#, tN51

1

2
~proton!,

P~S!1 1
3 @P~S8!2P~D !#, tN52

1

2
~neutron!.

~5.16b!

The sum rule is calculated in the nuclear c.m. system for whichnA5(0,n̂R); it does not depend on the direction of th
polarizationnA .

3. Extraction from the full current tensor

Extraction scheme II of Sec. III D requires the full nuclear current tensor which cannot be calculated consistently in
We only discuss the extraction according to Eqs.~3.16a! and ~3.16b! for curiosity, since it was used in Ref.@3# for nonrela-
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tivistic phenomena. The extraction scheme II yields

g1
A~x!52

1

A(tN Ed3pN

mN

pN
1

Q2PA
2

PA
2@Q21~Q•nA!2#2~Q•PA!2

Q•PA

Q•pN
TrS H FnA•s~sW N!2

Q•PA

PA
2

PA•s~sW N!

Q•nA

2S ~Q•nA!2

Q2
2

~Q•PA!2

PA
2Q2 D Q•s~sW N!

Q•nA
Gg1

N~ tN!
~xN!1FnA• s̃~sW N!2

Q•PA

PA
2

PA• s̃~sW N!

Q•nA
Gg2

N~ tN!
~xN!J r~pNtN!rA~nAPA!D ,

~5.17a!

g2
A~x!5

1

A(
tN

E d3pN

mN

pN
1

~Q•PA!2

PA
2@Q21~Q•nA!2#2~Q•PA!2

Q•PA

Q•pN
TrS H FnA•s~sW N!2

Q21~Q•nA!2

Q•PA

PA•s~sW N!

Q•nA
1

Q•s~sW N!

Q•nA
G

3g1
N~ tN!

~xN!1FnA• s̃~sW N!2
Q21~Q•nA!2

Q•PA

PA• s̃~sW N!

Q•nA
Gg2

N~ tN!
~xN!J r~pNtN!rA~nAPA! D . ~5.17b!

The abbreviation

s̃~sW N!:5s~sW N!2
Q•s~sW N!

Q•pN
pN ~5.18!

is introduced in Eqs.~5.17a! and ~5.17b!. The choice of polarization fornA and the approach of the Bjorken limit are
noncommuting mathematical procedures. It seems to make sense to take the Bjorken limit onlyafter a definite polarizationnA

is assumed. In case of the polarizationnW Ai n̂, Eq. ~5.17a! yields the convolution formula Eq.~5.12a! for the spin-structure
functiong1

A in the Bjorken limit; in case of the polarizationnW Ai ê1, Eq. ~5.17b! yields the convolution formula Eq.~5.12b! for
the spin-structure functiong2

A in the Bjorken limit. Thus, there appears to be complete consistency between the two emp
extraction schemes. We shall therefore use the convolution formulas~5.12a! and ~5.12b! in all applications of this paper.
However, that consistency is not general.

Under the assumptionnW Ai ê1 an alternative convolution formula forg1
A results from Eq.~5.17a! in the Bjorken limit; under

the assumptionnW Ai n̂ an alternative convolution formula forg2
A results from Eq.~5.17b! in the Bjorken limit, i.e.,

g1
A~x!5

1

A(
tN

E d3pN

mN

pN
1

PA
1

pN
1

TrF H ê1•sW N1n̂•sW N

ê1•pN'

mN
J g1

N~ tN!
~xN!r~pNtN!rA~nAPA!G , ~5.19a!

g2
A~x!5

1

A(
tN

E d3pNS mN

pN
1 D 2

PA
1

pN
1

TrF S H n̂•sW NF12S pN
1

mN
D 2

1
pN'

2

pN
1mN

G1
pN

1pN'•sW N

mN
2 J g1

N~ tN!
~xN!

1F n̂•sW NS 11
~ ê1•pN!2

mN
2 D 2

pN'•sW N

pN
1 Gg2

N~ tN!
~xN!D r~pNtN!rA~nAPA!G . ~5.19b!

The alternative convolution formulas Eqs.~5.19a! and~5.19b!, are structurely different from those of Eqs.~5.12a! and~5.12b!.
They contain terms proportional topN' which cannot be expressed by the front form spin distributionsWN(jtNnA). Though the
spin-structure functionsg1

A and g2
A are Lorentz scalars, independent from the nuclear polarization, the ones approxim

calculated remain dependent. We notice that dependence with amazement, especially, since in the instant form desc
quasielastic scattering no such dependence arises. However, we have checked the quantitative differences of the co
formulas~5.12a! and ~5.19a! for g1

A ; the differences are not resolvable on the plots shown later.

VI. FRONT FORM MOMENTUM DENSITY OF THE TRINUCLEON BOUND STATE AND SPIN DISTRIBUTION

In this section the front form momentum densityr(pNtN) of Eq. ~5.8b! is calculated for the trinucleon bound state, i.e., fo
A53. It is calculated as an operator in nucleonic and nuclear spin space. Introducing the spin-dependent operator

^l i8uOi~lN8 lN!ul i&:5dl
i8l

N8
dl ilN

~6.1!

for nucleoni by its matrix elements, the front form momentum densityr(pNtN) is related to the nuclear bound stateuPAlA&
with spin projectionlA , i.e.,

^lNlA8 ur~pNtN!ulN8 lA&5K PAlA8U(
i

d3~pN2pi !Oi~lN8 lN!d tNtiUPAlAL , ~6.2a!
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^lNlA8 ur~pNtN!ulN8 lA&5
A

PA
1 K PAlA8UdS pN

1

PA
1

2
p1

1

PA
1D d2~pN'2p1'!O1~lN8 lN!d tNt1UPAlAL . ~6.2b!
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In the operator the front form momentum fractionpN
1/PA

1 is
introduced.

The single-nucleon front form momentapi are related to
the c.m. momentumPA and to the internal front form mo
mentak i' and the front form momentum fractionsj i by

PA'5(
j

pj' , ~6.3a!

PA
15(

j
pj

1 , ~6.3b!

k i'5pi'2
pi

1

PA
1

PA' , ~6.3c!

j i5
pi

1

PA
1

. ~6.3d!

The internal single-nucleon momenta (k i'j i) satisfy the two
constraints( ik i'50 and( ij i51. For the calculation of the
front form momentum density the nuclear c.m. system
assumed, i.e.,PA'50 andPA

15mA . The internal part of the
nuclear bound stateuPAlA& is a mass eigenstate as in E
~2.11!, a proper state of relativistic quantum mechani
however, when the interactions are added to the square o
free mass operator, the resulting eigenvalue equation
comes@16# formally identical with the eigenvalue equatio
for an internal nonrelativistic Hamiltonian. Thus, the relat
istic mass eigenstate can be identified with the nonrelativi
ground stateuCBlA& of internal motion; it was already use
in Eq. ~5.16a!. The mass eigenstate is independent of a
choice of the dynamics; it is represented here in terms
front form variables for momenta and spin. However, th
identification ofuPAlA& with uCBlA& has one serious draw
back: Rotational invariance is violated, sinceuCBlA& is an
eigenstate of an angular momentum operator, built up fr
the operators of constituents without interactions. That v
lation @17# gives rise to the well-known ambiguities whe
elastic form factors are extracted from approximately co
puted current matrix elements. The same ambiguities
likely to reoccur in the present context when extracting str
ture functions from an approximately computed current t
sor. This paper does not explore those ambiguities in full,
at least it compares two extraction schemes according
Secs. III D, V D 2, and V D 3 which weight spin matrix e
ements differently, but which yield spin-structure functio
numerically almost indistinguishable. In view of that sho
coming, the suggestion of Ref.@19# to construct relativistic
mass eigenstates directly is an interesting alternative, b
has not yet matured such that it can be employed simu
neously in the two- and three-nucleon systems.
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The internal single-nucleon momenta (k i'j i) are ex-
tended to the standard three-dimensional form of on m
shell particles

ki
15j iM0 , ~6.4a!

ki
25

mi
21k i'

2

ki
1

, ~6.4b!

kW i5Fki
1 ,ki

2 ,
1

2S j iM02
mi

21k i'
2

j iM0
D G ~6.4c!

with

M05S (
j

mj
21k j'

2

j j
D 1/2

~6.4d!

and ki
25mi

2 . That three-dimensional formkW i is also con-

strained by( ikW i50. The internal momentakW i are therefore
related to the Jacobi momenta (pW qW ), in which the ground
stateuCBlA& usually is given, by

pW 5
1

2
~kW22kW3!, ~6.5a!

qW 52kW1 , ~6.5b!

assuming equal massesmi5mN for the three nucleons. Thus
a complete transformation of the wave function to the int
nal front form momenta (k i'j i) and the front form spins is
possible. However, the front form momentum dens
r(pNtN) samples the front form properties of a sing
nucleon according to Eq.~6.2b!. Thus, a mixed set of mo
menta (pW k1'j1) is preferable in terms of which the Jaco
momenta can be expressed, i.e.,

pW 5pW , ~6.6a!

qW 5F2k1
1 ,2k1

2 ,2
1

2S j1M02
mN

2 1k1'
2

j1M0
D G . ~6.6b!

In this representation the multicoordinate quantityM0 be-
comes

M05F4~mN
2 1p2!1k1'

2

12j1
1

mN
2 1k1'

2

j1
G1/2

~6.6c!

with the notationp25pW 2 in the remainder of this section
Equation~6.6c! holds only approximately; it neglects angle
dependent termspW •k1' /mN

2 which are, however, small fo
the physically relevant momenta in a nuclear bound st
The relativistic trinucleon bound state wave function tak
the following form in that mixed representation:
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^pW k1'j1l1s2s3t1t2t3uCBlA&5(
s1

^l1uRM
1~k1'j1p2!us1&AU ]~pW qW !

]~pW k1'j1!
U^pW qW ~k1'j1p2!s1s2s3t1t2t3uCBlA&. ~6.7!

The transformation of momenta requires the Jacobi determinant

U ]~pW qW !

]~pW k1'j1!
U5U]q3

]j1
~k1'j1p2!U5 M0~k1'j1p2!

4j1~12j1!
; ~6.8!

in Eq. ~6.8! the argument list ofM0 is made explicit. Only the spin of nucleon 1 is Melosh rotated. The rotation matrixRM
depends onk1, but throughM0 on all internal variables (k i'j i), therefore also onp2; this is the reason why its argumentk1
is changed to the argument list (k1'j1p2), i.e.,

RM~k1'j1p2!5
mN1j1M01 i ~sN

1 k1
22sN

2 k1
1!

A~mN1j1M0!21k1'
2

, ~6.9!

in contrast to the notation in Eq.~2.15c!. The spins of the nucleons 2 and 3 are still taken to be canonical, since the expec
value ~6.2b! sums over that spin dependence.

The front form momentum density is calculated according to

^lNlA8 ur~pNtN!ulN8 lA&5
A

PA
1(

t2t3
(

s18s1s2s3

E d3pWU]q3

]j
~pN'jp2!U^lNuRM

1~pN'jp2!us1&^s18uRM~pN'jp2!ulN8 &

3^CBlA8 upW qW ~pN'jp2!s18s2s3tNt2t3&^pW qW ~pN'jp2!s1s2s3tNt2t3uCBlA&uj5p
N
1/P

A
1. ~6.10!

At this stage we go back to the corresponding instant form momentum densityr(pW NtN) which reads, in the nuclear c.m
system,

^sNsA8 ur~pW NtN!usN8 sA&5K CBsA8U(
i

d~pW N2kW i !Oi~sN8 sN!d tNtiUCBsAL
5A(

t2t3
(
s2s3

E d3pW ^CBsA8 upW ~2pW N!sN8 s2s3tNt2t3&^pW ~2pW N!sNs2s3tNt2t3uCBsA&

5
1

2 K sNsA8Ur0~pNtN!1r1~pNtN!sW N•sW A1r2~pNtN!S sW N•pW NsW A•pW N

pW N
2

2
1

3
sW N•sW AD UsN8 sAL

5
1

2E p2dpK sNsA8U r̄ 0~pNptN!1 r̄ 1~pNptN!sW N•sW A1 r̄ 2~pNptN!S sW N•pW NsW A•pW N

pW N
2

2
1

3
sW N•sW AD UsN8 sAL .

~6.11!

The first step gives the definition. In the next two steps of Eq.~6.11! the spin structure of the instant form momentum dens
r(pW NtN) is recalled; in the last step it is realized that that spin structure already holds after integration onp̂, i.e., prior to the
integration on the magnitudep of pW . The functionsr̄ 0, r̄ 1, and r̄ 2 in the result~6.11! are numerically available and will be
used for calculating the front form momentum density. Since the calculation is carried out in the nuclear c.m. syst
canonical and front form spins of the nucleus are identical, thus,uCBlA&5uCBsA& and therefore

^lNlA8 ur~pNtN!ulN8 lA&5
1

2

1

PA
1E p2dpU]q3

]j
~pN'jp2!U K lNlA8URM

1~pN'jp2!F r̄ 0~qptN!1 r̄ 1~qptN!sW N•sW A1 r̄ 2~qptN!

3S sW N•qW sW A•qW

qW 2
2

1

3
sW N•sW AD GU

qW 5qW ~pN'jp2!

RM~pN'jp2!UlN8 lAL U
j5p

N
1/P

A
1

. ~6.12!

The result~6.12! requires the replacement of the Jacobi momentumqW as qW (pN'jp2) by the front form momenta (pN'j)
according to the prescription of Eq.~6.6b!, given there in terms of (k1'j1).



56 2305POLARIZED DEEP-INELASTIC LEPTON SCATTERING . . .
The determination of the spin-structure functionsg1
A and g2

A in deep-inelastic lepton scattering according to Eqs.~5.19!
requires the full spin-dependent momentum densityr(pNtN); however, the determination according to Eqs.~5.12! which this
paper prefers needs the front form spin distributionsWN(jtNnA) only, i.e.,

sWN~jtNnA!5
1

2E d2pN'E p2dpU ]q3

]j
~pN'jp2!U(

i 51

3

Tr@sW NRM
1~pN'jp2!sN

i RM~pN'jp2!#

3F r̄ 1~qptN!nA
i 1 r̄ 2~pNptN!S qinW A•qW

qW 2
2

1

3
nA

i D GU
qW 5qW ~pN'jp2!

. ~6.13!
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The front form spin distributionsWN(jtNnA) was already in-
troduced in Eq.~5.13!. The calculations of this paper ar
based on it.

VII. RESULTS AND DISCUSSION

The spin-structure functionsg1
A and g2

A of deep-inelastic
lepton scattering are calculated according to Eqs.~5.12!. We
use the theoretical apparatus developed for the deutero
Appendices A–C as well and therefore discuss deep-inela
lepton scattering from the deuteron and the three-nucl
bound states simultaneously. We shall abbreviate the l
N(tN) from now on byp and n for tN51 1

2 and tN52 1
2,

differentiating proton and neutron contributions, resp
tively.

A. Front form spin distribution

The deuteron and3He front form spin distributions
sWN(jtNnA) are displayed as functions of the momentum fra
tion j in Figs. 1 and 2. The componentsnW A•sWN(jtNnA) are
given for longitudinal and transverse polarizations, i.e.,
nW A5n̂ and nW A5ê1, respectively. They are split into proto
and neutron contributions. The calculation is based on r
tivistic mass eigenstates which are obtained@16# by reinter-
preting nonrelativistic bound states. Their wave functions
derived from the Paris potential@20# for the deuteron and fo
the trinucleon bound state.

1. Deuteron

The employed relativitic deuteron wave function is o
tained from a nonrelativistic one, characterized by theS- and
D-state probabilities, i.e., P(S)594.23% and
P(D)55.77%. The effective nucleon polarization^sN(tN)&
is defined in Eq.~5.16a!; it is related to the wave function
probabilities according to Eq.~C8! of Appendix C; in the
isoscalar deuteron it is the same for proton and neutron;
employed wave function yields the specific valu
^sp&5^sn&50.457. The proton and neutron components
the front form spin distributionsWN(jtNnA) are shown in Fig.
1. They are identical. Furthermore, their longitudinal a
transverse components are indistinguishable on the sca
the plot.

2. Trinucleon bound state3He

The employed relativistic trinucleon wave function is o
tained from a nonrelativistic one, computed in Refs.@21,22#.
in
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n
el
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-

r
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e
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It is characterized by theS-, S8-, and D-state probabilities
P(S)590.36%,P(S8)51.38%, andP(D)58.25%. The ef-
fective nucleon polarization̂sN(tN)& is defined in Eq.~5.16a!
of Sec. V; it is related to the wave function probabilitie
according to Eq.~5.16b!; the employed wave function yield
the specific valueŝ sn&50.881 and^sp&520.046. The
neutron component is also in the front form spin distributi
of overwhelming importance as Fig. 2 shows; this fact ho
true for longitudinal and transverse polarizations. In the fro
form spin distribution of3H the proton and neutron chang
roles. Thus, the technical tools for calculating the3H spin-
structure functions are also available, but no such calcula
is done in this paper.

We expected that the Melosh rotation from canonical
front form spin is a sizable relativistic effect, important fo
the actual magnitude and shape of the front form spin dis
butions. This expectation did not turn out to be true; leav
the Melosh rotations out, i.e., putting them to unity in E
~C7! for the deuteron and in Eq.~6.13! for 3He creates
minute changes of less than 0.1% in the distributions outs
zeros; the changes are invisible in the plots. In both ca
deuteron and3He, the front form spin distributions ar
peaked aroundj51/A. The approximation

nW A•sWNapp~jtNnA!5dS j2
1

AD ^sN~ tN!& ~7.1!

is a simple one; it is independent from the directionnW A of the
nuclear polarization. When calculating the nuclear sp
structure functionsgi

A later on, it will turn out to also be a
reliable one for both nucleonic distributions in both nuclei.
is poorest for the3He proton distribution in longitudinal po
larization whose peaking aroundj51/A is least pronounced
However, the proton contribution to the3He spin-structure
functions will turn out to be small anyhow.

B. Nucleonic spin-structure functionsgi
N„tN…

The nuclear spin-structure functionsgi
A are calculated ac-

cording to the convolution formulas~5.12!. The convolution
formulas require a parametrization of the nucleonic sp
structure functionsgi

N(tN) . We employ the parametrization o
Ref. @23#; it is displayed in Figs. 3 and 4. The parametriz
tion of g1

N(tN) in Ref. @23# accounts for the experimental pro
ton data@24# and satisfies the Bjorken sum rule@25#
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E dxN@g1
p~xN!2g1

n~xN!#5
1

6

gA

gV
, ~7.2!

gA and gV being the axial and vector coupling constants
the nucleon. The parametrization ofg2

N(tN) is based on the
twist-2 prescription of Ref.@26# which relates both nucleoni
spin-structure functions by

g2
N~ tN!

~xN!52g1
N~ tN!

~xN!1E
xN

1 dxN8

xN8
g1

N~ tN!
~xN8 !. ~7.3!

The first data@14# for g2
p , referring to the momentum trans

fer range 1 GeV2<2Q2<10 GeV2, are consistent with tha
prescription, though the experimental precision is still uns
isfactorily poor.

The proton and neutron spin-structure functionsg1
N(tN)

andg2
N(tN) are of comparable magnitude, though of differe

sign, in the parametrization of Figs. 3 and 4. This charac
istic is decisive for the successful extraction of the neut
spin-structure functions from3He data. This characteristi

FIG. 1. ComponentsnW A•sWN(jtNnA) of the deuteron front form
spin distribution as a function of the momentum fractionj. Neutron
and proton components are identical. The longitudinal and tra

verse contributions, i.e., the contributions fornW A5n̂ and nW A5ê1,
respectively, are indistinguishable on the chosen scale.

FIG. 2. ComponentnW A•sWN(jtNnA) of the 3He front form spin
distribution as function of the momentum fractionj. Neutron and
proton components are shown for longitudinal and transverse p

izations, i.e., fornW A5n̂ andnW A5ê1, respectively. The neutron com
ponents are given by the dotted curve; on the chosen scale o
plot, they coincide for both cases of polarization. The longitudi
~transverse! proton component is displayed as short-dashed~long-
dashed! curve; the small proton components are also shown in
enlarged scale on the right side of the figure.
f

t-

t
r-
n

does not hold for the parametrization ofg1
N(tN) according to

Ref. @27#, which seems, however, to be invalidated by t
existing proton data@24#.

C. Nuclear spin-structure functions gi
A

The deuteron and3He spin-structure functionsg1
A and

g2
A are calculated using the convolution formulas~5.12!. The

predictions are displayed in Figs. 5 and 6, respectively. T
are broken up into proton and neutron contributions. T
neutron contribution dominates the3He spin-structure func-
tions; the proton contribution is insignificant for3He. In con-
trast, the proton and neutron make contributions of com
rable magnitude, but of opposite sign to the deuteron sp
structure functions. Both results are due to the fact t
proton and neutron spin structure functionsgi

N(tN) are of
comparable size. Experimental data on the deuteron
3He spin-structure functiong1

A and on the deuteron spin
structure functiong2

A have recently become available, i.e
Refs.@12,13,10,11,14#, respectively.

s-

r-

he
l

n

FIG. 3. Nucleonic spin-structure functionsg1
N(tN) and g2

N(tN) as
functions of the nucleonic Bjorken variablexN in the scaling limit.
The neutron spin-structure functions are shown as dotted curves
proton ones as dashed curves, all in the parametrization of
@23#, g2

N(tN) according to the twist-2 prescription of Ref.@26#. The
data for the proton spin-structure functiong1

p are taken from Ref.
@24#; only the statistical errors are shown. Older SLAC data
g1

p referred to in Ref.@24# are not plotted.

FIG. 4. Weighted nucleonic spin-structure functionsxNg2
N(tN) as

functions of the nucleonic Bjorken variablexN in the scaling limit.
The neutron spin-structure function is shown as dotted curve,
proton one as dashed curve, both in the parametrization of Ref.@23#
according to the twist-2 prescription of Ref.@26#. The data for the
proton spin-structure functiong2

p are taken from Ref.@14#; they
refer to two distinct scattering angles of the lepton,Qe54.5° and
Qe57.0°, indicated by solid dots and solid rectangles, respectiv
only the statistical errors are shown.



r
le
m
m

en

nc
b

io

rro
-

m
-
r
in
in
e

re

er

ata
ta.

cle-

d

not
As

m-

-
e
ol
tt

-
ic
th

sh

ey

o

tis-

e
r
ntal
n.

56 2307POLARIZED DEEP-INELASTIC LEPTON SCATTERING . . .
The deuteron data@12–14# refer to a momentum transfe
range 1 GeV2<2Q2<15 GeV2; we assume them to sca
and therefore consider the description in scaled approxi
tion developed in this paper as appropriate. Figure 7 co
pares the data with the predictions of Fig. 5. The experim
tal error bars for the quantityxg1

A in Ref. @13# have become
quite small indicating that the theoretical spin-structure fu
tion changes sign at too large a value for the scaling varia
x; furthermore its peak is also shifted to too largex values.
Thus, as a consequence, also the assumed parametrizat
the neutron spin-structure functiong1

n appears to be slightly
inconsistent with the data. In contrast, due to sizable e
bars the first data@14# for xg2

A cannot be considered a strin
gent test of the assumedg2

N(tN) .
The 3He data @10,11# refer to an average momentu

transfer of2Q252 GeV2, scaling is not evident; the de
scription in scaled approximation developed in this pape
not quite appropriate. Outside the domain of Bjorken scal
the general convolution formulas for the nuclear sp
structure functions have to be based on the front form sp
tral function and not on the density which the particular
lations~5.12! use; in that caseQN is also not equal toQ. The
front form spectral function is not calculated in this pap
Nevertheless, the description assuming scaling is able

FIG. 5. Deuteron spin-structure functionsg1
A and g2

A as func-
tions of the Bjorken variablex. They are derived from the convo
lution formulas~5.12! using the parametrizations of Fig. 3 for th
nucleonic structure functions. The full results are shown as s
curves; the neutron and proton contributions are given by the do
and dashed curves, respectively.

FIG. 6. 3He spin-structure functionsg1
A andg2

A as functions of
the Bjorken variablex. They are derived from the convolution for
mulas~5.12! using the parametrizations of Fig. 3 for the nucleon
structure functions. The full results are shown as solid curves;
neutron and proton contributions are given by the dotted and da
curves, respectively.
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roughly account for trends in the existing experimental d
@11#. Figure 8 compares the theoretical prediction with da

D. Unfolding the neutron spin-structure functions
from the nuclear ones

The front form spin distributionssWN(jtNnA) are approxi-
mated in Eq.~7.1! by ad-function form. This approximation
yields approximate nuclear spin-structure functions

giapp
A ~x!5(

tN
gi

N~ tN!
~x!^sN~ tN!& ~7.4!

in turn, i.e., very simple relations between nuclear and nu
onic spin-structure functions. Approximation~7.4! accounts
for the full calculation quite reliably. For the deuteron an
for 3He the differences ing1

A and g2
A between the approxi-

mated forms~7.4! and the full convolution formulas~5.12!
are not distinguishable in plots and are therefore
displayed—with one rather inconsequential exception:
expected from the discussion of the3He proton distribution,
the approximated proton contributions togi

A show some mi-
nor deviations; they are given in Fig. 9. The transverse co
ponent of the proton spin distribution in3He is compara-

id
ed

e
ed

FIG. 7. Weighted deuteron spin-structure functionsxg1
A and

xg2
A as functions of the Bjorken variablex. The theoretical predic-

tions are derived from the convolution formulas~5.12! using the
parametrization of Fig. 3 for the nucleonic structure functions; th
are compared to the experimental data forxg1

A of @12#, indicated by
small solid dots, and of@13#, indicated by solid rectangles, and t
the experimental data forxg2

A of @14#; the data forxg2
A refer to two

distinct scattering angles of the leptonQe54.5° andQe57.0°,
indicated by solid dots and rectangles, respectively; only the sta
tical errors are shown.

FIG. 8. 3He spin-structure functiong1
A as function of the

Bjorken variablex. The theoretical prediction is derived from th
convolution formula~5.12a! using the parametrization of Fig. 3 fo
the nucleonic structure functions; it is compared to the experime
data of Ref.@11#; for the data only the statistical errors are show
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tively better approximated by Eq.~7.1! than the longitudinal
one as the different pronounciation of peaks aroundj51/A
in Fig. 2 shows. According to Eqs.~5.12! the spin-structure
function g1

A depends on the longitudinal and the sp
structure functiong2

A on the transverse component of th

front form spin distributionsWN(jtNnA). The differences be-
tween the approximated form~7.4! and the full convolution
formula ~5.12b! for g2

A are therefore smaller than the corr
sponding differences forg1

A . This fact is bourne out in Fig. 9
for the proton contributions. We now turn to unfolding th
neutron spin-structure functions from the nuclear ones.

First, we assume that the convolution formulas~5.12! are
exact. However, we would like to use its approximated fo
~7.4! in order to extract the neutron spin-structure functio
gi

n from the experimental data

gi
n~xN!5@gi

A~x!2g1
p~x!^sp&#

1

^sn&
U

x5xN

. ~7.5!

An example is given in Fig. 10. Even if the convolutio
formula ~5.12a! were exact and were well described by E
~7.4!, the extraction~7.5! of the neutron spin-structure func
tions meets three distinct types of errors, i.e.,

Dgi
n~xN!5S Dgi

A~xN!
1

^sn&
1Dgi

p~xN!U^sp&

^sn&
U D

1D^sp&Ugi
p~xN!

^sn&
U1D^sn&U~gi

A~xN!

2gi
p~xN!^sp&!

1

^sn&
2U1Dsysgi

n~xN!, ~7.6!

which we add up linearly for convenience.
~1! There is a systematic errorDsysgi

n(xN) due to the fact
that the extraction~7.5! is derived from the approximate con

FIG. 9. 3He spin-structure functionsg1
A andg2

A as functions of
the Bjorken variablex. The validity of the approximation~7.4! is
checked. Only the small proton contributions are shown. Compa
with Fig. 6 the resolution of the plots is increased. The pro
contributions are~i! derived in a proper calculation according to th
convolution formulae of Eqs.~5.12! and~ii ! estimated according to
the approximation~7.4!; the dashed curves refer to the proper c
culation, the dot-dashed ones to the approximation. The corresp
ing neutron contributions and the full spin-structure functions
not shown, since both results are indistinguishable in plots with
chosen resolution.
s

.

volution formula ~7.4!. When starting out from the param
etrization of the nucleonic spin-structure functions in Fig.
calculating the nuclear ones without approximation acco
ing to Eq. ~5.12! and then recoveringgi

n according to the
approximate relation~7.5!, differences arise which are no
resolvable in plots and are therefore not displayed. This s
tematic error therefore appears to be minor.

~2! The experimental errors ofgi
A and gi

p , i.e., Dgi
A and

Dgi
p , pollute the extracted neutron spin-structure functio

The errors onDgi
A in the existing experiments are still large

For the deuteron the error in the existing proton data cont
utes to the error in the extraction quite significantly, sin
Dgi

pu^sp&/^sn&u5Dgi
p ; in contrast the same error has a ve

small weight for the extraction from3He data, since
Dgi

pu^sp&/^sn&u.0.05Dgi
p .

~3! The nucleonic contributionŝsN(tN)& in the extraction
~7.5! are model dependent, though they lie within rath
small limits for realistic bound state wave functions, i.e., f
the deuteron 0.45<^sp,n&<0.47 and for 3He @1#
0.85<^sn&<0.90 and20.06<^sp&<20.04. The resulting
spread of theoretical results is displayed in Fig. 11 for3He.
Given the errors in the present experimental data, the mo
dependence is not significant yet.

d
n

-
d-

e
e

FIG. 10. Weighted neutron spin-structure functionxNg1
n as a

function of the Bjorken variablexN . The neutron spin-structure
function assumed in Fig. 3 is compared to the ones extracted f
the 3He data@10#, indicated by big solid dots, and from the de
teron data@13#, indicated by solid dots, according to Eq.~7.5!. The
model dependence of the extraction due to the nonuniqueness o
deuteron wave function is not folded into the experimental error
is small compared with the existing errors in the experimental d

FIG. 11. Neutron spin-structure functiong1
n as a function of the

Bjorken variablexN . The neutron spin-structure function assum
according to Fig. 3 is shown as the middle curve and compared
the ones extracted from the calculated3He spin-structure function
g1

A according to Eq.~7.5!. The upper and lower curves give th
bandwidth of the theoretical uncertainty due to the model dep
dence@1# of the trinucleon bound state wave function.
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Second, the convolution formulas~5.12! may be concep-
tually wrong. There may be a multitude of effects, e.g.
medium dependence of the nucleonic structure function
binding correction, or other contributing non-nucleon
nuclear constituents, which invalidate the convolution f
mulas~5.12! and which also contribute toDsysgi

n(xN). Those
effects were discussed in the context of the spin-indepen
structure functionF2

A @18#. In the next subsection we worr
about corresponding consequences for the spin-struc
functions gi

A and their bearing on extracting neutron sp
structure functions. Anticipating that also those correctio
will turn out to be small, we conclude:

The approximate relation~7.5! can reliably be used to
extract the neutron spin-stucture functionsgi

n of the neutron
from deuteron and3He data. Figure 10 uses the3He data of
Ref. @10# and the deuteron data of Ref.@13#. When the data
from all experiments, presently being performed or being
the planning stage, will be in, the parametrization of t
neutron spin structure functionsgi

n , shown in Fig. 3, may
have to be revised.

E. Is there an EMC effect
in the 3He spin structure function g1

A?

In the case of unpolarized deep-inelastic lepton scatte
a deviation between the nucleonic structure function of a f
nucleon, i.e.,F2

N(tN) , and of a bound nucleon, i.e.,F2
A/A, is

indeed observed and called the EMC effect. There is a di
sity of theoretical mechanisms@28# able to account for tha
observation. For example, the decrease of the EMC ratio

REMC~x!:5
F2

A~x!

2F2
p~x!1F2

n~x!
~7.7!

at intermediate values of the Bjorken variablex, defined here
for 3He, is often attributed to a medium correction of t
nucleonic structure function, which may be realized in a t
oretical description either by modifying the nucleonic fro
form momentum distribution due to nuclear binding or by
additional meson contribution to the nuclear structure fu
tion, the pion being the most important non-nucleon
nuclear constituent; Ref.@18#, which this paper extends, use
the latter mechanism. Both mechanisms yield compara
effects for F2

A at intermediatex; they affect, however, the
spin-structure functiong1

A quite differently: Whereas a bind
ing modification of the spin-averaged momentum distrib
tion will also yield a corresponding modification of the fro
form spin distributionsWN(jtNnA) and will directly change
the predictions for the nuclear spin-structure functiong1

A , we
do not see any simple mechanism for the spinless pion
contribute tog1

A .
In one recipe attempting to account for nuclear bind

@29#, the nucleonic plus momentumpN
1 is shifted topN

11e
due to binding,e standing for an averaged binding energ
often taken to be about230 MeV. Indeed, such a simpl
shift yields the decrease in the ordinary EMC ra
REMC(x) at intermediate Bjorken variablesx. Using the con-
volution formula
a
a

-

nt

re

s

n

g
e

r-

-

-

le

-

to

,

F2 binding
A ~x!5(

tN
E djF2

N~ tN!S x

Aj D f Nbinding~jtN!

~7.8a!

with the spin-averaged front form momentum distribution

f Nbinding~jtN!:5E d3pNdS j2
pN

11e

PA
1 D

3Tr@r~pNtN!rA~nAPA!#, ~7.8b!

into which binding is built in, the EMC effect in the EMC
ratio REMC can by and large be accounted for. Assuming
same momentum shift in the nucleonic plus momentum
the present discussion of the3He spin-structure function
g1

A , the front form spin distributionsWN(jtNnA) gets the cor-
respondingly changed modification and becomes

sWNbinding~jtNnA!:5E d3pNdS j2
pN

11e

PA
1 D

3Tr@sW Nr~pNtN!rA~nAPA!#,

~7.9a!

sWNbinding~jtNnA!5sWNF S j2
e

mA
D tNnAG . ~7.9b!

The shift in the nucleonic plus momentum is only introduc
in the d function which contains the front form momentu
fraction pN

1/PA
1 . The front form spin distribution

sWNbinding(jtNnA) still satisfies the sum rule~5.15! almost un-
changed: Compared with the original definition~5.13! its de-
pendence onj is shifted, but since its nonvanishing value
are centered around 1/A according to Figs. 1 and 2, the inte
gration of nW A•sWNbinding(jtNnA) over j from 0 to 1 still col-
lects the complete domain in which the front form spin d
tribution is nonzero. The changed front form sp
distribution in Eq. ~5.12a! yields the modified3He spin-
structure functiong1binding

A according to

g1binding
A ~x!5(

tN
E dj

Aj
g1

N~ tN!S x

Aj DnW A•sWNbinding~jtNnA!unW Ai n̂ .

~7.10!

When using that modified3He spin-structure function
g1 binding

A —as a theoretical model for experimental data —
the extraction procedure~7.5! for the neutron spin-structure
function g1

n , no significantly increased deviation occurs b
tween the neutron spin-structure function extracted and
one assumed for calculatingg1 binding

A according to Eq.~7.10!.
In fact, compared with the errorsDg1

n discussed in the las
subsection the deviation is increased by less than 1%;
deviation would not be discernable in a plot with the reso
tion of Fig. 10. Thus, a possible binding correction in t
3He spin-structure functiong1

A , as introduced in this subsec
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tion, does not invalidate the extraction of the neutron sp
structure function according to Eq.~7.5!. However, an EMC
effect can arise in the ratio

SEMC~x!:5
g1

A~x!

g1
p~x!^sp&1g1

n~x!^sn&
, ~7.11!

SEMC being a much more sensitive quantity. This fact
documented in Fig. 12 which shows this ratio with and wi
out the inclusion of a binding correction according to E
~7.10! in the calculation of the3He spin-structure function
g1

A . The ratioSEMC exhibits the same decrease at interme
ate Bjorken variablesx as the ordinary EMC ratioREMC of
Eq. ~7.7! does. The trend is clearly observable inSEMC,
though its smooth dependence on the Bjorken variablex is
disturbed by the zero in the denominator of the ratio in d
nition ~7.11!; the definition may therefore be considered u
fortunate.

F. Relation to instant form dynamics

Reference@3# describes polarized inelastic lepton scatt
ing from 3He noncovariantly in PWIA. It assumes insta
form dynamics. Though the formalism is employed there
a description of quasielastic scattering, it is general and m
formally be applied to the deep-inelastic regime of t
Bjorken limit as well. In this subsection we explore a d
scription of deep-inelastic scattering based on Eqs.~3.11a!–
~3.11d! of Ref. @3#. However, the exploration is only a matte
of curiosity: The boosts of instant form dynamics are int
action dependent for a composite system. The assumptio
PWIA that the nuclear current is built from single-nucle
contributions cannot be made consistently. Thus, front fo
dynamics remains the superior form of description for de
inelastic scattering.

The description of Ref.@3# in terms of instant form dy-
namics made the same conceptual distinction between
momentum transfer to the nucleusQ and to a nucleonQN ,
to a nucleon bound in the nucleus though assumed to b
mass shell, as this paper does, i.e.,QNÞQ due to their dif-
ference in energy transfer. The difference between the

FIG. 12. EMC ratiosSEMC(x) and REMC(x). The spin ratio
SEMC(x) of Eq. ~7.11! is given as solid curve and compared with t
ordinary EMC ratioREMC(x) of Eq. ~7.7! given as a dashed curve
In the right figure the nuclear structure functions are used in
forms g1binding

A (x) and F2binding
A (x) according to Eqs.~7.10! and

~7.8a!. The left figure shows the same ratios but without the inc
sion of binding effects; there, the nuclear structure functions
used in the formsg1

A(x) and F2
A(x) according to Eqs.~5.12a! and

~7.8a! with e50.
-

-
.

-

-
-

-

r
y

-

-
of

-

he

on

n-

ergy transfers to the struck nucleonQN and to the nucleusQ
is relatively small for deep-inelastic scattering, i.e
D:5Q02QN

0 ,uDu!Q0. Nevertheless, its effect onQN
2

QN
2 5Q222Q0D1D2 ~7.12!

can be sizable. One finds for the ratio of the scaling variab
x andxN

x

xN
5

Q2

2PA•Q
A

2pN•QN

QN
2

, ~7.13a!

x

xN
.

1

11D/mNx

ApN•Q

PA•Q
, ~7.13b!

with

pN•QN.pN•Q. ~7.13c!

The ratio x/xN is only at moderate values ofx close to
ApN

1/PA
1 for all relevant nucleon momentapN at which the

spectral function gives significant contributions. Compari
the instant form and the front form convolution formulas w
therefore have to expect conflicting results for small valu
of the Bjorken variablex.

The noncovariant result for g1
A(x,Q2)5(Q•PA/

AmA)G1
A(Q2,PA•Q/mA) is obtained from Eq.~3.11c! of

Ref. @3# as function ofx and Q2. The only modification with
respect to the quasielastic results is the replacement of
nucleonic structure functions by the corresponding de
inelastic ones according to

G1
N~ tN!

~QN
2 ,pN•QN /mN!5 lim

B j

mN

pN•QN
g1

N~ tN!
~xN ,QN

2 !,

~7.14a!

G2
N~ tN!

~QN
2 ,pN•QN /mN!5 lim

B j

mN
3

~pN•QN!2
g2

N~ tN!
~xN ,QN

2 !.

~7.14b!

For practical calculations the parametrizations ofgi
N(tN)

given in Sec. VII B are used; they do not carry a depende
on QN

2 ; in contrast, the nucleonic structure functionsGi
N(tN)

will remain dependent onQN
2 .

The solid curve of Fig. 13 shows the spin-structure fun
tion g1

A(x,Q2) derived from Eq.~3.11c! of Ref. @3#. The
four-momentum transfer has been chosen to be2Q2510
GeV2. However, no significant change of the results is se
for any value larger than2Q2>1 GeV2. Thus, theoreti-
cally, scaling is observed for2Q2@1 GeV2 provided it is
assumed for nucleons. This fact may be taken as one jus
cation for assuming scaling in the description of the data
Refs. @10,11#, collected for an average momentum trans
Q252 GeV2. However, Fig. 13 also proves that the conce
tually required difference between the momentum transfeQ
to the nucleus andQN to the nucleon matters. The unjustifie
recipeQN5Q makes the results very close to the predicti
based on front form dynamics. References@30–34# employ
this recipeQN5Q. We claim that the approximated form o
Eq. ~7.4! for gi

A , used for the interpretation of ex

e

-
re
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perimental data, is well supported by front form dynamics
contrast, its derivation based on instant form dynamics
only poorly justified.

VIII. CONCLUSION

The convolution formulas which relate the structure fun
tions for deep-inelastic scattering to the properties of c
stituent particles of the target nucleus depend on the assu
tion of one-body current operators and on the covarianc
the current tensor of the bound constituents. Consiste
problems and ambiguities are due to the fact that one-b
currents cannot be covariant under all Lorentz transform
tions in a system of bound particles.

This paper presents a detailed derivation of nuclear s
dependent structure functions for deep-inelastic lepton s
tering and applies them to the two- and three-nucleon bo
states. Front form dynamics is used for which the covaria
under the kinematic subgroup is sufficient to derive con
lution formulas: The restriction to one-nucleon currents
possible without inconsistencies. This is why we like t
description in terms of front form dynamics. The previo
calculation of Ref.@30# is closest in spirit to this paper. In
contrast the noncovariant approach using instant form
namics as discussed in Refs.@3,31–34# cannot be consis
tently extended to the Bjorken limit in this sense. Our inve
tigation of relativistic effects in the spin-dependent struct
functions for the deep-inelastic regime is novel; it exten
the work of Ref.@18# to polarization. The numerical result
show that relativistic effects due to the proper treatmen
spin are small and negligible compared to larger effects a
ing from the conceptual difference between front form a
instant form predictions and arising from the model dep
dence of the ground state wave functions. These findings
equally valid for the two- and three-nucleon systems.

Front form dynamics allows the formulation of convol
tion formulas with a comparatively simple structure, i.e., t
nuclear spin-structure functionsg1

A andg2
A are separately de

termined by the convolution of the front form spin distrib
tion with the nucleonic spin-structure functionsg1

N(tN) and

FIG. 13. 3He spin-structure functiong1
A as function of the

Bjorken variablex. The result derived from the convolution for
mula ~3.11c! of Ref. @3# using a noncovariant approach under t
assumption of instant form dynamics is given as a dashed curv
a second calculation based on the same formalism we have ex
itly set QN5Q; that approximation cannot be justified theoretica
in instant form dynamics; the result is presented as dotted cu
For comparison the full calculation of Eq.~5.12a! is shown as a
solid curve.
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g2
N(tN) , respectively. In deep-inelastic scattering the sim

approximation~7.4! for the convolution formulas is moti-
vated and proven to be reliable. References@1,32# already
related the nuclear spin-structure functions to the nucleo
spin-structure functions weighted by integral properties
the nuclear wave function. But they were unable to just
that relation rigorously. The present approach gives the m
ing proper justification. This finding is important for the in
terpretation of the experimental data with respect to
analysis of nuclear effects.
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APPENDIX A: DEUTERON DENSITY OPERATOR

The full density operatorrA(nA) commutes with the mo-
mentum operatorP. Its projectionrA(nAPA), i.e.,

^PAlA8 urA~nA!uPAlA&5^lA8 urA~nAPA!ulA&, ~A1!

onto the Hilbert sector of momentum eigenstates with eig
value PA is needed in Eq.~3.2!. The density operator of a
spin-1 target is parametrized in the form

rA~nAPA!5
1

3F12
3

2mA
nA•W1

3

mA
2

tAmnTmn~W!G
~A2!

with the Lorentz tensorTmn(W) defined by

Tmn~W!:5
WmWn1WnWm

2
1

1

3S PA
mPA

n

PA
2

2gmnD W2.

~A3!

The density operator is at most quadratic in the Pa
Lubanski vectorW. The vectornA and the tensortA describe
the polarization of the target. The parametrization~A2! sat-
isfies the required constraints. The Pauli-Lubanski vectorW
and the tensor operatorTmn(W) are traceless, i.e., Tr@W#50
and Tr@Tmn(W)#50. In general, the polarization vectornA
and the polarization tensortA are independent. Howeve
when considering a quantum mechanically pure state as
do, thennA is the direction according to which its polariza
tion is defined; in this case the polarization vectornA and the
polarization tensortA are connected by

tA
mn5

3

2FnA
mnA

n 2
1

3S PA
mPA

n

PA
2

2gmnD G , ~A4!

In
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besides Eq.~A4! the general constraintsnA
2521 and

nA•PA50 then hold for the polarization vectornA .
Matrix elements of the density operator of any moment

PA are related to those of the rest frame, i.e.,

^lA8 urA~nAPA!ulA&5K lA8U13F11
3

2
n̂R•SW A

13(
i j

tRi jTA
i j ~SA!GUlAL . ~A5!

For Eq.~A5! the identities

Wm

mA
uPAlA&5AmA

PA
1

UFL f S PA

mA
D G

3FL f S PA

mA
D m

r

~0,SW A!rG uPRlA&, ~A6a!

nA
m5L f S PA

mA
D m

r

~0,n̂R!r, ~A6b!

Tmn~W!

mA
2

uPAlA&5AmA

PA
1

UFL f S PA

mA
D G

3FL f S PA

mA
D m

i

L f S PA

mA
D n

j

TA
i j ~SA!G uPRlA&,

~A6c!
th

-
us
tA
mn5L f S PA

mA
D m

i

L f S PA

mA
D n

j

tR
i j ~A6d!

are used. In the form~A5! for the target rest frame it is
obvious that the density operator has only nine independ
elements as appropriate for a spin-1 particle, one aris
from the identity operator, three from the vector operatorSW A ,
and five from the tensor operatorTA(SA). The Cartesian res
frame tensorTA

i j (SA),

TA
i j ~SA!:5

SA
i SA

j 1SA
j SA

i

2
2

1

3
d i j SW A

2 , ~A7!

is symmetric, i.e.,TA
i j (SA)5TA

ji (SA), and with respect to the
tensor lables traceless, i.e.,( iTA

ii (SA)50; thus, the tensor
part of the density operator can equivalently be written a
five-component tensorTA

[2] (SA) of second rank—in standar
relation to its Cartesian representation~A7!. The constraints
on the density operatorrA(nAPA), from which, for example,
condition ~A4! results, are best proven in the target re
frame, and their validity then carries over to any system
Lorentz covariance.

APPENDIX B: DEUTERON CURRENT TENSOR

The current tensorWA
mn(Q,PA) is Hermitian and con-

served, it preserves parity and time-reversal invariance.
Lorentz structure is built from the three four-vectorsQ, PA ,
andW. The current tensor has the general form
WA
mn~Q,PA!5FQmQn

Q2
2gmnG S F1

A~x,Q2!1
Q•T~W!•Q

Q2mA
2

b1
A~x,Q2!D A

mA
1

P̃A
mP̃A

n

Q•PA
S F2

A~x,Q2!1
Q•T~W!•Q

Q2mA
2

b2
A~x,Q2!D 1

mA

1Gmn~W!b3
A~x,Q2!

1

mA
1Hmn~W!b4

A~x,Q2!
1

mA
1 i

1

j

emnab

Q•PA

3QaFWbg1
A~x,Q2!1S Wb2

Q•W

Q•PA
PAbDg2

A~x,Q2!G A

mA
~B1!
ich
alars

ff.
ab-
w-
are
am-
ed,
with

P̃A
m :5PA

m2
Q•PA

Q2
Qm, ~B2a!

x:52
AQ2

2Q•PA
, ~B2b!

x being the Bjorken scaling variable. The dependence of
current tensor operator on the Pauli-Lubanski vectorW is at
most quadratic for a spin-1 target,j 51 being the spin quan
tum number. Besides the standard basic tensor forms
for a spin-12 case the two additional ones@W̃mW̃n1W̃nW̃m#/2
and @W̃mP̃A

n 1W̃nP̃A
m#(Q•W)/2 with W̃:5W2(Q•W/Q2)Q
e

ed

were permissible. Furthermore, the structure functions wh
augment the basic tensors depend on the Lorentz sc
Q2,Q•PA and (Q•W)2, where the dependence on (Q•W)2

is at most linear and could therefore explicitly be split o
This strategy would result in a perfectly admissible and
solutely general parametrization of the current tensor. Ho
ever, those additional terms, specific for a spin-1 target,
not traceless and therefore would yield a nonstandard par
etrization upon spin averaging. In contrast, the modifi
though clumsier basic tensor forms in Eq.~B1!:

Gmn~W!5Fgm
m82

QmQm8

Q2 GTm8n8~W!Fgn8
n2

Qn8Q
n

Q2 G ,

~B3a!
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Hmn~W!5Fgm
m82

QmQm8

Q2 G @PAQaTan8~W!

1Tm8a~W!QaPA#
1

mA
2Fgn8

n2
Qn8Q

n

Q2 G
~B3b!

and the scalarQ•T(W)•Q5QmTmn(W)Qn are traceless
with respect to spin summation. Thus, the structure functi
proportional to the Pauli-Lubanski vectorW, i.e.,gi

A , and the
structure functions proportional to the basis tensorsGmn(W)
andHmn(W) and to the scalarQ•T(W)•Q, i.e., bi

A , cannot
contribute in the spin-averaged case. When spin averag
the current tensor~B1! reduces to the well-known form with
the two structure functionsF1

A andF2
A .

The current tensor̂nAuWA
mn(Q,PA)unA& follows from the

current tensor operatorWA
mn(Q,PA) of Eq. ~B1! and from the

density operatorrA(nAPA) of Eq. ~A2! according to Eq.
~3.2!. In fact, the current tensor̂nAuWA

mn(Q,PA)unA& is ob-
tained from the operator~B1! by replacing the Pauli-
Lubanski vectorW and the tensor operatorTmn(W) accord-
ing to the relations

nA
m5~1/ jmA!Tr@WmrA~nA ,PA!#, ~B4a!

tA
mn5~1/mA

2 !Tr@Tmn~W!rA~nAPA!#. ~B4b!

We note that Eq.~B4a! differs from the corresponding Eq
~3.10! for a spin-12 target, since the quantum numberj is
different; this difference is obvious, since polarization is d
fined with respect to the maximum angular momentum p
jection j ; despite that difference the current tensors in E
~3.8! and~B1! are defined such that their dependence on
polarization vector and on the spin-structure functionsgi

A is
the same for spin-1 and spin-1

2 targets.

APPENDIX C: FRONT FORM MOMENTUM DENSITY
OF THE DEUTERON AND SPIN DISTRIBUTION

In this section the front form momentum densityr(pNtN)
of Eq. ~5.8b! is calculated for the deuteron, i.e., forA52. It
is calculated as an operator in nucleonic and nuclear
s

g,

-
-
.
e

in

space. As in Eq.~6.2b! of Sec. VI it is related to the nuclea
bound stateuPAlA& with spin projectionlA by

^lNlA8 ur~pNtN!ulN8 lA&

5
A

PA
1 K PAlA8UdS pN

1

PA
1

2
p1

1

PA
1D d2~pN'2p1'!

3O1~lN8 lN!d tNt1UPAlAL . ~C1!

The nuclear c.m. system is assumed for the calculat
The internal part of the nuclear bound stateuPAlA& is a mass
eigenstate and it can therefore be identified with the non
ativistic ground stateuCBlA& of internal motion. It is calcu-
lated in terms of the three-dimensional relative momentumpW
and in terms of canonical spins, but has now to be tra
formed to the appropriate front form variables.

Internal single-nucleon front form momenta (k i'j i) are
introduced as in Sec. VI and extended to three-dimensio
form there; the momenta are constrained, (k1'j1) are the
independent ones. The relative momentumpW is expressed by
them, i.e.,

pW 5
1

2
~kW12kW2!, ~C2a!

pW 5Fk1
1 ,k1

2 ,
1

2S j1M02
mN

2 1k1'
2

j1M0
D G , ~C2b!

with the abbreviation

M05F mN
2 1k1'

2

j1~12j1!
G1/2

. ~C2c!

The two-nucleon bound state wave function takes the follo
ing form in that representation:
^k1'j1l1s2t1t2uCBlA&5(
s1

^l1uRM
1~k1'j1!us1&AU ]pW

]~k1'j1!
U^pW ~k1'j1!s1s2t1t2uCBlA&. ~C3a!

The transformation of momenta requires the Jacobi determinant

U ]pW

]~k1'j1!
U5U]p3

]j1
~k1'j1!U5 M0~k1'j1!

4j1~12j1!
, ~C3b!

the transformation of spin the Melosh rotation

RM~k1'j1!5
mN1j1M01 i ~sN

1 k1
22sN

2 k1
1!

A~mN1j1M0!21k1'
2

; ~C3c!
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in Eq. ~C3b! the argument list ofM0 is made explicit. The front form momentum density samples the front form propertie
a single nucleon. Thus, only the spin of nucleon 1 is Melosh rotated. In contrast, the spin of nucleon 2 remains in c
representation, since the expectation value in Eq.~C1! sums over that spin dependence. The front form momentum de
takes the form

^lNlA8 ur~pNtN!ulN8 lA&5
A

PA
1(

t2
(

s18s1s2

U]p3~pN'j!

]j U^lNuRM
1~pN'j!us1&^s18uRM~pN'j!ulN8 &^CBlA8 upW ~pN'j!s18s2t1t2&

3^pW ~pN'j!s1s2t1t2uCBlA&uj5p
N
1/P

A
1. ~C4!

At this stage we go back to the corresponding instant form momentum densityr(pW NtN) which reads in the nuclear c.m. syste

^sNsA8 ur~pW NtN!usN8 sA&5K CBsA8U(
i

d~pW N2kW i !Oi~sN8 sN!d tNtiUCBsAL 5A(
t2

(
s2

^CBsA8 upW NsN8 s2tNt2&^pW NsNs2tNt2uCBsA&

5
1

2 K sNsA8Ur0~pNtN!1r1~pNtN!sW N•SW A1r2~pNtN!S sW N•pW NSW A•pW N

pW N
2

2
1

3
sW N•SW AD

1r3~pNtN!(
M

TAM
[2] ~SA!Y2M* ~ p̂N!UsN8 sAL . ~C5!

The first step gives the definition. In the next two steps of Eq.~C5! the spin structure of the instant form momentum dens
r(pW NtN) is recalled. The spin operatorTA

[2] (SA) was already introduced in Appendix A; it is a five-component tensor of r
2 and is related to its Cartesian form~A7! in standard fashion. In addition to the three functionsr0 , r1, andr2, which are
already present in the description of the spin-1

2 target, a fourth functionr3 occurs, which is responsible for the tens
polarization. The functionsr0 ,r1 ,r2, andr3 of Eq. ~C5! are numerically available and are used for calculating the front fo
momentum distribution. However, neitherr0 nor r3 will affect the spin-structure functionsg1

A and g2
A ; both determine the

front form momentum distributionf N(jtN) of Eq. ~5.14a!, required for the calculation of the spin-independent deute
structure functionF2

A . Since the calculation is carried out in the nuclear c.m. system, the canonical and front form sp
identical, thus,uCBlA&5uCBsA& and therefore

^lNlA8 ur~pNtN!ulN8 lA&5U1

2

1

PA
1U]p3~pN'j!

]j U K lNlA8URM
1~pN'j!Fr0~ptN!1r1~ptN!sW N•SW A1r2~ptN!S sW N•pW SW A•pW

pW 2

2
1

3
sW N•SW AD 1(

M
TAM

[2] ~SA!Y2M* ~ p̂!r3~ptN!GU
pW 5pW ~pN'j!

RM~pN'j!UlN8 lAL U
j5p

N
1/P

A
1

. ~C6!

The result~C6! requires the replacement of the Jacobi momentumpW aspW (pN'j) by the front form momenta (pN'j) according
to the prescription of Eq.~C2b!, given there in terms of (k1'j1).

The determination of the spin-structure functionsg1
A and g2

A in deep-inelastic lepton scattering according to Eqs.~5.19!
requires the full spin-dependent momentum densityr(pNtN); however, the determination according to Eqs.~5.12! needs the
front form spin distributionsWN(jtNnA) only, i.e.,

sWN~jtNnA!5
1

2E d2pN'U ]p3

]j
~pN'j!U(

i 51

3

Tr@sW NRM
1~pN'j!sN

i RM~pN'j!#Fr1~ptN!nA
i 1r2~ptN!S pinW A•pW

pW 2
2

1

3
nA

i D GU
pW 5pW ~pN'j!

.

~C7!

The front form spin distributionsWN(jtNnA) was already introduced in Eq.~5.13!. The calculations of this paper are based
it. It satisfies the sum rule~5.15! relating it to the spin expectation value^sN(tN)& in the polarized deuteron stateuCBnA&,
defined by Eq.~5.16a!. The spin expectation valuêsN(tN)& is given by theS- andD-state probabilities of the two-nucleo
bound state wave function according to

^sN~ tN!&5
1

2S P~S!2
1

2
P~D ! D . ~C8!
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