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The Tucson-Melbourne two-pion exchange three-nucleon force is split into a reducible part mediated
by A excitation and an irreducible part not mediated by A excitation. The triton binding energy is calcu-
lated. The irreducible part of the Tucson-Melbourne force is taken into account in the calculation. Its
reducible part is discarded, but regenerated by the explicit treatment of the A isobar in a coupled-
channel approach. The remaining irreducible part of the Tucson-Melbourne force makes a nonnegligi-
ble contribution to the triton binding energy. The strong dependence of the triton binding energy on the
cutoff parameter for the 7NN vertex in the Tucson-Melbourne force is considerably reduced.

PACS number(s): 21.30.+y, 21.45.+v, 25.10.+s

I. INTRODUCTION

There are two different strategies for describing the
three-nucleon force in nuclear systems. Both strategies
have been tried out in accurate calculations for the
three-nucleon bound state. The first strategy [1-3] em-
ploys a purely nucleonic Hilbert space and adds an irre-
ducible three-nucleon potential to a traditional Hamil-
tonian consisting of two-nucleon potentials. The second
strategy [4,5] assumes that the excitation of a A isobar in
the nuclear medium is the dominant mechanism for the
effective three-nucleon force. It extends the Hilbert space
to include single A-isobar configurations explicitly and
thereby builds up the three-nucleon force from simpler
two-particle interactions. When applied to the three-
nucleon bound state, both strategies see strikingly
different effects of the three-nucleon force on the binding
energy. In the first strategy [1-3], the effect is large and
sensitively depends on the regularization of the three-
nucleon force at small relative distances. The regulariza-
tion parameter can be chosen as fit parameter to allow
the theoretical binding-energy prediction to come in
agreement with the experimental value. In the second
strategy [4,5], the effect on the binding energy is com-
paratively small. Explicit A-isobar excitation yields com-
peting processes [5]. Besides an attractive three-nucleon
force, it yields a weakening of the two-nucleon attraction,
i.e., a repulsion of comparable magnitude.

Both approaches have advantages and disadvantages:
(1) The first strategy may easily accommodate contribu-
tions from diverse processes in the parametrization of the
three-nucleon force. But the contributing processes are
frozen and cannot adjust to the nuclear medium. Fur-
thermore, the added phenomenology is hardly made con-
sistent in the employed two- and three-nucleon poten-
tials. (2) The second strategy can connect the A-isobar
excitation to the mechanism of pion production [6] in the
two-nucleon system above the pion threshold and, in this
aspect, could achieve consistency between the two- and
three-nucleon contributions. However, other physics
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processes contributing to the three-nucleon force besides
the A-isobar excitation are left out altogether.

The present paper tries to unify both approaches to the
three-nucleon force. It uses the second strategy and
therefore treats the A-isobar degree of freedom explicitly.
But it also adds a three-nucleon potential to the Hamil-
tonian in order to account for those processes not mediat-
ed by A-isobar excitation. It presents the first calculation
of the three-nucleon binding energy within that unifying
calculational scheme.

Section II discusses the two-pion exchange Tucson-
Melbourne three-nucleon force usually employed in the
first strategy. It describes how we take out the process of
A-isobar excitation from that force. Section III recalls
the calculational apparatus for solving the Faddeev equa-
tions in momentum space in the presence of a three-
nucleon potential. Section IV gives results and con-
clusions.

II. TUCSON-MELBOURNE THREE-NUCLEON
FORCE AND A-ISOBAR EXCITATION

The Tucson-Melbourne three-nucleon force [7] is based
on pion exchange. Its main ingredient is the pion-
nucleon scattering amplitude with the pion off mass shell,
whereas the nucleon is assumed to remain on shell. Since
the experimental information refers to on-shell pion-
nucleon scattering only, Ref. [7] has to perform an off-
shell extrapolation of the scattering amplitude; it uses
constraints originating from current algebra and the
theory of partially conserved axial-vector current (PCAC)
in order to minimize the model dependence in that extra-
polation. Figure 1 shows processes contributing to the
Tucson-Melbourne force. The contribution arising from
the nucleon-pole term in the pion-nucleon scattering am-
plitude according to Fig. 1(b) is also generated by the
iterated one-pion exchange two-nucleon force between
three nucleons; it is therefore subtracted and not retained
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in the Tucson-Melbourne three-nucleon force. The in-
clusion of rho exchange into the Tucson-Melbourne
three-nucleon force is presently considered [8].

The resulting three-nucleon potential W has three
equivalent pieces W;, i denoting that nucleon which

simultaneously interacts with the two others, i.e.,

W= W, . (1)

In momentum space the potential reads [9,10]

|
’ ’ ’ — 1 ’ ’ ’ g2 UZ.Q Ua.Q, ’
<k1k2k3bw,1k1k2k3>—m5(k1+k2+k3—kl~k2—k3>4m12V i Q,2+#2H(Q2)H(Q2)
X {1y 73[a+bQ-Q +c(Q*+QH)]+d (773X 7,)0,-:QXQ")} , )

where k;, 0;, and 7; are momentum, spin, and isospin of
nucleon i, my=938.92 MeV is the nucleon mass,
14=139.6 MeV the mass of the charged pions, and
g2/47=197.7/47=15.73 the pseudoscalar 7NN cou-
pling constant. The vertex form factors depend on the
pion three-momenta Q=k,—kj and Q' =k;—k; and are
chosen to be of dipole form, i.e.,

A= 2

3
A +Q? ©

H(QY)=

The pion-nucleon scattering amplitude on which the
Tucson-Melbourne three-nucleon force is based is not
partial-wave projected. Nevertheless, the strength pa-
rameters a and ¢ in Eq. (2) are controlled by S-wave
pion-nucleon scattering, the parameters b and d by P-
wave scattering. A three-nucleon potential of the same
structure is derived in Ref. [11] using an effective chiral-
invariant Lagrangian.

How much of the strength of the Tucson-Melbourne
three-nucleon force is due to the resonance in P33 pion-
nucleon scattering? This is the same question with
respect to the A isobar as Ref. [7] posed and answered for
the nucleon-pole contribution of Fig. 1(b) in the original
derivation. In the same spirit we want to subtract the A-
pole contribution of Fig. 1(a) from the Tucson-Melbourne
three-nucleon force. We need such a subtraction, since
we prefer to treat the excitation of the nucleon to a A iso-

(a) (b) (c)

FIG. 1. Processes which are contained in the Tucson-
Melbourne two-pion exchange three-nucleon force. The solid
lines represent nucleons, the dotted lines pions. The thick line
in the middle of (a) stands for the resonant contribution to the
Py, pion-nucleon scattering amplitude, (b) describes the Py,
nucleon-pole contribution, and the dark blob in the middle of
(c) stands for the remaining pion-nucleon scattering without Pj;
resonance and P;; nucleon pole. All time orders of pion ex-
change are considered in their contributions to the three-
nucleon force. The pion-nucleon scattering amplitude on which
the Tucson-Melbourne three-nucleon force is based is not split
up into the processes (a)-(c). That conceptual split is, however,
convenient for the purposes of this paper.

—

bar explicitly according to the coupled-channel approach
of Refs. [4,5]. In that coupled-channel approach, the
purely nucleonic Hilbert space is extended by a sector in
which one nucleon is replaced by a A isobar. The A iso-
bar is excited through an instantaneous two-baryon tran-
sition potential from two-nucleon to nucleon-A states.
The force model previously employed in Refs. [4,5] con-
sists of the processes (a)—(d) in Fig. 2, (b) standing for

s

(a) (b) (c

(e)

® (®) (h)

Ak

FIG. 2. Force model in the extended Hilbert space with ex-
plicit A-isobar degrees of freedom. Solid lines represent nu-
cleons, thick lines A isobars. The horizontal dashed lines stand
for instantaneous potentials. Diagram (e) indicates an irreduc-
ible three-nucleon force; diagrams (f)—(j) indicate irreducible
three-baryon forces connected with additional A-isobar excita-
tion.
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that transition potential. The force model generates
effective contributions to the two- and three-nucleon in-
teractions. Characteristic pieces are shown in Fig. 3.
The effective three-nucleon force of Fig. 3(a) corresponds
to the contribution in the Tucson-Melbourne three-
nucleon force arising from the P;; pion-nucleon reso-
nance according to Fig. 1(a). Thus, whenever the
Tucson-Melbourne three-nucleon force is added to a
coupled-channel force model with A-isobar excitation,
that A-pole part has to be removed from the Tucson-
Melbourne force—in the same way as its nucleon-pole
part had to be removed when two- and three-nucleon
forces were combined in a nuclear Hamiltonian. We
therefore need a subtraction scheme for the A-pole part.

One may either subtract the P;; resonance contribu-
tion in the off-shell pion-nucleon amplitude from which
the Tucson-Melbourne three-nucleon force is derived or
one may leave out a part of the Tucson-Melbourne
three-nucleon force equivalent in magnitude to what a
force model with A-isobar excitation yields in the pro-
posed coupled-channel approach anyhow. Provided the
coupling parameters between A isobar and pion are taken
to be the same and the static approximation on the A
propagator is made in an identical fashion, either sub-
traction scheme has to yield the same A-pole contribution
to the three-nucleon force.

(1) The coupled-channel approach of Refs. [4,5] is
based on the processes (a)—(d) in the force model with
single A-isobar excitation defined in Fig. 2. Its transition
potential (b) contains pion and rho exchange. Thus, in
contrast to Ref. [7], the effective three-nucleon force of
Fig. 3(a) contains pion and rho exchange. The pion-
exchange part of the transition potential yields—in in-
stantaneous and static approximation— precisely a pion-
exchange three-nucleon force with the form of Eq. (2).
For example, the particular transition potential in the
force model A1l of Refs. [5,12] gives the particular
strength parameters a,, =c,, =0, by, = —1.83u7?, and
dy =by, /4=—0.46u">. In a Tucson-Melbourne force,
in which a part equivalent to the one generated by the
iteration of that particular transition potential as in Fig.
3(a) is left out, the strength parameters are to be reduced
by the indicated amounts. The resulting values are given
in line 2 of Table I as TM-AL.

(2) The pion-nucleon scattering amplitude of Ref. [7] is
not partial-wave projected. Thus the amplitude contribu-

(a) (b) (c)

FIG. 3. Examples for effective two- and three-nucleon pro-
cesses generated by the two-baryon part of the force model
defined in Fig. 2. The processes (a) and (b) contribute to the
effective three-nucleon force; the process (c) yields a
modification of the two-nucleon interaction in the three-nucleon
system.

tion arising from the P;; partial wave is neither split into
resonance and background nor even made explicit at all.
Nevertheless, according to archaeological efforts [13],
Ref. [7] assumed coupling parameters which would yield
the P;; resonance contributions a,,=c,, =0,
by,=—1.48u73, and d,,=—0.354"> to the strength
parameters in the Tucson-Melbourne force. In a
Tucson-Melbourne force without that P;; resonance con-
tribution, the strength parameters are to be reduced by
the indicated amounts. The resulting values are given in
line 3 of Table I as TM-A2.

The resulting strength parameters of the Tucson-
Melbourne two-pion exchange three-nucleon force, from
which the A-pole contribution is subtracted, are different,
since the coupling strength between the A isobar and the
pion is assumed to be different in the two subtraction
schemes.

This paper calculates the triton binding energy for the
force model of Fig. 2. By process (e) the calculation in-
cludes a three-nucleon force irreducible in a Hilbert space
with A isobars. The Tucson-Melbourne pion-exchange
three-nucleon force, from which the A-pole contribution
is subtracted according to either of the discussed
schemes, is employed as such an irreducible three-
nucleon force. Irreducible three-baryon forces connected
with A-isobar excitation according to processes (f)—(j) in
Fig. 2 are still left out. The calculation unifies previously
distinct approaches to the treatment of a three-nucleon
force in the three-nucleon system: (i) It allows the A iso-
bar its proper propagation in the nuclear medium as in
Refs. [4,5]. (ii) It simultaneously preserves the full physi-
cal richness of a three-nucleon force which is based on
other contributions besides single A-isobar excitation as
the Tucson-Melbourne force of Ref. [7] is.

Such a unification of the two distinct approaches to the
three-nucleon force is pressing, since so far they have
yielded remarkably different results in calculations: The
addition of the Tucson-Melbourne pion-exchange three-
nucleon force to a Hamiltonian with two-nucleon interac-
tions provided [1-3] ample additional binding for the tri-
ton. In contrast, the explicit treatment of the A isobar
also modified the effective two-nucleon interaction ac-
cording to Fig. 3(c), thereby balancing off part of the at-
traction due to the A-mediated three-nucleon force; a
comparatively small net increase in triton binding [5] re-
sulted. The unification of the two distinct approaches
suggested in this paper preserves the respective advan-
tages of both approaches, discussed in the Introduction.

TABLE 1. Strength parameters a, b, ¢, and d in Tucson-
Melbourne-type two-pion exchange three-nucleon forces of Eq.
(2). The first line gives the strength values of the original pa-
rametrization [7]; the second and third lines give the remaining
strength values, once the A contribution is subtracted according
to the distinct coupling parameters in the subtraction schemes
(1) and (2) of Sec. II.

©a u’ b p e p'd
™ 1.130 —2.580 1.000 —0.753
TM-A1 1.130 —0.750 1.000 —~0.296
TM-A2 1.130 —1.100 1.000 —0.403
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III. CALCULATIONAL PROCEDURE

The calculational technique of Ref. [14] is adopted and
extended to include A-isobar excitation. The homogene-
ous integral equation to be solved for the Faddeev ampli-
tude |¢) of the three-nucleon bound state is

[$) =Go(E){T(E)P+[1+T(E)Gy(E)]W(1+P)}|¢) .
4)

In Eq. (4), Gy(E) is the free three-baryon Green’s func-
tion, T(E) the two-baryon transition matrix, W the irre-
ducible three-nucleon potential, P the sum of the cyclic
and anticyclic permutation operators, and E the bound-
state energy. The quantities |¢), T(E), and W should
carry an index indicating the spectating baryon which
does not participate in the two-baryon interaction of
T(E) and simultaneously indicating the nucleon which
interacts with both others in the three-nucleon potential
W according to Eq. (1). That index is suppressed: The
three equations for the three Faddeev amplitudes have all
the same form.

The integral equation (4) is solved in momentum space.
The momentum space basis states |pgv) are defined as in
Refs. [S,14]. Purely nucleonic channels and channels
with one A isobar instead of a nucleon are considered.
The momentum p refers to the relative motion of the par-
ticles in the pair and the momentum ¢ to the motion of
the spectator particle relative to the center of mass of the
pair. The label v stands for the discrete quantum num-
bers [(LS)I(Is)j]dd,(Tt)TT,Bb, differentiating the
various three-particle channels. The discrete quantum
numbers LSITB denote in turn the orbital angular
momentum, spin, total angular momentum, isospin, and

baryon content of the pair, with B=1 indicating a two-
|

1
E—p*/2u,—q*/2M,

(pgvly)=

© +1 o ,
X ’2” fO dq’q'zf_l dxtw.,(p,p;' v (q’q » X );E’q)

X Gv”v'(q’q”x)
PV (g,q',x) 1 [pY "V (g,q", %)%

nucleon state and B =0 a nucleon-A state. The discrete
quantum numbers Isjtb denote in turn the orbital angular
momentum, spin, angular momentum, isospin, and
baryon character of the spectating baryon, with b =1 in-
dicating a nucleon and b= —1 a A isobar. The (Ij) cou-
pling scheme is used. The quantum numbers &, TT,
denote the total angular momentum with projection and
the total isospin with projection of the three-nucleon
bound state. The basis states are not fully antisym-
metrized; they are antisymmetrized with respect to the
particles in the pair. The three-particle basis states taken
into account are chosen according to the discrete quan-
tum numbers of the pair which correspond to the partial
waves of the two-baryon interaction retained as nonvan-
ishing in the actual calculation.

The three-particle momentum space matrix elements of
the two-baryon transition matrix T(E), of the three-
nucleon potential W, and of the permutation operator P
are defined as in Ref. [14]. We only repeat the matrix ele-
ments of the two-baryon transition matrix T(E), i.e.,

(pqv|T(E)|p’q'v’)=ﬁg;29——)twr(p,p';E,q) , (5)
q

where the simplifying Kronecker deltas for the quantum
numbers #&,TT,ITIsjth conserved in the two-body in-
teraction are not made explicit. The dependence of the
transition matrix on the available energy E and on the
spectator momentum g cannot be cast into a single
channel-independent form E—gq?/2M as in Ref. [14].
The matrix elements of the permutation operator P are
given in the Appendix. Compared with Ref. [14], they
are generalized for the mass difference between a nucleon
and a A isobar.

After partial-wave decomposition the integral equation
(4) takes the form

(py”(q,q" ) vI$)+ 3 [ “dp'p™ [ “dg’' W, (pa.p'q ) (p'q'V'I¥)

5 © , +1 N " , "
+3 fo dq"q"2f0 dq’q zf—l dx W,,(pq,pY "~ (q".q",x)q")
oy
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X V'Y "o L V'Y v L
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t2 fowdpup”zfode'P'zfowdq'q'ztvw(p,p”;E,q)

Py (q,q",x)q"VI¢)

1
E—p"*/2u,—q%/2M,

W, w(p"q,p'q" ) p'q"'v'|¢)

+ 3 fowdp”P"Zfowdq”'q"'zfomdq'q'zf:ldx for P Erq)

N
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TABLE II. Triton binding energy in MeV obtained from the RSC and Paris two-nucleon potentials
with a three-nucleon force added. The results refer to calculations with 5 and 18 purely nucleonic
channels. For the results of the first column, no three-nucleon force is included in the calculation. In
the additional columns results are compared for the three-nucleon force of Eq. (2), i.e., for the full
Tucson-Melbourne (TM) three-nucleon force [7] and for the Tucson-Melbourne force without a A-pole
contribution (TM-A1), that contribution subtracted according to the procedure (1) of Sec. II. The
three-nucleon forces are employed with various cutoff parameters A in the mNN vertex of Eq. (3).

A=4.1p A=5.8u A=T.1p
No TM ™ TM-A1 ™ TM-Al ™ TM-A1
RSC 5 —17.02 —6.95 —6.82 —17.56 —17.09 —8.76 —17.87
RSC 18 —7.23 —7.45 —7.22 —8.92 —7.73 —11.36 —8.50
Paris 5 —17.30 —17.24 —17.07 —8.14 —17.54 —11.16 —11.83
Paris 18 —7.38 —17.55 —7.34 —9.08 —17.92 —12.37 —9.26

Many quantities in Eq. (6) contain the reduced mass p,, of
the interacting pair and the reduced mass M, of the spec-
tator and the pair c.m. The reduced masses depend on
the baryonic content Bb of channel v, i.e., they are
different for purely nucleonic channels and for channels
with a A isobar. In the latter case additional differences
arise, if the A isobar belongs to the pair or if it is the
spectator particle. The momenta p}” and p3" are defined
in the Appendix; they depend on the relative momenta
and reduced masses of two channels v and v' and there-
fore have to carry both channel labels.

The integral equation (6) is the numerical problem of
this paper. It is solved by the techniques of Ref. [14].

IV. RESULTS

Before discussing the unifying calculations for the tri-
ton binding energy, results of a reference calculation with
purely nucleonic interactions are presented. In that
reference calculation the Reid soft-core (RSC) [15] and
Paris [16] potentials are used as two-nucleon interactions.
The Tucson-Melbourne two-pion exchange three-nucleon
force is added with different parameter specifications.
The three-nucleon force is employed as full force in the
original parametrization, our results of which are already
given in Ref. [14]. It is also employed without the A-pole
contribution, that contribution subtracted according to
the two schemes of Sec. II based on distinct coupling pa-

rameters. The corresponding results are listed in Tables
IT and IIT as TM-A1l and TM-A2, respectively. The re-
sults refer to calculations based on 5 and 18 three-
nucleon channels in the basis of Sec. III. In the 5-
channel calculations, interactions in all two-nucleon par-
tial waves of positive parity with total two-nucleon angu-
lar momentum I <1 are taken into account and, in the
18-channel calculations, interactions in all two-nucleon
partial waves of either parity with total two-nucleon an-
gular momentum 7 =2. Only the 18-channel calculations
can be considered as rather well converged; the 5-channel
calculations were useful for the authors of this paper to
spot trends of results. They are also published, since they
may be useful for others interested in repeating and ex-
tending the calculations of this paper.

The reference calculations of Tables II and III confirm
the result of Ref. [17] that a substantial amount of the ad-
ditional triton binding arising from the inclusion of the
Tucson-Melbourne pion-exchange three-nucleon force is
due to the A-pole contribution, but also that the Tucson-
Melbourne force without its A-pole part still makes a
non-negligible contribution. That contribution depends
on the cutoff parameter A for the mNN vertex in the
three-nucleon force of Eq. (2). The results for the Reid
soft-core and Paris potentials show a quantitatively simi-
lar behavior with respect to variations of the cutoff pa-
rameter A. The only exception is a marked difference be-
tween the two potentials in the 5-channel calculations for

TABLE III. Triton binding energy in MeV obtained from the RSC and Paris two-nucleon potentials
with a three-nucleon force added. The results refer to calculations with 5 and 18 purely nucleonic
channels. For the results of the first column, no three-nucleon force is included in the calculation. In
the additional columns results are compared for the three-nucleon force of Eq. (2) and Table 1, i.e., for
the full Tucson-Melbourne (TM) three-nucleon force [7] and for the Tucson-Melbourne force without a
A-pole contribution (TM-A1 and TM-A2), that contribution subtracted according to the procedures (1)
and (2) of Sec. II. The three-nucleon forces are employed with the cutoff parameter A=35.8u in the

7NN vertex of Eq. (3).

A=5.8u
No ™™ ™ TM-A1 TM-A2
RSC 5 —17.02 —7.56 —7.09 —7.15
RSC 18 —17.23 —8.92 —1.73 —7.92
Paris 5 —7.30 —8.14 —17.54 —17.62
Paris 18 —7.38 —9.08 —17.92 —8.10
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TABLE IV. Two-baryon partial waves **VL, taken into
account in the solution of Eq. (4). Nucleon-A states couple to
two-nucleon states only for a total pair isospin of T=1. The
NA partial waves in parenthesis have L > 3. The coupling to
those partial waves is included in the calculation of the two-
baryon transition matrices, but they are excluded from the basis
of three-particle states [5].

I NN NA
T=0 1 38,=3D,
lPl
2 3D,
T=1 0 1S, D,
*Py *Py
1 3P, 3p,SP,-(°F,)
2 ’P,-’F, 3P,-5P,-(3F,)-(°F,)
'D, ’S,-°D,-’D,-(°G,)

large cutoff; however, the 5-channel results are physically
not really significant, since they are far from convergence
when a three-nucleon force is added.

The unifying calculations, the main object of this pa-
per, take single A-isobar excitation into account. The
employed Hamiltonian is diagrammatically defined in
Fig. 2. The processes (a)-(d) of Fig. 2 are parametrized
by the force model A2 considered in Ref. [5] as charac-
teristic for A-isobar effects on trinucleon properties.
That force model is an extension, an almost phase-
equivalent extension of the Paris potential modified by
explicit single A-isobar excitations. The nucleon-A po-
tentials of the processes (c) and (d) in Fig. 2 are put to
zero. Their effect is investigated in Ref. [18] and found to
be small. The Tucson-Melbourne three-nucleon force
without a A-pole contribution is used as process (e) of
Fig. 2. The irreducible three-baryon forces with A-isobar
excitation in external legs as in the processes (f)—(j) of
Fig. 2 are neglected. The two-baryon partial waves con-
sidered in the solution of Eq. (4) are those of Ref. [5];
they are listed in Table IV. The full calculations are
based on 6, 32, and 33 three-particle channels: (i) In 6-
channel calculations, the two-baryon interaction is al-
lowed to act in all positive parity two-baryon partial

waves with total pair momentum I=<1. Then
1So(NN)-Dy(NA) provides the only coupling of two-
nucleon to nucleon-A states and only one three-particle
channel with a A isobar is to be added to the five purely
nucleonic ones. (ii) In 32-channel calculations, the two-
baryon interaction is taken to act in all two-baryon par-
tial waves of Table IV. However, the A isobar is not al-
lowed to be a spectator when two nucleons interact.
Thus 14 three-particle channels with a A isobar are to be
added to the 18 purely nucleonic ones. (iii) In 33-channel
calculations, the two-baryon interaction is taken to act in
all two-baryon partial waves of Table IV. The A isobar is
allowed to be a spectator, however, only when two nu-
cleons interact in a 'S, state. Fifteen three-particle chan-
nels with a A isobar are to be added to the 18 purely nu-
cleonic ones. We only consider the calculations based on
33 three-particle channels well converged with respect to
channel truncation. A very careful investigation on the
convergence issue and the confirmation of that fact are
given in Ref. [19].

The results of that unified calculations are listed in
Tables V and VI and displayed in Figs. 4 and 5. They
confirm the reference calculations that the Tucson-
Melbourne three-nucleon force without its A-pole part
still makes a non-negligible contribution to the triton
binding energy. That contribution is, however, much
smaller compared with the effect of the full Tucson-
Melbourne three-nucleon force with a A-pole part.
Furthermore, the dependence of the binding-energy re-
sults on the cutoff parameter A for the 7NN vertex in the
Tucson-Melbourne force is considerably reduced. Table
V shows that the results based on the two different sets of
strength parameters for the Tucson-Melbourne force
without a A-pole part are qualitatively quite similar. In
fact, at the recommended cutoff value A=5.8u, the
theoretical predictions of the triton binding energy, based
on A-isobar dynamics and the additional three-nucleon
force, become close to the experimental value of —8.48
MeV. Tables III and V together indicate that the in-
clusion of explicit A components in the trinucleon wave
function leads to a moderate increase for the triton bind-
ing energy of the same size as observed in calculations
without an irreducible three-nucleon force; that particu-
lar result is almost independent of the value for the cutoff

TABLE V. Triton binding energy in MeV for the force model of Fig. 2 with explicit single A-isobar
excitation and an irreducible three-nucleon interaction. When no irreducible three-nucleon force is
added, the force model of Fig. 2 becomes—in the employed parametrization—identical with the
coupled-channel force model A2 of Ref. [5]. In the table the results for the force model A2 are indicat-
ed by Paris+ A (A2), since A2 is an extension of the Paris potential with single A-isobar excitation. The
added irreducible three-nucleon forces are based on the Tucson-Melbourne force, from which the A-
pole contribution is subtracted according to the two different sets of reduced strength parameters in
Table I. The calculations refer to 6, 32, and 33 three-particle channels and to various cutoff parameters
A in the 7NN vertex of Eq. (3) in the employed irreducible three-nucleon forces.

A=4.1p A=5.8u A=T.1u A=5.8u

No TM-A TM-A1 TM-A1 TM-A1 TM-A2

Paris+A (A2) 6 —6.83 —6.62 —17.02 —10.49 —7.09
Paris+A (A2) 32 —7.70 —17.60 —8.17 —9.48 —8.38
Paris+A (A2) 33 —17.72 —7.63 —8.20 —9.49 —8.41
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TABLE VI. Triton properties derived from various force models based on the Paris potential. The
binding energy E and probabilities (in %) for the wave function components with total orbital angular
momentum 0, i.e., P(S) of totally symmetric orbital symmetry and P(S’) of mixed symmetry, with total
orbital angular momenta 1 and 2, i.e., P(P) and P(D), and with A-isobar content, i.e., P(A), are listed.
The calculations with purely nucleonic wave function components refer to 18 three-particle channels
and the calculations with additional single A-isobar components to 33 three-particle channels. The
cutoff parameter A in the wNN vertex of the Tucson-Melbourne three-nucleon force and in its

modifications is 5.8u.

E (MeV) P(S) P(S’) P(P) P(D) P(A)
Paris —7.38 90.07 1.43 0.07 8.43 0.00
Paris+A (A2) —1.72 87.53 1.49 0.09 8.47 243
Paris+A (A2)+(TM-Al) —8.20 87.52 1.35 0.11 8.56 2.47
Paris+A (A2)+(TM-A2) —8.41 87.40 1.29 0.12 8.68 2.51
Paris+TM —9.08 89.85 1.00 0.18 8.97 0.00

parameter A in the 7NN vertex of the Tucson-Melbourne
force. Table VI lists wave function properties arising
from different calculations.

Our objective was to unify the existing triton calcula-
tions of Refs. [1-3] with an irreducible three-nucleon
force and those of Refs. [4,5] based on A-isobar dynam-
ics. On purpose, we therefore adopted the underlying ha-
dronic concepts of Refs. [1-3], on the one hand, and of
Refs. [4,5], on the other hand, without essential changes.
That idea had to result in inconsistencies for the parame-
trization of the employed force model of Fig. 2. Exam-
ples for those inconsistencies are the following: (i) The
Tucson-Melbourne three-nucleon force used in Refs.
[1-3] is based on pion exchange, whereas Refs. [4,5] base
the transition potentials to nucleon-A states on pion and
rho exchange. (i) The employed form of the Tucson-
Melbourne three-nucleon force in Eq. (2) uses a dipole
form factor for each pion exchange, whereas Refs. [4,5]
use a monopole form factor instead. (iii) The actual
values for the cutoff mass A in the form factors for the
Tucson-Melbourne three-nucleon force and for the tran-
sition potential are physically inequivalent, even when al-
lowance is made for the different multipole character of
the form factors according to (ii). References [4,5] use a
larger cutoff mass for the transition potential which
would correspond to A=V'25.8u=8.2u in a dipole form
factor. However, Ref. [12] demonstrates that the A-
isobar-induced effects on the triton binding are small in
that parameter region in which the Tucson-Melbourne
three-nucleon force shows rather singular behavior with
dramatically cutoff dependent binding-energy results. (iv)
In the Tucson-Melbourne force of Eq. (2), the pion ex-
change is of ordinary pion range. This is the reason why
the force model A1 whose pion exchange is also of ordi-
nary range is used in the scheme (1) of Sec. II for sub-
tracting the A-pole part from the Tucson-Melbourne
force. In contrast, the force model A2, considered as
especially characteristic for A-induced effects and taken
for the present unifying calculations, employs a transition
potential with partially modified pion range, since in a
time-ordered picture the simultaneous propagation of a
pion and a A isobar corresponds to a mass effectively
larger than that of the pion.

We think that those inconsistencies, tolerated for the
present limited purpose of unification, do not cloud our

conclusions. In fact, inconsistencies of that sort have oc-
curred generally in all previous calculations, when a
three-nucleon force is added to a Hamiltonian with two-
nucleon potentials.

We conclude that A excitation seems to be indeed the
most important process contained in the Tucson-
Melbourne two-pion exchange three-nucleon force. Thus
the explicit treatment of the A isobar as an additional nu-
clear constituent is advisable. The comparison with cal-
culations based on the full Tucson-Melbourne three-
nucleon force confirm the observation of Ref. [12] that
static approximations on the propagation of the A isobar
can lead to a severe overestimate of A-induced effects in
nuclear properties.

E (MeV)

4 5 6 7
A ()

FIG. 4. Triton binding energy in MeV vs the cutoff parame-
ter A in the wNN form factor of Eq. (3) for the Tucson-
Melbourne three-nucleon force in units of the charged pion
mass p. Solid circles represent the results of the full unifying
calculation with explicit A isobars taken into account in 33
channels and with the modified Tucson-Melbourne force TM-
A1l of Table I added. Open circles represent the binding-energy
results for purely nucleonic 18-channel calculations with the
Paris potential and the full Tucson-Melbourne three-nucleon
force without subtraction of A contributions. Curves through
the symbols are meant to guide the eye. The horizontal solid
line indicates the binding energy obtained with A-isobar excita-
tion, but without irreducible three-nucleon force, and the
dashed line the one obtained from the Paris potential without
three-nucleon force.
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FIG. 5. Triton binding energy in MeV vs the cutoff parame-
ter A in the wNN form factor of Eq. (3) for the modified
Tucson-Melbourne three-nucleon force TM-A1l of Table I in
units of the charged pion mass . Solid circles represent the re-
sults of the full unifying calculation with explicit A isobars tak-
en into account in 33 channels. Open boxes represent the
binding-energy results for purely nucleonic 18-channel calcula-
tions with the Paris potential. In both cases the modified
Tucson-Melbourne three-nucleon force TM-Al is added.
Curves through the symbols are meant to guide the eye. The
horizontal solid line indicates the binding energy obtained with
A-isobar excitation, but without irreducible three-nucleon force,
and the dashed line the one obtained from the Paris potential
without three-nucleon force. Compared with Fig. 4, the
difference in scale should be noted; the two solid curves are the
same as in Fig. 4.
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culations were performed at “Regionales Rechenzentrum
fiir Niedersachsen.”

APPENDIX

The full expression for the matrix elements of the per-
mutation operator P is given in the basis of the three-
particle states |[pgv). In these states the (23) pair is an-
tisymmetrized, though the index 1 on the ket identifying
the antisymmetrized pair will be suppressed. However,
the suppressed index reappears in the matrix elements for
clarifying the meaning of some quantum numbers.

The matrix elements can be decomposed in the form

{pgv|Plp'q'v’

8(p—p7’(q,q',x))
X

1
_f—1d

pL +2
X 5(1’,_‘;%;?2"1”)‘ ) G.,(g,9",x), (A1)
with
Y (q,q",x)=[(yq)*+q"*+2yqq'x]'?, (42
23 (q,9",x)=[q*+(ag')*+2aqq'x]"/?, (43
—a (A4)

The constants a and y depend through the discrete quan-
tum numbers B, b, B’, and b’ on the channels v and v’ ac-
cording to

1
SO i L (AS)
1—r,B’
_imb A6)
14 1—r,B "’

with the mass ratio

mpy—my

r (A7)

™ mytmy
This is the reason why the momenta p}* and p}" carry
both channel labels.

The reduced matrix elements G,,.(q,q’,x ) are given by

’ ’
L,+L lq,L2+L2
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L,+L,=L L'1+L;=L'

L—S—T+sy+sy+t,+1; kL L{L,L}
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In Eq. (A8), P,(x) are the ordinary Legendre polynomials. The factors gﬁélf,'ﬁil“f) are of purely geometrical nature,

ie.,
kL L L,L’ L+S'+T +s,+s,+2s,+
&2z, 3y =(—) P t1+13+2r25d(i’8,/ pO7Tde 4
INADAAN, AN A A A AN A A o~ ! 4 l/zt t T
XII,_]]’L LISSII llTTlé-kz'yLlaLz (2L+1)'(2L +1)' 2 3 ,
(2L 2L, N2L Y N2LS ) n T T
oo sz sy SY|E DL L
XR(L&) 5, 8§ S S s & 57 &
- I j & i &
X 3 (L,0I0[£0){L50I'0| f'0){kOL,0|f'0){kOL0|f0)
I
L, L, L||Ly LY L'|(f L, L
Xle 1 flle v £y Ly k| (A9)

where £ =V'2x +1. The more explicit notation v(j,k) for the channel label v in the geometric factors of Eq. (A9)
should be a reminder that the particle labels in the pair are j and k and they should indicate the order in which the
spins and isospins of the pair particles j and k are coupled.
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