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Effects of a quark-model-based nucleon-E
potential on the two-nucleon system above pion threshold
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The interaction between a nucleon and a A isobar is studied. The nucleon-E potential is derived
from a nonrelativistic quark model. It is compared with a corresponding one based on meson
exchange. The quark-model potential is strongly repulsive at small relative distances. The efFects of
the potential on elastic and inelastic nucleon-nucleon and pion-deuteron scattering are calculated.
Some observables show sensitivity with respect to the chosen nucleon-4 potential.

PACS number(s): 13.75.Cs, 21.30.+y, 21.45.+v, 21.60.Gx

I. INTRODUCTION

The 4 isobar is an important mode of nucleonic ex-
citation. It is seen as a resonance in pion-nucleon scat-
tering and photopion and electropion production &om
the nucleon. In nuclear structure, the 4 isobar is an
agent for corrections [1,2] in the traditional picture of
the nucleus as a system of nucleons only: It is consid-
ered a nuclear constituent in addition to nucleons. Its
excitation in the nucleus yields many-nucleon forces and
many-nucleon currents for electroweak processes. In nu-
clear reactions, the b, isobar provides a mechanism [3,4]
for pion scattering, pion production, and pion absorption.

The interaction of the 4 isobar with nucleons is exper-
imentaQy unobservable and theoretically unknown to a
large extent. The conceptual consistency between the 6
isobar, bound in nuclear systems, and the pion-nucleon
P33 resonance, embedded in the nuclear medium, can
only be given by models for the structure of the isobar
and resonance. Thus the 4 isobar's effects on nuclear ob-
servables have to be studied theoretically and are model
dependent. This paper explores the properties of the
two-nucleon system above the pion threshold in their de-
pendence on a chosen nucleon-b, potential.

The paper uses two models for the nucleon-6 poten-
tial. One model is based on nonrelativistic quark dy-
namics between composite baryons, the other on meson
exchange between elementary baryons. The predictions
for observables of the two-nucleon system above the pion
threshold arising from the two different potential models
are compared. Section II describes the employed poten-
tials in configuration space and discusses their similarities
and differences. Section III recalls the technical appara-
tus for calculating the observables of elastic and inelastic
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nucleon-nucleon and pion-deuteron scattering. Section
IV presents the results and conclusions.

II. POTENTIAL BETWEEN A NUCLEON
AND A A ISOBAR

The nucleon-6 potential is not directly accessible in
experiments. Nevertheless, there are attempts to extract
nucleon-6 phase shifts and other features of the nucleon-
s. interaction from data [5,6]. However, the extracted
properties of the nucleon-6 interaction are rather model
dependent without rigorous theoretical meaning. This
section compares two theoretical models for a nucleon-6
potential. In both models, the 6 isobar is considered a
stable baryon. In the potential based on meson exchange,
the b, isobar is elementary as the nucleon (N) is, difFering
&om the nucleon by its mass, quantum numbers, meson
coupling constants, and form factors. In the potential
based on nonrelativistic quark dynamics, the nucleon and
6 isobar are both composite. However, the decay of the
6 isobar to pion-nucleon states is not incorporated in
the considered quark model; thus, the 6 isobar is also a
stable baryon in the considered quark description.

A. Potential based on nonrelativistic
quark dynamics

The nucleon-4 potential is derived &om nonrelativis-
tic quark dynamics. The employed quark model works
with quark degrees of &eedom only, the gluon ones be-
ing &ozen into effective quark masses mq and into effec-
tive quark potentials Vqq of two-body nature. The quark
model is that of Ref. [7]. Up and down quarks are consid-
ered only. The quark masses are assumed to be isospin
independent.

The quark Hamiltonian 'Rq is 'Rq —Qqo+ Pqq~ with
8qQ denoting the kinetic energy. The quark-quark p o-
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tential Vqq has four distinct parts, i.e.,

Vqq = VQGE + Vcon + VosE + VQPE)

VQGE being the Fermi-Breit one-gluon exchange, V,
being a quadratic confinement potential, and VQSF and

I

VQpg being the one-meson exchange of a sigma ((r) and of
a pion (7r) between quarks, respectively. The four parts
of the potential are used in nonrelativistic approxima-
tion; they become local in that approximation and are
employed in the forms

1 1 ~ 2 - 3
VQGE(r's) = -~.W*) «(j) —— '+ -~(*) s(j) '(''s) —

~ S(* j))2
4m ~

(2.2a)

V, „(r;,) = —a.A(i) A(j)r,', , (2.2b)

4m,' A2 A.
VQsE (rsj ): clhs'2 ma T(mjr&ij ) T (A jrrij )m~ ~ m~ mg

(2.2c)

A'.
VQPE(r j) ='o'ch

2 2
m T(m r j ) —;T(A-r'j) ~(') ~(j)

3
+ N(rrr r;, )

— N(A„r,, ) S(sj)) (s)jr (j). (2.2d)

In Eqs. (2.2) the quark coordinates are denoted by
r; with the relative coordinate r;j = r, —rj, the op-
erators cr(i), a(i), and A(i) are the spin, isospin, and
eight-component color charge of quark i, respectively,
and S(i,j) is the quark tensor operator with

T(z) =

3 3&
H(z) =

~

1+ —+ —,
I
T(z).z z )

(2.4a)

(2.4b)

S( j) = 3[ ( ) "]~(j) '*']- ( ) ~(j)

The renormalized strong coupling constant is o.„a, reg-
ulates confinement, and o.,h is chosen to reproduce the
experimental pion-nucleon coupling constant, i.e. ,

3'2 m2
a = — = 0.0288.

l, 5 ) 4vr 4m2~
(2.3)

TABLE I. Quark-model parameters. The parameters are
taken from Refs. [7] and [8]; they are needed for the
quark-quark potential of Eqs. (2.2). The single-quark wave
functions in the nucleon and the A isobar are oscillator
ground-state wave functions with oscillator parameter b.

Chiral symmetry relates both meson coupling constants
and it relates the regularizing cutofF masses A and A by
A = A . The potential parameters are taken over from
Refs. [7] and [8]; they are listed in Table I. Equations
(2.2) use the standard Yukawa functions for T(z) and
H(z), i.e. ,

There are also contributions to the one-gluon and sigma-
meson exchanges which arise from the coupling of the
quark spins to their orbital motion. Those contributions
are small [9]; they are therefore left out in the present
calculation and are not given in Eqs. (2.2a) and (2.2c).

The nucleon and 6 isobar are considered three-quark
clusters, [Nr~) and [b,ra), each one bound to a center
at rjv and rn, respectively. The quark basis states

r r
(N jsrSMsTMr) = s(( N St—

2 2

are tensor products of those cluster states, with the two
centers separated by r, their individual cluster spins and
isospins coupled to a state [SMsTMT) of total spin S
and isospin T. The basis states are antisymmetrized,
A being the quark antisymmetrizer. Nucleon-b, partial
waves with states [Nb, r(LS)IMITMT) are introduced,
1.e.)

[NAr(LS) IMITMT)
m, (MeV)

b (fm)
o.'s

a, (MeVfm )
~ch

m (fm ')
A (fm ')
m (fm ')
A (fm ')

313
Os5

0.4
57.96
0.0288
3.42
4.2
0.7
4.2

) f S r)NjSrSMsTMr)TsM, (r)
ML MS

x (LMI, SMq [IMI) (2.5)

They have definite angular momentum and isospin prop-
erties, L being the orbital angular momentum of relative
motion, S the total spin, I the total angular momentum,
MI its projection, T the total isospin, and MT its pro-
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jection. Those quark basis states are neither normalized
at the same distance r, their distance-dependent norm
being

JV[r(LS)IT]

= (NBr(LS)IMITMT ]Nor(LS)IMITMT),

nor orthogonal at diferent distances r; nor are they or-

thogonal to states of diHerent baryonic content at any
distance r. In a configuration space representation, the
basis states are functions of the quark coordinates r;.

The nucleon-6 potential V~~ at relative distance r
is identified with the interaction energy of the nucleon
and 4-isobar clusters at cluster separation r. In fact,
the Born-Oppenheimer identification is done in partial
waves. The nucleon-4 potential is defined by

with

( 'rI Vpalr) = ) . f p' dp' ) J p dp(r'(PIS p'(I'S')I'MJ T'Mr)
L'S' I'MI T'MT LSIMI TMT

x (NEp'(L'S')I'MIT'MT ]V~~lNb p(LS)IMITMT )

x(Nb, p(LS)IMITMT lr), (2.6a)

b r' —r
(Nbr'(L S')I'MJT'MT lV~rslNbr(LS)IMITMT ) = birlbM M, STiT bMi M (I,'S lV (r)lLS), (2.6b)

LISI VIT' " ILS
(Nbr(L'S')IMITMT'l&qlNbr(LS)IMITMr)

/JAN [r(L'S') IT]QJV [r(LS)IT]

(N&r(L'S')IMrTMT'l RelN&r(LS)IMITMT )

QJV[r(LISI)IT]QA [r(LS)IT)
(2.6c)

By putting the distance-dependent norms JV[r(LS)IT]
into the denominators, the definition (2.6c) of the po-
tential takes into account that the basis states are not
normalized. The second term of Eq. (2.6c) takes out the
internal quark energies of the separated nucleon-b. sys-

tem; it ensures the vanishing of the nucleon-b, potential
at large separations. Only the one-gluon and one-meson
exchanges contribute [10]. The one-gluon-exchange part
of the quark-quark potential makes its contribution when
the two baryonic quark clusters overlap. The tail of the
nucleon-6 potential is dominated by sigma and pion ex-
change, both getting identical there to standard meson-

exchange nucleon-4 potentials.
References [7], [9],and [ll] demonstrate that the quark

Hamiltonian based on the potentials (2.2) yields a satis-
isfactory description of experimental properties in one-
and two-baryon systems, when described in the frame-
work of the resonating group method. Furthermore, the
validity of the Born-Oppenheimer approximation is stud-
ied for the two-nucleon interaction in Refs. [12] and [13].
It is found to re8ect the qualitative features of the two-
nucleon interaction as seen in a full resonating group
treatment. Thus the approximation (2.6c) is also as-
sumed to provide the qualitative characteristics of the
nucleon-4 potential and is therefore adopted in this pa-
per.

In a quark description, the basis states
lNAr(LS)IMITMT) are not orthonormalized as dis-
cussed. However, in the subsequent baryonic description
of hadronic reactions in Secs. III and IV, the same states
are assumed to be properly orthonormalized. For exam-
ple the baryonic nucleon-E potential of Eq. (2.6b) is
defined between nonorthonormalized quark states, but is

assumed to act between corresponding orthonormalized
baryonic basis states.

B. Potential based on meson exchange

(r']V~alr) = 6(r' —r) [V~&(r) + V&a(r)], (2.7)

V&&(r) = [1+Pi2]r&&(1) . Tag(2)
x[V~(r) + ~ ( ) ~iv(1) o~a(2)

+VT", (r)SN (1,2)], (2.8a)

V&z(r) = [1+Pi2]TNa(1) T~di(2)
x [V'(r)o~~(1) . a~a(2)

+V~(r) S„~(1,2)]. (2.8b)

In Eqs. (2.8), r is the relative coordinate, pointing
from baryon 2 to baryon 1; P~2 interchanges the baryons
1 and 2. Furthermore, o~~(i) [v~~(i)] is the spin

References [14] and [15] employ a nucleon-6 potential
V~a derived from meson exchange. The mesons con-
sidered there are the pion, sigma, rho, and omega. All
mesons contribute to the direct potential V&&, only the
pion and rho mesons also contribute to its exchange part
V~&. The potential acts in states of isospin T = 1 and
2; only its isotriplet T = 1 states couple to those of the
two-nucleon and pion-deuteron systems. In nonrelativis-
tic approximation of lowest order, the nucleon-6 poten-
tial becomes local in configuration space and takes the
form
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[isospin] operator of nucleon i, o/v~(i) [7/v~(i)] denotes
the transition spin [isospin] from nucleon i to a 3 iso-
bar, and o~a(i) [r~~(i)] is the spin [isospin] operator
when baryon i is a 4 isobar; the respective reduced spin
[isospin] matrix elements are ~6, 2, and 2~15. The di-
rect and exchange nucleon-4 tensor operators Sg& (1,2)
and S~+&(1,2) are defined as

S/va(1, 2) = 3[oN/v(1) r][o~~(2) r]
—o/vN(1) o.~a(2), (2.8c)

ma( )= [ ~~() ][ aN() 1

—oo, /v(1) o~/v(2). (2.8d)

The meson coupling constants and the regularizing cutofI'
masses of the hadronic form factors required for the ra-
dial shapes of the potentials V&~&(r) and VN&(r) are not
made explicit in Eqs. (2.8). Those parameters are ex-
perimentally unknown. The coupling constants between
mesons and 6 isobar are scaled from the corresponding
nucleonic ones by means of a naive SU(2) quark model
[16], except for the pion-nucleon-6 case. All potential
parameters are those of Table II in Ref. [15], with fur-
ther explanations given in Ref. [14]. The exchange of the
sigma, rho, and omega mesons also yields a spin-orbit
part in the direct potential V~&(r). That part was left
out in the calculations of Refs. [14,15]; it will be left out,
for reasons of consistency with the quark-model-based
potential, in the present calculation as well as is there-
fore not included in the potential (2.8).

In applications, the nucleon-6 potential is used in a

partial-wave projected form, corresponding to the form
of Eq. (2.6b).

C. Comparison of the two difFerent N-dL potentials

The nucleon-6 potentials are compared in configura-
tion space. Characteristic features are the following: The
potential derived from nonrelativistic quark dynamics is
rather smooth; at relative distances smaller than 1 fm,
it becomes strongly repulsive in most partial waves; the
coupling between partial waves connected by the tensor
part of the potential is weak. In contrast, the potential
based on meson exchange has more structure; in par-
ticular, a remarkable attractive pocket at small relative
distances exists in most partial waves; the tensor cou-
pling is strong. Both potentials become almost identi-
cal outside 2 fm: However, the pion-nucleon-4 coupling
strength employed in the meson-exchange potential [14]
is derived Rom 6 decay and therefore differs form the
one effectively arising in the quark-model potential; thus,
the pion-exchange parts of the two potentials cannot be-
come fully the same in their tails. Furthermore, though
the sigma-meson coupling constant is almost the same in
both potential models, the sigma mass, the cutofF mass,
and the form of the regularization are so difI'erent that
the two potential models still remain distinct at distances
between 1.5 and 2 fm. The configuration-space compar-
ison between the two potentials is carried out in Fig. 1
for some important isotriplet partial waves, i.e., Sq, S2,
and P3. That comparison confirms the general charac-
teristics of the potentials.

The found pronounced short-range repulsion of the
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FIG. 1. Nucleon-A potential V~~ in the
isotriplet partial waves S1, Sq, and Pq
as function of relative distance r between
baryons. Those partial waves are coupled
ones. The channel-diagonal potentials are
shown, except for the tensor-coupled poten-
tial S2- D2, which is also given. The solid
curve refers to the quark-model nucleon-E
potential of this paper, the dashed curve to
the meson-exchange nucleon-A potential of
Refs. [14,15].
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F&G. 2. Quark-model nucleon-4 potential

V~~ as function of the relative distance r.
Contributions to the channel-diagonal po-
tentials in the isotriplets Si and Sq par-
tial waves are displayed. The dotted curve
refers to the one-gluon-exchange contribu-

tion, the dashed curve to the meson-exchange
quark-quark contribution; the solid curve is
the full result. In the Sq potential, the full

results and its meson-exchange contribution
are graphically indistinguishable.

quark-model nucleon-6 potential is consistent with pre-
vious work: Six-quark states can be classified by irre-
ducible representations of the spin-isospin SU(4) group.
Only its (5, 1}orbital symmetry occurs in the S = T = 1
and S = T = 2 partial waves. References [12] and
[17] demonstrate that at zero relative distance the spin-
isospin (5, 1}symmetry can just be combined with the
orbital [4,2] symmetry to a totally antisymmetric quark
state, the totally symmetric [6] symmetry being forbid-
den. In the resonating group description of two-nucleon
scattering, that forbidden state of orbital [6] symmetry
produces a node in the relative two-nucleon wave func-
tion according to Ref. [18]and that node e8'ectively yields
hard-core-type two-nucleon phase shifts. The descrip-
tion of two-nucleon scattering in terms of local Born-
Oppenheimer potentials corresponding to Eq. (2.6c) sim-
ulates the same short-range repulsion in a diferent way:
In those partial waves in which the forbidden state oc-
curs, the normalization N[r(LS) IT], included in the def-
inition (2.6c) of the potentials, vanishes at small relative
distances as r4, making the potential repulsive at short
distances and even singular at r = 0; when expanding
the quark-quark potentials in terms of Gaussian for com-
putational convenience, that singularity gets regularized,
though the short-range repulsion remains qualitatively
untouched. Returning to the nucleon-6 potential of Eq.
(2.6), the short-range repulsion in partial waves with for-
bidden orbital [6] symmetry does not arise dominantly
&om the one-gluon exchange, whose matrix elements van-
ish in the same way as the wave function overlap. Instead,
the short-range repulsion arises mostly from the meson

N N N N N

N N N N N 6 6 N

(b) (c)

N N N N N N

exchange between quarks, whose matrix elements vanish
with a smaller power in r than the wave function overlap.
Thus the meson-exchange contribution is enhanced by
the decreasing overlap, according to the definition (2.6c)
of the nucleon-6 potential. That described source for
repulsion is illustrated in Fig. 2. In contrast, in partial
waves in which the totally symmetric orbital symmetry
[6] is not forbidden at zero relative distances, e.g. , in the
isotriplet 82 partial wave, the repulsion is dominated by
gluon exchange.

Phenomenologically, such a short-range repulsion is
supported: The theoretical analysis of elastic pion-
deuteron scattering by Ferreira and Dosch [19] suggests
a strong short-range repulsion for the nucleon-b, inter-

N N 7r

(a)

N N

FIG. 3. Hilbert space of baryon number 2 for the consid-
ered force model. Besides the purely nucleonic sector R~,
there is a second sector 'R~ in which one nucleon is turned
into a A isobar and a third sector 'R in which a pion is added
as third particle.

FIG. 4. Building blocks of the interaction Hq in the con-
sidered force model. They are given in the Hilbert space
of baryon number 2. The dashed horizontal lines denote
instantaneous potentials. Processes (c) and (d) are the di-
rect and exchange nucleon-A potentials whose sects on the
two-nucleon system above the pion threshold are studied in
this paper. Process (e) is of one-baryon nature; it is assumed
to yield the full pion-nucleon interaction in the P33 partial
wave by iteration. Process (f) stands for the pion-nucleon
potential in partial waves other than P33 All parts of the in-
teraction contribute to isotriplet partial waves. In isosinglet
partial waves, the interaction reduces to process (a).
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action in the Sq wave. Furthermore, there is evidence
for such a repulsion Rom the description of inelastic pion
scattering off C within the &amework of the A-hole
model [20].

The meson-exchange nucleon-4 potential is dominated
by pion and sigma exchange at large relative distances.
At small relative distances, all mesons contribute with
weights which depend on the partial wave. The some-
how unsmooth behavior of the potential there, e.g. , the
attractive pocket in the isotriplet partial waves Sq and
sS2 of Fig. 1, is a remainder of the 8-function contri-
butions to the spin-dependent parts V (r) and V'(r)
of the potential which are regularized with large cutoH
masses. In case the meson exchanges were regularized
by taking out the b-function contributions entirely, the
meson-exchange nucleon-6 potential would show repul-
sion at small relative distances in the isotriplet partial
waves Sq and Sq in qualitatively the same way as the
quark model does.

N

N

(b) (c}

FIG. 6. EfFective hadronic interaction in the Hilbert sec-

tor with a 4 isobar. The energy-dependent contribu-

tions arising from the explicit propagation of a pion are of
one-baryon nature, i.e., process (a) yielding PabHs(z)P&, and

of two-baryon nature, i.e., process (d) yielding P&6Hi(z)Pa,
the simplification QHiQ = 0 is used. The instantaneous po-
tentials (b) and (c) are irreducible building blocks of the em-

ployed force model defined diagrammatically in Fig. 4

III. CALCULATIONAL FRAMEWORK FOR THE
DESCRIPTION OF HADRONIC REACTIONS

This paper calculates observables of elastic and inelas-
tic nucleon-nucleon and pion-deuteron scattering. The
considered reactions are theoretically described by a
Hamiltonian H = Ho + Hq in a Hilbert space in which
the non-nucleonic 4 isobar and pion degrees of &eedom
are added to the nucleonic one. The considered sectors
of the Hilbert space are shown in Fig. 3 for baryon num-
ber 2; the projector onto the purely baryonic sector is
denoted by PN, the one onto the sector with a 6 isobar
by Pn, and the one onto the sector with a pion by Q.
The Hamiltonian acting in that Hilbert space has the ki-

o (pp- X}

30

netic energy part Ho and the interaction part Hq. The
building blocks of the interaction are displayed in Fig.
4; they can couple the di8'erent sectors of the Hilbert
space. The description of the considered reactions uses
the Alt-Grassberger-Sandhas [21] three-particle scatter-
ing theory extended to accommodate particle absorption
[22]. The technical apparatus of Ref. [15] is taken over
without essential changes for the calculation.

Kinematically, relativistic expressions are used for the
observables. In contrast, the one-shell multichannel tran-
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FIG. 5. Total proton-proton cross section o(pp m X) as
function of the proton laboratory kinetic energy E. The efFect

of difFerent identifications between experimental and calcula-
tional kinematics is indicated. The solid curve refers to the
identification used in this paper: The c.m. energy is reLativis-

ticaLLy evaluated from the experimental laboratory energy and
used for the calculation of the on-shell multichannel transition
matrix. The dashed curve uses the alternative identification
of Ref. [23]. The c m energy is non. re.lativistically evalu-

ated from the experimental laboratory energy and used for
the calculation of the on-shell multichannel transition matrix

FIG. 7. I ow-energy Sp two-nucleon phase shifts as func-
tion of the nucleon c.m. energy. The solid curve refers to
the force model of Fig. 4, the nucleon-4 potential being the
meson-exchange one in the identification (3.2b), thus slightly
changed compared with Ref. [15]; the effective-range param-
eters are a = —17.53 fm and rp ——2.84 fm. The crosses
refer to the Paris potential, whose effective-range parameters
are a = —17.53 fm and rp = 2.88 fm. Coulomb-subtracted
phase shifts are shown. A comparison to experimental data is

omitted, since it would require the inclusion of the Coulomb
interaction in the calculation of the phase shifts. The force
model of Ref. [15] does not define the nucleon-A potential ac-

cording to Eq. (3.1) and therefore does uot show exact phase
equivalence at zero kinetic energy. The phase nonequivalence
would not show up as sizable in the figure; however, the efFec-

tive-range parameters are with a = —20.04 fm and rp ——2.80
fm dramatically difFerent.
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sition matrix required for calculating the observables is
derived with a half-relativistic form of the kinetic energy
operator Ho, i.e., the baryons being treated nonrelativis-
tically, the pion relativistically: The experimental c.m.
energy of a reaction is evaluated relativistically from the
laboratory energy and then taken as the available energy
for the transition matrix of the calculation, for which the
on-shell momenta are theoretically determined from that
energy according to half-relativistic kinematics; in that
way the employed transition matrix becomes on shell in
an internally consistent form. That kinematic identifi-
cation between experimental kinematics and theoretical
description is indeed a nonunique recipe. A variety of al-
ternative recipes is possible, and in nucleon-nucleon scat-
tering the theoretical predictions depend on that recipe,
as Fig. 5 demonstrates for the total cross section: The
solid curve follows the identification adopted in this pa-
per. For the results given by the dashed curve, the c.m.
energy used in the calculation is related nonrelativisti-
cally to the experimental laboratory energy as in Ref.
[23]. The dependence of results on the kinematic identifi-
cation between experimental and theoretical descriptions
is most severe in nucleon-nucleon scattering.

Dynamically, the choice of the interaction Hz in the
force model of Fig. 4 also follows mostly Ref. [15].

(1) The pion-nucleon interaction is assumed to proceed
exclusively in the Pss partial wave, being mediated solely
by the excitation of the 4 isobar according to Fig. 4(e).
The pion-nucleon potential in all other partial waves, i.e.,
process (f) of Fig. 4, is neglected. Furthermore, also
the nucleon-nucleon potential in the presence of a pion,
i.e., process (g) of Fig. 4, is left out. Thus the inter-
action in the Hilbert sector with a pion is assumed to
vanish altogether, i.e., QHqQ = 0. In the description of
the considered reactions, baryonic transition matrices are
computed as intermediate technical quantities to which
the propagation in the pionic sector contributes effective
interaction corrections of one-baryon and two-baryon na-
ture, i.e., Pa6Ho(z)P~ and P~6H&(z)Pa, respectively, z
being the energy available for the respective processes.
Those corrections only occur in the Hilbert sector with a
b, isobar. They are illustrated as processes (a) and (d)
in Fig. 6; they are given there already specialized to the
adopted assumption QHqQ = 0.

(2) The instantaneous nucleon-nucleon potential
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I . 8. Comparison of results based on the meson-exchange nucleon-A potential with the two different identifications (3.2b)

P t. E p lly 't ob bl of
ifferential cross section do/dO and the analyzing power A„o for the reaction PP m 7r d at gpp MeV proton laborato k t'

energy in (a), the differential cross section der/dO and the beam asymmetry A„ for the reaction P m nD++(~+) t gpp M V

proton laboratory kinetic energy in (b), and the differential cross section do/dQ and the vector polarization il' for el t
p' n- euteron scattering at 256 MeV pion laboratory kinetic energy in (c). The dashed curve refers to the res~ts obtai d

on-exchange nucleon-& Potential with the pion-exchange part according to Eq. (3.2b) as used throughout this

ithth pio- h g p t od' gt Eq (32) d' Rf [15j
the same as used later on in Figs. 14—16.



VALCARCE, FERNANDEZ, GARCILAZO, PENA, AND SAUER 49

P~
PN +1PN —VNN PNII1I 6 PgII)PN

2miv —Po, [Ho + bHo(2m') + Hi + bHi(2m')]Pa
(3 1)

is slightly changed compared to the definition (2.24)
of Ref. [15]. The pionic corrections PrIbHo(z)Pa and
Pri, bHi(z)Pa in the two-baryon systein are included in
that changed definition at zero kinetic two-nucleon en-

ergy 2miv Th. e definition (3.1) guarantees exact phase
equivalence with the nucleonic reference potential V~iv,
here taken to be the Paris potential [24], at zero ki-
netic energy, and substantially improves the approxi-
mate phase equivalence at small kinetic energies of elas-
tic nucleon-nucleon scattering. That fact is borne out in
Fig. 7. The improvement (3.1) for the two-nucleon part
of the force model is conceptually important; however,
for aQ the observables reported in Sec. IV is at most in
the fourth significant digit and can therefore not been
seen in any plot.

(3) This paper studies the efFect of the instantaneous
nucleon-6 potential P~HqI'~ on the properties of the
two-nucleon system above the pion threshold. However,
even without such an instantaneous potential, there is
an effective energy-dependent interaction PabHi(z)P~
mediated by the exchange of an explicit pion between 6
isobars. The complete two-body nucleon-6 interaction

P~ [Hi+bHi (z)]Pn, is displayed in Fig. 6 by the processes

(b)—(d). Process (c) of Fig. 6 should not contain, that
time ordering of pion exchange any longer, which pro-
cess (d) accounts for in an explicit and retarded fashion.
The efFects of difFerent parametrizations of the nucleon-6
potential are studied.

(3a) In a reference calculation, only the pion-mediated
exchange interaction is kept, however, with both its time
orderings. Since process (d) of Fig. 6 yields one time
ordering only, the other time ordering is to be added as an
instantaneous potential in process (c), its particular form
chosen as the energy-independent reduction of process

(d), i.e. ,

where z is chosen as for Eq. (3.2a).
(3c) If the pionic contribution Viv& [vr] to the exchange

part of the nucleon-b, potential in Fig. 4(d) could easily
be extracted &om the full potential, as is the case for the
meson-exchange nucleon-b, potential of Sec. IIB, the
alternative choice

is possible. That form of the nucleon-4 interaction ap-
peared to Ref. [15] especially appropriate for a com-
parison with the reference calculation of Eq (3..2a).
However, its use in this paper for the meson-exchange
nucleon-4 potential would introduce an unwanted asym-
metry into the comparison with the nucleon-6 potential
derived &om nonrelativistic quark dynamics for which
the definition (3.2b) has to be taken. Thus this paper will

50

Ir(pp - x)

40

30

20
300

I I I

500 700

E (Mev)

900

Pa(Hi + bHi(z)]Pa
= [Viva —Vivn[m] + Pn, bHi(z )Pn, ]

+PrI, bHi (z)Pa (3.2c)

Pa[Hi + bHi(z)]Pr, = PabHi(z )Pr, + P~bHi(z)Pr„

(3.2a)

with z~ = 2miv + (p + p' )/2miv, p and p' being the
relative nucleon-6 momenta between which the matrix
element is to be computed.

(3b) In the calculation of this paper, a full instanta-
neous nucleon-4 potential is employed. The pionic con-
tribution to the direct and exchange parts of the nucleon-
s, potential Viv~, shown as processes (b) and (c) in Fig.
6 and derived &om nonrelativistic quark dynamics, could
in principle be isolated; in practice, that isolation of
terms is not done. Thus the contribution (d) in Fig. 6 of
explicit pion exchange has to be extracted &om VN~ in
an energy-averaged form, in order to avoid overcounting
that particular process, i.e.,

Pa [Hi + bHi(z)]P~

= [Viv~ —P~bHi(z~)P~] + P~bHi(z)Pa) (3.2b)
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FIG. 9. Total proton-proton cross sections as function of
the proton laboratory kinetic energy. The solid curve refers
to the results obtained with the quark-model nucleon-A po-
tential, the dashed curve to those with the meson-exchange
nucleon-A potential. The dotted curve is the reference calcu-
lation without a nucleon-A potential according to Eq. (3.2a).
The data are taken from Ref. [25].



49 EFFECTS OF A QUARK-MODEL-BASED NUCLEON-6. . . 1807

(a) o.(pp - rr'd)

-10-

b
-20 -&

j /
I

I I
--I

I

:E

-30
300

nor. (pp X)

I I I

500 700

E (MeV)

900 300
I I

500 700

E (MeV)

900

FIG. 11. Total cross section for the reaction pp -+ x+d
as function of the proton laboratory kinetic energy E. The
curves have the same meaning as in Fig. 9. The data are
taken from the compilation of Ref. [27] and from Ref. [28].
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use the prescription (3.2b) also for the meson-exchange
nucleon-6 potential in contrast to Ref. [15], which used
prescription (3.2c).

All other building blocks of the force model defined in
Fig. 4 are employed as in Ref. [15]. Observables of elastic
and inelastic nucleon-nucleon and pion-deuteron scatter-
ing are calculated for the force model of Fig. 4 with the
instantaneous nucleon-6 potential derived &om nonrel-
ativistic quark dynamics. The predictions are compared
to those based on a meson-exchange nucleon-6 potential,
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FIG. 10. Total proton-proton polarization cross sections
b,ol, = o(~) —o(~) and AoT = o(g$) —o(gt) as function
of the proton laboratory kinetic energy. The curves have the
same meaning as in Fig. 9. The data are taken &om Ref.
[28].
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FIG. 12. Total pion-deuteron cross sections as function of
the pion laboratory kinetic energy E. The curves have the
same meaning as in Fig. 9. The data are taken from Refs.
[28] and [29].
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the latter results already given in Ref. [15]. Though the
parameters of the meson-exchange potential are taken
over unchanged &om Ref. [15], its identification with the
instantaneous nucleon-6 potential P~HqP~ of the em-
ployed force model has been changed: This paper uses
the identification (3.2b), whereas Ref. [15] uses the iden-
tification (3.2c). That adjustment, done for the case of
comparison with the quark-model-based potential, ap-
pears absolutely minor; however, it turns out to create
substantial variations in the computed observables. Ex-
amples in which the sensitivity is maximal are shown
in Fig. 8; the examples also prove that the pion con-
tribution in the meson-exchange nucleon-6 potential is
most important. Though the two potential contributions
2V&&[a'] and P~b'Hi(z )Pa describe the same physical
process, i.e., one time ordering of pion exchange between
a nucleon and a 6 isobar, they describe it in a technically
different fashion: The contribution P~bHi(z )P~ is an
energy average of process (d) in Fig. 6 and works with
very small regularizing masses in the pion vertices; it is
therefore a very smooth potential at intermediate mo-
menta. The contribution 2VN&[m] uses the large cutoff
masses of the full meson-exchange nucleon-b, potential;

it is therefore not suppressed at all at intermediate ener-
gies. Thus the combination Viv&[vr] P—~bHi(z )P~ and
the term PrI, hHi(z )Pa are quite different and their dif-
ference creates the changes in the physics results, which
the two difFerent identifications (3.2b) and (3.2c) of the
instantaneous part P~HqP~ in the nucleon-4 interac-
tion with the nucleon-6 potential VN~ yield and which
are illustrated in Fig. 8.

IV. RESULTS AND DISCUSSION

Observables of elastic and inelastic nucleon-nucleon
and pion-deuteron scattering are calculated. The results
refer to total cross sections and spin-averaged and spin-
dependent differential cross sections. All figures of this
section are composed in the same way: The results ob-
tained with the quark-model nucleon-4 potential are al-
ways shown as solid curves and those with the meson-
exchange nucleon-6 potential as dashed curves; reference
results, which are derived without a proper nucleon-6
potential, only including a pion-exchange piece accord-
ing to the identification (3.2a), are given by dotted lines;
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F&G. p3. Two-nucleon phase shifts b and inelasticities p as a function of the nucleon laboratory kinetic energy. The scattering

parameters in the uncoupled partial waves P~, D2, and I'3 are shown. The curves have the same meaning as in Fig- 9.
The experimental phase shifts are de6ned with respect to Coulomb-distorted plane waves; the calculation omits the Coulomb

potential. This difFerence is immaterial at the considered energies. The experimental phase shifts are taken from Ref. [30].
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the reference results are identical to the corresponding
ones of Ref. [15].
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A. Total cross sections 0.4

Total spin-averaged and spin-dependent cross sections
are shown in Figs. 9 and 10 for two-nucleon scattering.
The total proton-proton reaction cross section is far too
small at high energies; the improvement by the nucleon-
6 potentials is minor. In contrast, the spin-dependent
proton-proton reaction cross sections get remarkably im-
proved by the inclusion of the meson-exchange nucleon-6
potential, which also does well for the reaction pp —+ x+d
according to Fig. 11. In contrast, the total pion-deuteron
reaction cross sections are better described by the quark-
model nucleon-6 potential, as can be seen in Fig. 12.

B. Elastic nucleon-nucleon scattering

Figure 13 shows the eH'ect of the two nucleon-4 poten-
tials on the nucleon-nucleon phase shifts and inelastici-
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Reference [15] used the real part of the energy-dependent
pion-exchange interaction PaH, (z)Pa only All result. s of this
paper were therefore obtained first with the approximation,
and those results are plotted in this paper. However, all re-
sults were now also recalculated without that approximation,
keeping P&H&(z)P& in full with its real and imaginary parts.
The difFerence in results is almost invisible except for the dif-
ferential cross section of elastic pion-deuteron scattering in

Fig. 16(a); all results of Fig. 16 refer to that improved calcu-
lation, in contrast to the other figures in this paper.
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FIG. 15. DifFerential cross section do'/dO and beam asym-
metry A„ for the reaction pp +nA++(plr+) at t-he incident
proton laboratory kinetic energies 578 and 800 MeV as a func-
tion of the 4++ c.m. scattering angle 8. The curves have the
same meaning as in Fig. 9 the data are taken from Ref. [6].
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ties in three partial waves, i.e., Pq, D2, and I"3~ By
construction the employed force models are almost phase
equivalent with the purely nucleonic reference potential
V~~ of Eq. (3.1), i.e., the Paris potential in the calcula-
tions of this paper, as Fig. 7 proves. This is the reason
why phase shifts are inelasticities below 300 MeV nucleon
laboratory kinetic energy are not displayed.

Phase shift parameters are extracted from the on-shell
transition matrix elements in all important partial waves.
The inclusion of a nucleon-6 potential yields a solid ef-
fect in the Pq and D2 partial waves; the effect is larger
and more structured for the meson-exchange nucleon-6
potential; the inelasticity in D2 is decreased; the en-
hanced decrease for the meson-exchange nucleon-4 po-
tential may be due to its strong tensor coupling as Ref.
[15] suggests. In all other partial waves considered, the
effect is small; the I"3 partial wave is shown as an ex-
ample. Improvement of the theoretical predictions com-
pared with experimental data is, however, never glob-
ally achieved. The smooth quark-model nucleon-6 po-
tential affects nucleon-nucleon scattering by very little;
its strong short-range repulsion, i.e. , in the isotriplet

Sq nucleon-6 partial wave, is not effective in nucleon-
nucleon scattering, since it does not couple.

C. Pion production in nucleon-nucleon scattering

Observables of the two reactions pp ~ vr+d and pp +

n6++ (per+) in proton-proton scattering are discussed. In
the second process, three-body final states are only con-
sidered in the kinematic regime in which the proton and
the positive pion form a Pqs resonance 6++ [6]. Theoret-
ical predictions for the spin-averaged and spin-dependent
differential cross sections are calculated for the two pro-
ton laboratory kinetic energies 578 and 800 MeV; they
are displayed for the first reaction in Fig. 14 and for the
second in Fig. 15.

Most observables of both reactions show strong sensi-
tivity with respect to the inclusion of a nucleon-6 po-
tential as already noted in Ref. [33]. Exceptions are the
tensor polarizations T2 in pp m vr d, which remain
pretty unafFected and which are therefore not shown. The
changes with energy are milder for the quark-model po-
tential which has less failures in its predictions of data, es-

pecially at higher energies, though it cannot claim broad
success either. In contrast, the predictions based on the
meson-exchange nucleon-4 potential get even worse at
higher energies.

D. Elastic pion-deuteron scattering

Observables of elastic pion-deuteron scattering are cal-
culated for the pion laboratory kinetic energies 140 and
265 MeV. They are displayed in Fig. 16. In pion-
deuteron scattering, the isotriplet nucleon-L Sq partial
wave can operate. Its strong short-range repulsion in the
quark-model potential may be responsible for the fact
that the differential cross section is not deepened with
increasing energy. The effect is in contrast to the spec-
tacular improvements seen by Ferreira and Dosch [19] for
a similar interaction, however, seen there in the qualita-

tively insufBcient Born approximation treatment of the
nucleon-4 potential. Again, the effects of the quark-
model nucleon-4 potential are milder and less energy
dependent compared with those of the meson-exchange
nucleon-6 potential.

E. Pion-deuteron breakup
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FIG. 17. Difjerential cross section der/dO for the breakup
reaction m+d -+ nb, ++(pm+) at the pion laboratory kinetic
energies 140 and 256 MeV as a function of the A++ c.m.
angle 8. The curves have the same meaning as in Fig. 9.

Pion-induced breakup of the deuteron is considered
in the kinematic regime in which the proton and posi-
tive pion form a P33 resonance 6++, i.e., in the reac-
tion x+2 m nA++(pm+). Only the difFerential cross sec-
tion is calculated for the pion laboratory kinetic energies
140 and 256 MeV. The results are documented in Fig.
17. Experimental data do not exist yet. The differential
cross section does not indicate any pronounced depen-
dence on the nucleon-6 interaction as already observed
in Ref. [36].

The results of Secs. IVA —IVE indicate a strong sen-
sitivity of many observables in the two-nucleon system
above the pion threshold on the inclusion of an instanta-
neous nucleon-6 potential. Two models of the nucleon-
6 potential were studies and their predictions compared,
one based on quark-model dynamics, one on meson ex-
change. Compared with theoretical predictions without
its inclusion, there are some improvements by either of
the two choices and some dramatic failures by both. Thus
neither model for the nucleon-6 potential can be pre-
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ferred over the other. One has also to keep in mind that
any spin-orbit contribution is still left out. The sensitiv-
ity of observables on the inclusion of a nucleon-4 poten-
tial may be felt to be disturbing; we consider it encourag-
ing: The sensitivity will eventually allow the nucleon-4
potential to be tuned to the data. Such a program for
tuning the nucleon-4 potential remains at present out of
reach, since calculations are still too complicated and not
streamlined yet to base a 6t on them. Nevertheless, such
a project should be aimed at the future.
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