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Modified Faddeev equations that allow the inclusion of irreducible three-body forces in addition to
two-body interactions are formulated and the technical apparatus for their solution in momentum space
is described. Results for the triton binding energy are obtained with realistic two-nucleon interactions
and the Tucson-Melbourne two-pion exchange three-nucleon force and compared with previous calcula-
tions. Excellent agreement with the results of other groups is found confirming that the accuracy of
present-day techniques for handling three-nucleon forces is very high indeed.

I. INTRODUCTION

The three-nucleon force is not made by nature. The
three-nucleon force is an artifact of theoreticians who
view the nucleus as a system of nucleons only: it arises in
any theoretical description of nuclear phenomena which
freezes microscopic degrees of freedom —in the same way
as the two-nucleon force does. Alternatively, sizable con-
tributions to the complicated three-nucleon force may be
resolved into reducible processes in a Hilbert space ex-
tended for some important nonnucleonic degrees of free-
dom and may be accounted for there by a simpler in-
teraction. That strategy is pursued in Refs. [1,2] which
considers the excitation of a nucleon to a 6-isobar explic-
itly. Naturally, not all nonnucleonic degrees of freedom
can be treated explicitly in practical calculations. Thus, a
residual three-nucleon force will always survive as irre-
ducible and, if expected to remain quantitatively impor-
tant, has to be included in the Hamiltonian describing
many-nucleon systems in nuclear structure and nuclear
reactions.

The subject of the present paper is the three-nucleon
force in the three-nucleon bound state. The three-
nucleon force is used in the two-pion exchange Tucson-
Melbourne form [3]. It was previously included in the
configuration space calculations of Ref. [4] and in the cal-
culations of Ref. [5] which chose a mixed configuration-
space and momentum-space description. Those calcula-
tions are our technical standards, to whose results we will
be unable to add any further physical insight. Our paper
only has technical goals. It presents the first solution of
the momentum-space Faddeev equations with the in-
clusion of a three-nucleon force, but without any pertur-
bation expansion. It extends the perturbative treatment
of Ref. [6]. For us, the present paper contains the techni-
cal basis for a more ambitious calculation which treats

the b, -isobar degree of freedom explicitly as Refs. [1,2]
do, but simultaneously takes a residual three-nucleon
force into account.

Section II derives the Faddeev equations to be solved
and describes the technical apparatus for their solution
with respect to three-nucleon binding energy and wave
function. Section III discusses our binding-energy results
for two realistic two-nucleon potentials when combined
with the Tucson-Melbourne three-nucleon force. Our re-
sults are compared to those of Refs. [4,5,6] obtained pre-
viously. Conclusions are given in Sec. IV.

II. FADDEEV EQUATIONS AND THEIR SOLUTION

A. The inclusion of a three-body force

For (ijk) being a cyclic permutation of (123), V; is, ac-
cording to the usual "odd man out" notation, the two-
body potential of the interaction between particles j and
k; 8' denotes that part of the three-body potential

(2)

where particle i interacts simultaneously with particles j
and k. In Eq. (1) Ho is the kinetic energy operator of the
three particles. The Schrodinger equation

Hie) =Eie) (3)

In order to derive modified Faddeev equations for a
bound system of three identical particles that interact
both via two-body and genuine three-body forces we start
from a Hamiltonian of the form

3

H=Ho+ g (V;+W;) .
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for the Hamiltonian (1) can be rewritten in the case of
bound-state problems as

3

l% &=G,(E) g (V, +W, )l% &, (4)
G, (E)=(E —Ho —V, )

which can also be represented as

(18)

three-body Green*s function of channel i with the two-
body interaction V;, but without the three-body contribu-
tion W;, i.e.,

GO(E) =(E —Ho) (5) G, (E)=Go(E)+Go(E)T, (E)GO(E) . (19)

is the free three-body Green's function depending on the
total energy E of the bound three-body system.

The following decomposition of the wave function
l
4 &

into Faddeev amplitudes
l f, & is introduced:

T, (E)=V, +V;Go(E)T, (E) . (20)

In Eq. (19) T, (E) i.s the two-body transition matrix em-
bedded in three-particle space, given by the Lippmann-
Schwinger equation

(6) Applying the well-known relation
i=1

ly, &=G,(E)(V, + W, )le& . (7) G, (E)V; =Go(E)T;(E) (21)

Since all particles are identical, quantities that carry
diferent particle indices, such as operators, states and
variables, can be related to each other simply by means of
permutations, e.g. ,

—1~2 =&123~1~123

—1~3 ~132 ~1~132

(8)

(9)

where P,23 and P,32 are cyclic and anticyclic permuta-
tions of three particles de6ned in terms of transpositions
I'; of the two particles i and j through

~123 =~12~23 ~

~132 =~13~23 ~

(10)

Relations corresponding to (8) and (9) also hold for W;.
Together with the fact that a wave function of three iden-
tical particles is invariant under cyclic permutations they
imply that the Faddeev amplitudes transform like

I 6 & =P)231&( &,

lq, & =P„,l@, &

(12)

(13)

into each other. Thus, the wave function l+ & takes the
form

l~&=(I+P)ly, &,

independent of the label i with

~ =~123+&132 ~

The integral equation

ly, & =G,(E)(V, + W, )(I+P)ly, &

(14)

(15)

is obtained after inserting Eq. (14) into Eq. (7). Moving
Go(E) V; l 11; & to the left-hand side and multiplying the re-
sulting equation with [1 Go(E) V; ]

' from the —left

yields

ly; & =[1 G, (E)V;] 'G, (E)[V,P'+ W—;(I+P)]ly; & .

(17)

The factor [1—Go(E) V, ] 'Go(E) in Eq. (17) is just the

Equation (22) is a set of three equations for the Faddeev
amplitudes l f; & that transform into each other under cy-
clic permutations. Hence the solution of only one of
them is required. Given the solution lf; & the wave func-
tion l% & is obtained by means of Eq. (14). Equation (22)
is equivalent to Eqs. (3.3) and (3.5) of Ref. [7].

B. Partial wave expansion

To represent (22) in momentum space we introduce
partial-wave projected plane-wave states in (Ij)-coupling
as basis, i.e.,

lpqv &;
= lp;q;;[(LS)I(ls; )j ]28,(Tt, )TT, & . (23)

The subscript i indicates that particle i is the "spectator"
and particles j and k form the so-called "pair". The stan-
dard Jacobi momenta are

mkkj —mjkk

m~+mk

m, (k~ +kk ) —(m~ +mj, )k;
q;=

m +mj +mk

(24)

(25)

where k; is the momentum of the single particle i and m;
is its mass. In the following all particles are nucleons,
i.e., m, =m&. The quantum numbers I., S, I, and T
denote the orbital angular momentum, total spin, total
angular momentum and isospin of the pair, whereas l is
the orbital angular momentum of the spectator relative to
the c.m. of the pair, s; its spin, both coupled to total an-
gular momentum j, and t, its isospin. In the three-
nucleon bound states the total three-particle angular
momentum 2 and the total isospin Y, their z-components
being denoted by 2, and Y, respectively, are both equal
to —,'. The whole set of discrete quantum numbers is ab-
breviated by v,' n will later on be used for the subset of

the two-body potential V; can be eliminated completely
from (17) in favor of T;(E) with the final result

l Q; &
=Go(E) I T (E)P+ [1+T (E)GO(E)]W (1+P)] l g; & .

(22)
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pair quantum numbers I., S, I, and T. For all continuous
and discrete quantum numbers in the basis states of Eq.
(23) the differentiating label i will be dropped from now
on.

The basis states are normalized

5(q —q') 5(p —p')
; & pqv~p'q'v' &; =5 (26)

they are complete and are antisymmetrized with respect
to the pair particles, provided the condition
( —1) + + = —1 holds. The last property guarantees
that the wave function of Eq. (14) will be antisymmetric
under the exchange of any two particles. Since the
three-nucleon bound state has positive parity, only basis
states with ( —1) +'=+1 contribute to its wave func-

tion. Provided the two-body potential V, and the contri-
bution 8' to the three-body force are defined to be non-
vanishing in a Anite number of partial waves, the partial
wave expansion of the Faddeev amplitudes terminates ac-
cording to Eq. (7). In contrast, the number of partial
waves that contribute to the wave function still remains
infinite as a consequence of the action of the permutation
operator P in Eq. (14).

The matrix elements of all operators needed in the
modified Faddeev equations (22) have to be specified in
the chosen partial-wave basis. The dynamical input is the
complete oF-shell two-body transition matrix T(E) and
the three-body potential O'. The two-body transition ma-
trix in three-particle space T(E) is related to the corre-
sponding transition matrix in two-particle space t (E) by

5 q
—q'

; &pqvl 7;(E)lp'q'v'&; =5ss5s s 5vv5~ ~5lr5ss 5TT'5ll'5 '5jj 5tt, t„„(p,p';E q /2M—) .
Z Z Z Z

The dependence of t (E) on channels, momenta and the available energy is made obvious by the notation; the shorthand
n is defined after Eq. (25). The energy at which the two-body transition matrix has to be calculated equals the total en-

ergy E minus the kinetic energy of the non-interacting third particle, M =
—,m& in the case of nucleons being the re-

duced mass of the spectator i and of the c.m. of the pair (jk).
The momentum-space partial wave decomposition;&pqv~ W; ~p'q'v'&, . = W, (pq, p'q') of the three-nucleon potential

used, the Tucson-Melbourne force, is given in Ref. [8]. Note that in Ref. [8] the momentum q, has the opposite sign
compared with the definition of Eq. (25). In general a three-nucleon force as the Tucson-Melbourne one couples all par-
tial waves. A truncation on that coupling is a dynamical approximation.

The free three-particle Green's function is

; &pqvlGo(E)lp'q'v'&; =5„,
9' p p q

2p 2M

(28)

where p =
—,
' m~ is the reduced mass of the pair and M the reduced mass already used in Eq. (27).

The matrix elements of the permutation operator can be written in the form

+& 5[p p&(q, q', x)] —5[p' pz(q, q', x)]-
;&pqvlPlp'q'v'&;= f dx

' ' ', G (q q x),—1
(29)

with

p&(q, q', x ) =Q —,'q~+q'+qq'x

p, (q, q', x )=+q'+ ,'q'+qq'x— (31)

x=q; q;.

The expression for G .(q, q, x ) is given explicitly in the appendix, whereas details of its derivation can be found in Ref.
[9].

In the partial wave expansion the modified Faddeev equations (22) take the form
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g J'"dq'q' f dx t„„(p-,pi(q, q', x);E—
q /2M)E —p /2p —

q /2M —1

G, (q, q', x )
(p, (q, q', x )q'v'lq&

pi (q, q', x)p, (q, q', x)

+2 f dp'p'f "dq'q'W„, , (pq, p'q')&p'q'v ly&
V

+ & f q"q" f dq'q'f dx W.. ISq pi(q", q', x)q" ]

G ~, (q",q', x )
(p, (q",q', x )q'v'I q &

pi (q",q', x)pz (q",q', x)

+ g f dp "p" f dp'p' t„„„(p,p";E q~/2M— )

X
E „2/2 2/2M

dq'O'W. .P"q P'q' P'q'v'I

+ g f "dp "p"f "dq"'q"' f "dq q'

1X dx t„„„(p,p";F.—q /2M)—1 E—p" /2p —
q /2M

G -. .(q'", q', x)
W ~ ~ ~ I p

"q,p (q"', q', x )q"']
pi (q"', q', x)p~ (q"', q', x)

X (p, (q"', q', x )q'v'I y &
(33)

C. Solution of the modi6ed Faddeev equations

Equation (33) is to be solved for the energy value E and
the corresponding Faddeev amplitude (pqvlg&. Equa-
tion (33) has the general structure

&(E)I@&= lg&, (34)

where K(E) denotes the kernel of the integral Eq. (33).
Since E enters the equation in a nonlinear form, it is use-
ful to consider the auxiliary linear eigenvalue problem

The sums over the three-body partial-wave index v" im-
ply simultaneous summations over the index n" (for the
two-body quantum numbers) which appears as subscript
of the two-body transition matrix in Eq. (33) and labels a
subset of quantum numbers contained in v". Eq. (33) is
actually an integral equation for; (pqvlf &, as is Eq. (22).
However, the integral equation is the same for all three
Faddeev amplitudes I g, &. Thus, the index i is dropped in
Eq. (33) as it was dropped for quantum numbers after Eq.
(25). The integral equation couples partial waves. If the
two-body transition matrix t (E) and the three-body po-
tential 8' are assumed to vanish in all partial waves ex-
cept in the 'So and S&- D& states for the pair, five three-
body partial waves are coupled in Eq. (33); if they are as-
sumed to vanish except for pair states with I~2, 18
three-body partial waves are coupled. We refer to those
cases as 5-channel and 18-channel calculations, respec-
tively.

&(z)lq(z)&=&(z) q(z)&, (35)

where the operator E(z) is defined by Eq. (33), A,(z)
denotes its eigenvalues and &p(z) & the corresponding
eigenvectors. The strategy of solving Eq. (34) is to find
the value z =E such that in Eq. (35) one of the eigenval-
ues A, (E) becomes one. Then F. is the physical binding
energy and the corresponding eigenvector ly(E) & is the
Faddeev amplitude lg& from which the bound-state wave
function is derived. In order to find that particular value
z =E, Eq. (35) has to be solved for a sequence of values z.

The first step for the numerical solution of Eq. (35) is
to discretize the integrations over the continuous vari-
ables. We employ Gauss-Legendre integration and take
JV meshpoints for the variable p, JV points for q. Then
Eq. (35) is transformed into a system of linear homogene-
ous equations with dimension D =JV~ A, where JV, is
the number of contributing three-body partial waves. D
is typically of the order of several thousands. For exam-
ple, in the calculation for this paper we choose 22 points
for the momentum variable p in the interval between 0
fm ' and 25 fm ' and 14 points for the momentum vari-
able q in the interval between 0 fm ' and 10 fm '. Thus,
the number of coupled linear homogeneous equations is
far too large to allow a direct solution of the discretized
form of Eq. (34) by matrix inversion or of the discretized
form of Eq. (35) by diagonalization with standard numer-
ical techniques.

Malfliet and Tjon [10] successfully used a simple tech-
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nique for solving Eq. (35): the ratio method. The method
is based on the fact that a sequence of iterations of the
kernel X(z) acting on an arbitrary starting vector always
converges to the eigenstate with the eigenvalue largest in
magnitude. There is no eigenvalue A, (z) greater than the
one which for z=E corresponds to the physical ground
state. However, repulsive parts in the employed force
model induce also spurious negative eigenvalues A,(z) in
the spectrum of K(z), which may happen to be larger in
magnitude than the desired "physical" eigenvalue. In
that case the iteration sequence of the ratio Inethod will
converge to a spurious solution instead of the Faddeev
amplitude of the physical ground state. All realistic po-
tentials are partially repulsive, therefore in most interest-
ing cases the problem of spurious solutions has to be
faced. One possibility of avoiding spurious solutions is to
determine them in a erst sequence of iterations and to
construct then a starting vector for the ratio method or-
thogonal to them [7]. An even simpler approach is to
add a suitable constant to the operator K(z) such that in
the shifted eigenvalue spectrum the physical eigenvalue
becomes the largest in magnitude [11]. A complementary
way is to increase the weight of the physical eigenstate
relative to the spurious ones after each iteration by means
of Pade approximation [12]. In this paper we use a fur-
ther alternative, a method already applied for three-
nucleon scattering problems in Ref. [13]: the basic idea is
the construction of an optimized basis of small dimension
for diagonalizing a large matrix. The alternative has
great similarities with the Lanczos algorithm, on which
the Los Alamos-Iowa group [4,14] based their trinucleon
bound-state calculations. The alternative method of solv-
ing Eq. (35) for one z is now described in detail. In the
description the dependence of all quantities on z will be
dropped.

Let l(p' ') denote an arbitrary initial vector. Repeated
multiplication with the kernel K produces a sequence of
vectors l(p"'),

The original vectors l(I0" ) are expanded in that generated
basis,

I

l+(() ) —y l+ (j) )
j=0

where the coefficients a; are given by

(2 ( y (J)
l
q7(i ) ) j(

(40)

(41)

Conversely, the inversion of Eq. (40) yields the orthogo-
nal vectors

l (p
") as a linear combination of the

nonorthogonal vectors
l
y" ),

(42)

Substituting Eq. (43) into (35) yields

N N i

g c, lelq "&=g c, y b,,elq" ))
i=0 i =0 j=o

N i=X, r b„l~""'&
i =0 j=O

N i j+I=pc gb. g ~+ikW'"', &

i =0 j=o k=0
N

i=0
(44)

and after multiplication from the left with ( g '"'l finally

N

g c,M,„=A,c„,
i=a

(45)

In order to solve the discretized form of Eq. (35), the
unknown eigenstate lgr ) is expanded in terms of the basis
states lq "'&, i.e.,

N

lg &= y c, ly")& . (43)
i=0

(i 1+)) I(
l

(i))

l+(i) ) —~il+( ))0

(36)

(37)

which is an eigenvalue equation for the matrix M defined
by

i —1

lg(() ) —c ( ly(() ) y lg (j)) (y(j)ly(t) ) )
j=0

(38)

The normalization constants C, are determined by the
condition

(+ (i)l+(j) ) —g (39)

The iteration is stopped after N steps. By means of the
Schmidt orthogonalization procedure a set of X ortho-
normal basis vectors

l g ") is constructed from the states
Iq"'&

lg(0)) (
l

(0))

ly(1) ) —C ( lg() ) ) ly
(0) ) ( g (0) ly(1) ) )

lg (2) ) —C ( l~(2) ) lg
(1) ) (~ (1) l~(2) )

l

—(0))(—(0)l (2)) )

M;„=g b; a +(„, 0(n~jV. .
j=0

(46)

The eigenvalues of M are approximations to the eigenval-
ues A, of K. The largest eigenvalues dominate the itera-
tions and therefore the corresponding eigenvectors will
have high relative weight in the constructed basis of N
states. That is why the largest eigenvalues converge
fastest with respect to the number of iterations, i.e., with
respect to the dimension X of the basis. It turns out that
%&10 is usually sufhcient to achieve good accuracy.
Clearly, Eq. (45) can be solved without problems for such
low dimensions. It should be mentioned that as the num-
ber of iterations increases, the generated vectors become
more and more collinear and the numerical orthogonali-
zation has to be performed very carefully to avoid large
errors.

Among the eigenvalues A, of M for a chosen energy z
the one closest to the value one is the best approximation
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for the desired physical eigenvalue. The corresponding
eigenvector gives the expansion coefficients c; for ~y) ac-
cording to Eq. (43). The resulting state jy) is considered
converged, if Eq. (35) holds pointwise, i.e. for all mesh-
points, with a desired accuracy. If not, the whole itera-
tion procedure is repeated for the same value of z, ~qr)
taken as an improved initial vector ~y' ') in Eq. (37).
During each full step from Eq. (37) to Eq. (45) the com-
ponents of spurious solutions get suppressed and the re-
sulting state

~ y ) becomes pointwise stable. After having
achieved convergence both in the eigenvalue and in the
eigenvector for a given energy z, Eq. (35) is solved by the
same method for a new value of z. The rate of conver-
gence is increased if the converged eigenvector for the
previous energy z is taken as the starting vector for the
new energy value, provided the energies are close. We
find that the eigenvalue problem Eq. (35) has to be solved
for three or four energies z only in order to determine the
physical bound-state energy E and the corresponding
Faddeev amplitude ~P): In the vicinity of the physical
energy E the dependence of the eigenvalue A, on z is al-
most linear, thus, the interpolation or extrapolation to
the eigenvalue k= 1 gets simplified.

III. NUMERICAL RESULTS

The modified Faddeev Eqs. (33) are solved for the Reid
soft-core (RSC) [15] and the Paris [16] nucleon-nucleon
potentials as two-body interaction and the Tucson-
Melbourne two-pion exchange three-nucleon force as
three-body interaction. The numerical technique of Sec.
II is used. Only the triton binding energy will be deter-
mined.

We have to restrict ourselves to 5-channel and 18-
channel calculations because of practical reasons: In
momentum space the three-body force 8' depends on
four independent momentum variables and two three-
body partial-wave indices. The computing time and
storage requirements for the evaluation of its
momentum-space matrix elements increase dramatically
with the number of three-body partial waves and mesh-
points. With our choice of partial waves and meshpoints
we already reach the limit of computer capacity available
to us. Increasing the number of channels while leaving
the storage space unchanged ~ould require the calcula-
tion of the three-nucleon force at fewer meshpoints and
the interpolation of its matrix elements to the momenta
actually needed. Clearly, such a procedure would yield
an undesirable loss of accuracy, since the three-nucleon
force is not a really smooth function. In configuration
space the Tucson-Melbourne three-nucleon force can be
handled easier, since it is local there. Previous calcula-
tions in configuration space [4,17] demonstrate that all 34
three-body partial waves with the two-body total angular
momentum I ~ 4 should be included for a well-converged
triton binding energy. However, the 18-channel calcula-
tions deviate typically only by less than 200 keV from the
converged result, a small deviation compared with
differences of several MeV arising from the freedom in
choosing the form factor for the m.XX vertex in the
three-nucleon force.

TABLE I. Triton binding energies in MeV for the RSC and
Paris two-nucleon potentials in 5-channel and 18-channel calcu-
lations.

This work
Los Alamos [4,18]
Bochum [6]
Sendai [5]

—7.03
—7.02

—7.03

18

—7.23
—7.23
—7.24
—7.24

—7.30
—7.31

—7.48

Paris
18

—7.39
—7.39
—7.33
—7.56

G.iven the dynamic problem of Eq. (33) with a chosen
number of three-body partial waves, we are interested in
the level of numerical accuracy that can be achieved in
calculating the triton binding energy with a three-
nucleon force. Whereas there is an impressive technical
agreement among the results of many diFerent groups as
long as only two-nucleon interactions are employed, the
differences —with few exceptions —being of the order of
only 10 keV, the achieved agreement is far less clear
when a three-nucleon force is included. Up to now re-
sults obtained by three groups are available for the triton
binding energy. The Tucson-Melbourne two-pion ex-
change three-nucleon force is employed together with
different nucleon-nucleon potentials. The groups use
diFerent numerical techniques.

(1) The Los Alamos —Iowa group solves the Faddeev
equations in configuration space by means of spline tech-
niques and a Lanzcos algorithm [4].

(2) The Sendai group employs a mixed representation,
in which the interacting pair is described in configuration
space and the spectator particle in momentum space.
The resulting equations are solved with the method of
continued fractions [5].

(3) The Bochum group works entirely in momentum
space as we do and —till now —has treated the three-
nucleon interaction in perturbation theory up to fifth or-
der, where finally convergence is achieved [6].

As can be read off from Table I, the agreement between
the three groups is very good for the triton binding ener-
gy E as long as only a two-nucleon force is employed.
Once a three-nucleon force is added, the comparison gets
complicated by the fact that in previous calculations the
three groups take different values for the cutoff parameter
A in the +XX dipole form factor of the three-nucleon
force. Unfortunately, the binding-energy contribution
AE arising from the three-nucleon force strongly depends
on A, i.e., even small differences in that parameter can
cause sizable discrepancies in results. A direct compar-
ison between the results of all three groups is possible
only for the case of the RSC potential, the only two-
nucleon potential used by all groups together with the
three-nucleon Tucson-Melbourne force. If those results
are interpolated to the same value of A =813.6 MeV, the
value taken by the Bochum group [6], the three results
for the 18-channel calculation are —8.97 MeV in case of
the I.os Alamos-Iowa group, —9.08 MeV in case of the
Bochum group and —9.23 MeV in case of the Sendai
group. Obviously, the differences between the results are
more than ten times larger than the differences in the cal-
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TABLE II. Parameters of the Tucson-Melbourne two-pion
exchange three-nucleon force.

-6.0

1.130

pb
—2.580

p c

1.000 —0.753
-8.0

culations with two-nucleon forces only. Nevertheless, the
agreement is usually thought to be rather satisfactory
considering the enormous complexity of such calcula-
tions. We believe the achieved agreement is even better
than it appears, since the force specifications for the ap-
parently identical calculations are in fact different besides
the cutoff parameter A.

In Table II the parameters a, b, c, and d [3,8] of the
Tucson-Melbourne two-pion exchange three-nucleon
force are listed, where p is the pion mass. The Los
Alamos-Iowa group takes the mass of the charged pions
for p, i.e., p=139.6 MeV, whereas the Bochum group
uses a charge-averaged pion mass of p= 138.03 MeV and
the Sendai group p=138.7 MeV. Since the dimension-
less products of the force parameters with p or p respec-
tively are taken to be the same in all three cases, that
difference in choice for p implies that actually each group
uses different values of a, b, c, and d. Since the pion mass
enters the strength parametrization of the three-nucleon
force up to the third power, differences in those parame-
ters up to a few percent arise. In addition, the Sendai
group employs a slightly different ~NN coupling constant
which enters the three-nucleon force as an overall factor.
The force parameters a, b, c and d are fixed by pion-
nucleon physics and when given in the form of Table II
are meant to be expressed in terms of the charged pion
mass [8]. One may argue that the experimental con-
straints are too weak to distinguish between the three em-

ployed parameter sets, but this is not our point here. We
only want to emphasize that the Hamiltonians underlying
the triton calculations have to be the same when one
wants to draw conclusions about the numerical accuracy
of different techniques for solving Faddeev equations
with a three-nucleon force. We therefore perform calcu-
lations for all three diferent parameter sets adopted by the
three groups such that a direct comparison becomes
meaningful. The results are given in Tables III to V,
where the cutoff mass A is expressed in terms of the
charged pion mass p = 139.6 MeV.

Table III shows the excellent agreement of our results
with the ones obtained by the Los Alamos group. The

)
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FIG. 1. Triton binding energy E obtained from 18-channel
calculations vs the cutoff parameter A in the md% form factor
of the Tucson-Melbourne three-nucleon force. The horizontal
lines correspond to results without three-nucleon force. The
full circles are binding energies calculated actually with the
Paris potential and the Tucson-Melbourne three-nucleon force;
the empty circles are binding energies actually calculated with
the RSC potential and the Tucson-Melbourne three-nucleon
force. The solid and dashed curves through the circles are
drawn to guide the eye.

deviations are of the same order of magnitude as in the
case without a three-nucleon force. At higher values of A
the dependence of the binding energy on the cutoff mass
becomes stronger, a fact which may be the reason for the
slight enhancement of the differences in the two calcula-
tions at A=7. 1p. For the sake of completeness our re-
sults for the Paris potential are also displayed in Table III
and presented graphically in Fig. 1, together with the
RSC results. The behavior of the binding energy is very
similar to the RSC case, apart from a faster increase of
the energy shift with the cutoff mass in the 5-channel cal-
culation. However, it is well known that the Tucson-
Melbourne three-nucleon force 5-channel calculations are
far from convergence, hence this different feature is of
less practical importance.

According to Table IV, our results for the binding-
energy E compare equally well with the Bochum group
[6] confirming the accuracy of a high-order perturbation-

TABLE III. Triton binding energy E and the three-nucleon force contribution hE in MeV for the RSC and Paris two-nucleon po-
tentials plus the Tucson-Melbourne three-nucleon force with Los Alamos-Iowa parameters at different cutoff masses A in 5-channel
and 18-channel calculations.

This work
E AE

A=4. 1p
Los Alamos
E hE

This work
E hE

A=5. 8p
Los Alamos
E AE

This work
E AE

A=7. 1p
Los Alamos
E AE

RSC
RSC
Paris
Paris

5
18

5
18

—6.95
—7.45
—7.24
—7.55

+0.08
—0.22
+0.07
—0.16

—6.93
—7.44

+0.09
—0.21

—7.56
—8.92
—8.14
—9.08

—0.54
—1.68
—0.83
—1.69

—7.55
—8.93

—0.53
—1.70

—8.76
—11.36
—11.16
—12.37

—1.74
—4.13
—3.85
—4.98

—8.75
—11.40

—1.73
—4.17



2326 A. STADLER, W. GLOCKLE, AND P. U. SAUER

TABLE IV. Triton binding energy E and three-nucleon force
contribution hE in MeV for the RSC and Paris two-nucleon po-
tentials plus the Tucson-Melbourne three-nucleon force with

Bochum parameters in 5-channel and 18-channel calculations.

TABLE V. Triton binding energy E and three-nucleon force
contribution AE in MeV for the RSC and Paris two-nucleon po-
tentials plus the Tucson-Melbourne three-nucleon force with
Sendai parameters in 5-channel and 18-channel calculations.

A =5.730p
This work

AE
This work

E hE
Sendai

RSC
RSC
Paris
Paris

5

18
5

18

—7.63
—9.06
—8.26
—9.24

—0.61
—1.82
—0.95
—1.85

—1.84

—1.86

RSC
RSC
Paris
Paris

5

18
5

18

—7.56
—8.91
—8.14
—9.07

—0.54
—1.68
—0.83
—1.69

—7.56
—9.11
—8.27
—9.49

—0.53
—1.87
—0.79
—1.93

al treatment of the three-nucleon force. For the Paris po-
tential there is a 50 keV difference already at the level of
the two-nucleon force alone which carries over to the full
calculations for which, however, the energy shifts AE are
in good agreement. In fact, a recent 18-channel calcula-
tion of the Bochum group with the Paris potential,
though without three-nucleon force, corrects the older
value of —7.33 MeV to —7.38 MeV and thus eliminates
also that part of the slight disagreement.

With the exception of the RSC 5-channel calculation
we find considerably larger differences between our re-
sults and the Sendai results both in the triton binding en-

ergy E and in the binding-energy contribution hE of the
three-nucleon force according to Table V. We do not
have an explanation for that disagreement which, in the
light of the impressive agreement among the other calcu-
lations, appears to be too large to be attributed just to
unavoidable numerical errors.

IV. CONCLUSIONS

The paper presents modified Faddeev equations for
bound three-body systems that include an irreducible
three-body force. The equations are solved for the triton
in momentum space. The triton binding energy is deter-
mined for Hamiltonians that consist of the RSC or the
Paris two-nucleon potentials and the Tucson-Melbourne
two-pion exchange three-nucleon force. The results of 5-
channel and 18-channel calculations are the first com-
plete solution of momentum-space Faddeev equations
with an irreducible three-nucleon force.

We have to emphasize that at first sight unimportant
differences in the parametrization of the three-nucleon
force can have relatively large inAuence on the resulting
triton binding energy. Once truly the same Hamiltonian

is used, we find excellent agreement between our results
and those of the Los Alamos-Iowa and the Bochum
groups obtained with entirely different techniques. How-
ever, there are larger unexplained differences to the Sen-
dai results. The present calculations demonstrate that
the accuracy with which the triton binding energy can be
numerically determined when a three-nucleon force is
taken into account is very high indeed. In fact, the accu-
racy appears to be of the same quality as for calculations
without an irreducible three-nucleon interaction.

For the authors' future work, most importantly, the
present calculations demonstrate that Faddeev equations
modified by an irreducible three-nucleon force are practi-
cally solvable in momentum space. They will therefore
form the technical basis for further calculations in which
the nucleonic excitation to a 5-isobar is treated explicitly
besides an additional three-nucleon force arising from the
non-5 components of the ~N scattering amplitude.
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APPENDIX

The full expression of the function G,, (q, q', x) which appears in the matrix elements of the permutation operator P
in Eq. (29) is given. A detailed derivation can be found in Ref. [9]. Compared with Ref. [9] there is a difference in the
phase factor arising from the different definition (25) of the internal momentum q in terms of single particle momenta.

G, (q, q', x)=QP„(x)
k

X X
Ll +L2 I I. +L =L'

2

L1+L i iL2+L2 kLiL iL2L2
q q g vv' (Al)

kL1L '1L2L 2 ~ ~ ~

The Pk(x) are the ordinary Legendre Polynomials. The factor g„,. is of purely geometrical nature, having the
form
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(2L + 1)!(2L'+1)!
(2L, )!(2Lz)!(2L',)!(2Lz)!

T
t T T'

L I X L' I'

Xg(XS) '

@ S,
' S s 4. S' s'

Xg (L,OIO~fO)(LzOI'O~f'0)(kOL Oz~f'0)(kOLIO~fO)
ff'

L, Lz L Lz L& L' f Lz

I f 2 I' f' (A2)

where x =—&2x + 1. The quantum numbers X and 4 denote the total orbital angular momentum and the total spin of
the three-particle system. They appear in the XS-coupling scheme that is used as an intermediate step when deriving
the permutation operator I' in Ij-coupling.
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