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ABSTRACT 

Factor XIIIA (FXIIIA) is a transglutaminase that crosslinks intra- and extracellular protein 

substrates. FXIIIA is expressed as an inactive zymogen, and during blood coagulation, it is 

activated by removal of an activation peptide by the protease thrombin. No such proteolytic 

FXIIIA activation is known to occur in other tissues or the intracellular form of FXIIIA. For 

those locations, FXIIIA is assumed instead to undergo activation by Ca2+ ions. Previously, we 

demonstrated a monomeric state for active FXIIIA. Current analytical ultracentrifugation and 

kinetic experiments revealed that thrombin-activated FXIIIA has a higher conformational 

flexibility and a stronger affinity toward glutamine substrate than does nonproteolytically 

activated FXIIIA. The proteolytic FXIIIA activation was further investigated in a context of 

fibrin clotting. In a series of fibrin crosslinking assays and scanning electron microscopy studies 

of plasma clots, the activation rates of FXIIIA V34X variants was correlated with the extent of 

fibrin crosslinking and incorporation of nonfibrous protein into the clot. Overall, the results 

suggest conformational and functional differences between active FXIIIA forms, thus expanding 

the understanding of FXIIIA function. Those differences may serve as a basis for developing 

therapeutic strategies to target FXIIIA in different physiological environments.  
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INTRODUCTION 

Factor XIIIA (FXIIIA) has been a subject of medically related research for almost a 

century. Perhaps the most studied is the role of FXIIIA in crosslinking the fibrin network, 

making it more mechanically stable and resistant to fibrinolysis. As physiological knowledge on 

FXIII expands, it becomes apparent that beyond serving as a key player of the blood coagulation 

system, FXIIIA functions in wound healing, bone tissue dynamics, signaling, and other areas [1-

10].  

FXIIIA is a transglutaminase that crosslinks protein substrates via an isopeptide bond in a 

Ca2+-dependent manner. FXIIIA is expressed as an inactive zymogen and in plasma, it circulates 

in a heterotetrameric complex with carrier FXIIIB (A2B2). During blood coagulation, plasma 

FXIII is activated by thrombin-mediated removal of N-terminal activation peptides (AP) from 

the A-subunits followed by binding of Ca2+ and dissociation of the B-subunits [11]. The active 

FXIIIA then introduces covalent crosslinks between polymerizing fibrin molecules and 

incorporates other proteins into the network, ultimately increasing mechanical stability of the 

resulting clot and its resistance to fibrinolysis [12]. 

Intracellularly, such as in platelets, monocytes, and macrophages, FXIII exists as an A2-

homodimer and is thought to undergo slow nonproteolytic activation in the presence of low 

available Ca2+ concentrations [13-15]. In this physiological compartment, FXIIIA is present in 

the cytoplasm, associates with membrane [10, 16], and even appears in the nucleus [17]. 

Activation and translocation of FXIIIA from the platelet cytoplasm to the platelet membrane 

does not require thrombin dependent steps. The minor amount of transglutaminase activity 

observed in a subsequent fibrin-platelet environment is proposed to be due to non-proteolytic 

activation of FXIII A2 [18]. Some other intracellular functions of FXIIIA include reorganization 
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of cytoskeletal proteins and chromatin remodeling [9].  FXIIIA is also secreted by osteoblasts 

into the extracellular matrix (ECM) [19], where it contributes to formation of the ECM itself and 

remodeling of the bone tissue [6, 16, 20]. Although a 37 kDa proteolytic fragment of FXIIIA was 

proposed to exist in the bone ECM [19, 21], it was later identified as transaldolase-1 that was 

immunoreactive with anti-FXIIIA antibody [22]. Thus, no evidence of proteolytic FXIIIA 

activation in bone ECM currently exists. However, with available ECM Ca2+ concentrations as 

high as 25 – 40 mM [23, 24], bone ECM FXIIIA may be activated by Ca2+ without proteolysis.  

FXIIIA has also been implicated in pathological conditions such as thrombosis [25], 

inflammation, oncogenic events and diabetes [10], and arthritis [26]. Although FXIIIA is 

involved in an array of intra- and extracellular events, an in-depth understanding of FXIIIA 

activation and function in different physiological environments is lacking.  With more 

knowledge, therapeutic strategies might be developed to target zymogen FXIII or activated 

FXIIIA under specific physiological or pathological conditions. Previously, we studied the 

oligomeric states of FXIIIA in different solution conditions [27]. We found that FXIII A2-

homodimer dissociates into monomers during activation by thrombin. Cleavage of a single AP 

on the dimeric FXIII A2 was sufficient to promote dissociation and full activity of the A-

subunits. Nonproteolytic activation by high Ca2+ concentration also resulted in subunit 

dissociation, however, these species possessed lower activity [27].  

In the current project, we hypothesized that in different physiological compartments such 

as blood plasma, intracellular, and bone ECM, activation of FXIIIA may result in 

conformationally different enzymatic species. We focused on probing functional implications of 

thrombin activation of FXIIIA in the presence of low mM Ca2+ (mimicking conditions in plasma, 

the resulting active species are henceforth denoted as FXIIIA*), nonproteolytic activation by low 
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mM Ca2+ (intracellular activation, FXIIIA°,low), and activation in the presence of high (≥β5 mM) 

Ca2+ (bone ECM, FXIIIA°,high). We demonstrated an overall slower rate of FXIIIA 

nonproteolytic activation, as compared to the thrombin-mediated cleavage. Moreover, enzymatic 

activity assays revealed differences in the substrate affinities of FXIIIA* and FXIIIA°,high.  Using 

a fibrin clotting model in a pure protein system as well as in plasma, we further examined how 

proteolytic activation of FXIIIA V34X variants can be used to control rate of fibrin crosslinking 

function and also influence fibrin clot structure. In summary, our results support proposed 

conformational differences between FXIIIA active forms in different physiological 

environments. Finally, we discuss how these differences may serve as a basis for differential 

therapeutic targeting of FXIIIA. 

 

 
RESULTS 

Solution properties of FXIIIA species in different activation conditions. Previously in a 

series of AUC experiments, we demonstrated that zymogenic FXIII A2 homodimer completely 

dissociates into monomers upon proteolytic and nonproteolytic activation [27]. In the current 

work, we employed sedimentation velocity AUC to compare the solution dynamics of FXIIIA 

under different conditions. FXIIIA was activated in the presence of 100 mM Ca2+ (FXIIIA° ,high) 

or by thrombin in the presence of 4 mM Ca2+ (FXIIIA*). The high 100 mM Ca2+ helped to 

quickly obtain uniform, monomeric FXIIIA°,high species [27]. As a control for a possible divalent 

cation-mediated ionic strength effect, additional samples of FXIIIA* were supplemented with 

100 mM Mg2+. Unlike Ca2+, this divalent cation does not efficiently support dissociation or 

activity of FXIII A-subunits [27]. To eliminate possible differences in sample handling between 

separate analytical runs, all sample conditions were subjected to AUC at the same time. The 
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resulting sedimentation coefficient distributions are presented in Fig. 1A. In the presence of 100 

mM Ca2+ (FXIIIA° ,high, trace i), we observed a tall narrow peak, approximately 1 S unit in width. 

As reported previously [27], significant precipitation occurred in FXIIIA* samples during 

centrifugation, and the sedimentation distribution peak was much broader, approximately 2 S 

(trace ii). In the presence of 4 mM Ca2+ and 100 mM Mg2+ (trace iii), the FXIIIA* sedimentation 

peak was also broad (2 S). 

Sedimentation coefficients represent the velocity of particle sedimentation (in the present 

case, FXIIIA molecules) in a centrifugal field [28]. Apart from the physical characteristics of a 

solution, which are accounted for in data analysis, the sedimentation coefficient ultimately 

depends on the weight and shape of those particles. Thus, in samples of monomeric FXIIIA, it is 

the diversity of shapes (conformations) that constitutes the sedimentation distribution. The broad 

sedimentation distribution peak indicates that FXIIIA* is more conformationally heterogeneous 

in solution than FXIIIA°,high, and this heterogeneity is retained in the presence of 100 mM Mg2+. 

This observation suggests that Ca2+ exerts a specific effect on FXIIIA conformation.   The 

related divalent cation Mg2+ cannot mimic this property and, moreover, the conformational effect 

is not due to a simple increase in ionic strength.   

To examine FXIIIA nonproteolytic activation at lower, more physiological Ca2+ 

concentrations, FXIIIA was incubated in the presence of 4 mM Ca2+ for 30 min – 96 h, followed 

by AUC. Unexpectedly, progressive precipitation was observed in these samples of FXIIIA°,low, 

very similar to the solution behavior of the thrombin-activated FXIIIA*. In previous 

experiments, we found addition of 5% DMSO promoted solubility of FXIIIA* over the course of 

a few hours [27]. However, 4 mM Ca2+-activation required longer incubation periods to obtain 

detectable results, and even addition of DMSO did not aid in full solubility of activated FXIIIA. 
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The actual amount of protein in solution was assessed via absorbance at the start of an AUC 

experiment (Fig. 1B, insert). The plot in Fig. 1B (open circles) then represents the amount of 

monomeric FXIIIA as a fraction of soluble protein in each sample. The most observed 

dissociation of the A-subunits, ~ 65%, was observed after 72 h incubation. Such nonproteolytic 

activation of FXIIIA may proceed intracellularly, although much slower than observed in the 

presence of 4 mM Ca2+, as intracellular Ca2+ is actually maintained at nanomolar to micromolar 

levels. Furthermore, the aggregation propensity of FXIIIA°,low suggests its relatively short 

lifetime, in a good agreement with a study by Muszbek et al. [13], reporting a small, 6.5% of 

FXIIIA population within platelets being active. 

In order to mimic activation conditions of bone tissue ECM, FXIIIA was incubated in the 

presence of higher, 25 mM Ca2+ for 30 min – 6 h (Fig. 1B, filled circles). The dissociation of the 

dimeric zymogen under these conditions occurred faster than at 4 mM Ca2+ (80% at 6 h of 

incubation) and, analogous to activation by 100 mM Ca2+, no precipitation of these FXIII°,high 

species was observed (Fig. 1B, panel on the right). Thus, the current results indicate overall 

slower activation of FXIIIA by Ca2+ alone, as compared to the proteolysis by thrombin resulting 

in full dissociation of FXIIIA within minutes. High (≥β5 mM) Ca2+ levels reduce conformational 

heterogeneity and aid in maintaining stability of activated FXIIIA species in solution.  

 

A model system of FXIIIA proteolytic activation kinetics. To better understand 

FXIIIA function in different physiological contexts, the peculiarities of individual activation 

environments need to be considered. Due to highly regulated calcium homeostasis in the body, 

nonproteolytic activation pathways leading to FXIIIA°,low and FXIIIA°,high likely operate on an 

ongoing basis.  There will thus be slow, constitutive FXIII activity occurring within cells and 
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ECM.  Faster activation may then be achieved when higher Ca2+ concentrations are encountered 

as part of certain physiological or pathological processes.  In blood plasma, where Ca2+ 

concentration is maintained at a low 1.5 mM, such constitutive generation of FXIIIA°,low is 

prevented by association of FXIIIA with the inhibitory FXIIIB [15]. Under exigent cases such as 

bleeding, the proteolytic removal of AP facilitates fast FXIIIA activation. The concomitant use 

of the serine protease thrombin to activate FXIIIA and also convert fibrinogen to polymerizing 

fibrin adds complexity to this clotting mechanism.  [29]. As a result, the kinetics of FXIIIA* 

generation has a significant impact on the functional outcome of the clotting process. 

To explore this outcome, we generated and expressed FXIIIA variants with different 

amino acid residues at position 34 of the FXIII activation peptide. These variants differ in their 

rate of cleavage by thrombin [30] (Fig. 2A). The current studies provided the first testing of AP 

residues F34 and W34 on FXIIIA proteolytic activation and resulting transglutaminase function. 

Using an extended range of FXIII activation rates, comparisons could be made with the naturally 

occurring V34 and L34.   The FXIIIA AP variants were combined with human FXIII-free 

fibrinogen and clotting was initiated by addition of thrombin and Ca2+. As expected, the rate of 

FXIIIA proteolytic activation determined development of FXIIIA* crosslinking activity (Fig. 

βB). The fastest cleaved FXIIIA Lγ4 generated both け–け and higher molecular weight (HMW) 

fibrin species already at an early stage (5 min) of the experiment. Slow cleavage of FXIIIA W34 

by thrombin resulted in the slowest appearance of け–け and very little HMW crosslinks. 

Interestingly, F34 FXIIIA is cleaved by thrombin slightly slower than V34 variant (Fig. 2A); 

however, both variants crosslinked fibrin to a similar extent. This effect may be explained by the 

fact that the cleavage of a single AP on dimeric FXIIIA zymogen results in dissociation and 

promotes full activity of both cleaved and noncleaved A-subunits [27, 31]. In addition, a 
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competition of fibrinogen and FXIIIA for thrombin may have further masked the difference in 

V34 and F34 cleavage rate observed in the absence of fibrinogen. The four full-length FXIII 

V34X variants could thus be used to control the timing of appearance of FXIII activity without 

diminishing thrombin-mediated conversion of fibrinogen to fibrin or altering the clot gelation 

dynamics. Moreover, the extent of crosslinking before initiation of fibrinolysis could be 

documented.  

To further probe the functional impact of FXIIIA activation rate, three AP variants that 

demonstrated different degrees of fibrin crosslinking (L34, V34, and W34) were introduced into 

FXIIIA-deficient murine plasma, and clotting was initiated by addition of thrombin and Ca2+. 

The murine plasma system was already well established for introducing and screening FXIII 

V34, V34L, and/or G33A based clotting effects [32-34].  The resulting clots were imaged by 

SEM and representative photographs are shown in Fig. 3. Clots formed in the presence of 

FXIIIA better retained their three-dimensional structure due to FXIIIA-mediated covalent 

crosslinking of the fibrin fibers. Interestingly, we observed nonfibrous protein networks 

embedded to different degrees within the crosslinked fibrin clots. The least amount occurred with 

the FXIII AP- variant W34 (slower proteolytic activation) and the most with the L34 (faster 

activation). Such networks were uniformly distributed and must be covalently crosslinked within 

the clot, since they remained even after extensive washing during SEM sample preparation. The 

nonfibrous material may represent unpolymerized fibrin or other plasma proteins and is expected 

to contribute to overall clot penetrability and mechanical and fibrinolytic stability. 

 

Catalytic comparisons of FXIIIA* and FXIIIA° ,high  Previously, when using a standard 

coupled ammonia release assay [35], we observed lower catalytic activity for FXIIIA°,high, as 
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compared to FXIIIA* [27]. In the current work, we attempted to probe this difference in more 

detail. The transglutaminase activities of FXIIIA activated by thrombin in the presence of 4 mM 

Ca2+ (FXIIIA*) or by 100 mM Ca2+ (FXIIIA° ,high) were compared in a series of enzymatic 

evaluations. Since it was impossible to isolate stable, uniformly monomeric species of FXIII°,low 

on a reasonable time scale, this FXIIIA form was not included in catalytic comparisons.  

To assess the catalytic differences between FXIIIA* and FXIII°,high, we employed a 

spectrophotometric assay using K9 peptide (1LGPGQSKVIG10) as a glutamine substrate and 

chromogenic DMPDA as second, amine substrate. Unlike the ammonia release assay, the 

transglutaminase reaction was now monitored directly at its second step, formation of a cross-

linked product. An apparent Km for K9 peptide was almost two-fold lower for FXIIIA*, 

compared to FXIIIA°,high. This lower Km indicated better interaction of the FXIIIA* enzymatic 

form with the glutamine substrate (Fig. 4A). On the other hand, FXIII°,high demonstrated a 

slightly stronger Vmax value suggesting that once saturated with the glutamine donor K9, 

FXIII° ,high provides faster substrate turnover than FXIIIA*. Thus, the observed individual kinetic 

parameters further corroborate proposed conformational/dynamic differences between FXIIIA* 

and FXIIIA°,high. 

We next conducted a series of SDS-PAGE assays to monitor FXIIIA-catalyzed 

crosslinking of a lysine mimic monodansylcadaverine (MDC) to a glutamine donor fibrinogen 

gC (βγγ-425). The dansyl moiety of MDC provides a fluorescent tag on the protein and once the 

gC band is resolved on SDS-PAGE, the crosslinking reaction can be monitored by fluorescence 

of that band. gC represents a physiological FXIIIA protein substrate and contains three reactive 

glutamines [36]. While four lysine residues are present in the gC (βγγ-425) sequence, no 

competing gC–gC conjugation, that would result in appearance of species of ≥40 kDa, was 
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detected even at high gC concentrations (Fig. 4B, panel iv). At 5 µM gC concentration, the 

extent of MDC incorporation catalyzed by FXIIIA* was greater than by FXIIIA°,high (Fig. 4B, 

panel i). Interestingly, increased monovalent ionic strength has been shown to promote higher 

FXIIIA activity [13, 15, 37, 38]. To rule out the possibility of an inhibitory effect of divalent 

ionic strength, the Ca2+ concentration in the crosslinking reaction was lowered from 100 mM 

down to 25 mM Ca2+ (Fig. 4B, panel ii). MDC crosslinking to gC by FXIIIA°,high was essentially 

the same regardless of Ca2+ concentration in the crosslinking reaction mix, and in both cases, the 

FXIIIA° ,high activity was lower than that catalyzed by FXIIIA*. When gC concentration was 

raised to 40 µM, the difference between crosslinking activity of FXIIIA* and FXIIIA°,high 

became indistinguishable (Fig. 4B, panel iii) .  Overall, the results obtained with the short K9 

peptide and a larger, more physiological gC substrate, suggest that FXIIIA* interacts with the 

glutamine substrate more readily than does FXIIIA°,high. 

 

 

DISCUSSION 
 

Factor XIII activity has been reported in a variety of intra- and extracellular physiological 

environments and has been implicated in numerous pathological events. Being the final player of 

the coagulation cascade, FXIIIA has been recognized as a promising target for novel 

anticoagulant agents, with a prospect of fewer side effects [25, 39-41]. When implementing new 

coagulation management regimes, it may be desirable not to affect FXIII function in 

nonhemostatic events. On the other hand, those nonhemostatic functions may themselves present 

therapeutic interest. It is important to keep in mind that FXIII is activated either proteolytically 

or non-proteolytically depending on the physiological environment.  To support future 
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pharmaceutical intervention approaches, critical new knowledge on these two FXIII activation 

strategies and their subsequent functional properties is needed.  

Using AUC in previous work, we demonstrated dissociation of the FXIII A2 dimer upon 

activation and that it is the monomeric FXIIIA that is catalytically competent [27]. In the current 

project, we investigated and compared dynamic and functional implications of proteolytic and 

nonproteolytic FXIIIA activation pathways. While thrombin-mediated proteolysis resulted in full 

dissociation of the A-subunits within minutes, activation by Ca2+ alone at physiological 

concentrations proceeded slower and took hours. Due to highly regulated Ca homeostasis, 

however, this activation pathway may operate constantly, thus providing constitutive FXIII 

activity within cells and ECM.  

In contrast to FXIIIA* and FXIIIA°,low, nonproteolytic activation in the presence of high 

(≥β5 mM) Ca2+ did not result in aggregation of FXIIIA°,high species. Increased Ca2+ 

concentration was shown before to stabilize active FXIIIA in solution [31], and in current AUC 

experiments, we correlated higher Ca2+ levels with reduced conformational heterogeneity of 

FXIIIA° ,high, as compared to FXIIIA*. The poor solubility of FXIIIA°,low may suggest partial 

conformational similarity with FXIIIA*. However, the slow appearance of this form has limited 

its isolation and characterization in the current study. 

In our enzymatic evaluations, FXIIIA* had an almost two fold lower Km for the 

glutamine substrate than had FXIIIA°,high, thus suggesting stronger interaction of FXIIIA* with 

that substrate. On the other hand, FXIIIA°,high provided faster reaction turnover upon saturation 

with the glutamine donor. It is well known that the transglutaminase reaction proceeds through a 

mechanism involving addition of Q (glutamine) and K (amine or lysine) substrates. That is, the 

K-substrate enters the reaction after the enzyme forms a complex with the Q-substrate [42]. 
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Therefore, this faster turnover by FXIIIA°,high may be due to better interaction with the K-

substrate and faster release of the crosslinked product.  

In early work, Lewis with coworkers [43] reported that each A-subunit of plasma 

zymogen FXIII A2B2 binds a Ca2+ ion with 100 µM KD. Hornyak et al. [44] later demonstrated 

that another Ca2+ ion is required by each A-subunit to dissociate from the B-subunits and to 

expose catalytic cysteines. Stieler with coworkers [40] recently crystallized FXIIIA°,high with a 

covalently bound Q-mimic inhibitor, providing the first molecular structure of active FXIIIA. 

Besides the previously observed first, zymogenic Ca2+ site [45], the Stieler research group 

elegantly demonstrated the functional significance of two additional sites. In particular, 

development of the 2nd Ca2+ site brought about conformational changes in the FXIIIA molecule 

to initiate formation of a hydrophobic pocket for the K-substrate entrance. This site is the same 

as that presumed by Hornyak [44] to promote exposure of the reactive thiol on A-subunits. 

Coordination of the 3rd Ca2+ was proposed by Stieler et al. [40] to conclude formation of the 

hydrophobic pocket and to facilitate binding of the K-substrate.  

Since the addition of Q and K is sequential and the crystal structure presented by Stieler 

et al. [40] depicts a covalent FXIIIA–Q-substrate intermediate rather than a free enzyme, we 

entertain an idea that the 3rd site for Ca2+ is filled upon binding of the Q-substrate. Whether 

binding of Ca2+ at the 3rd site precedes binding of the K-substrate or vice versa, is open to 

speculation. It seems plausible that at relatively low Ca2+ levels coordination of this 3rd site and 

completion of the hydrophobic pocket is dependent on the availability of the K-substrate. Such a 

possibility is consistent with the fact that in the absence of K-substrate, a water molecule acts as 

an acyl acceptor resulting in net deamidation of the glutamine to glutamate [46]. Intriguingly, the 

Ca2+ requirement for deamidation catalyzed by guinea pig liver transglutaminase was 
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demonstrated to be much lower than that for transamidation (crosslinking) [47], further 

supporting this possibility for a homologous FXIIIA. 

In conditions where Ca concentrations are relatively high, such as in bone ECM, the 3rd 

FXIIIA Ca2+ site may already be saturated even in a free enzyme, prior to the Q-substrate 

binding. Our kinetic results suggest that this saturation facilitates a conformation (FXIIIA°,high) 

that has a weaker affinity for the Q-substrate (indicated by higher Km in the current study) but 

provides faster reaction turnover, than FXIIIA* (higher observed Vmax). In addition to its 

stabilizing role observed in our AUC experiments, the FXIIIA°,high conformation may also favor 

transamidation of the protein substrates over deamidation in acidic conditions of the bone ECM. 

Thus far, the FXIIIA* form has been elusive from crystallographic efforts and also a 

challenging subject of solution experiments. The current studies effectively demonstrate that 

conformational differences do exist between FXIIIA* and FXIII°,high.  As mentioned before, the 

crystal structures of non-proteolytically activated FXIII°,high in complexes with inhibitors are 

available from the Stieler group (PDB 4KTY, 5MHM, 5 MHN, 5MHO).  It would thus be 

feasible to screen for pharmaceutical candidates that confer specificity to FXIIIA°,high and 

eliminate those affecting the FXIIIA*. Should this orthosteric design fail, a search for allosteric 

effectors may be more successful [41]. Previous studies in our group involving chemical 

modification and hydrogen-deuterium exchange suggested better solvent accessibility of the く-

sandwich region of FXIIIA*, while く-barrel 1 was more solvent-exposed in FXIIIA°,high [48, 49]. 

These local structural differences may serve as a starting point for allosteric targeting of FXIIIA. 

Prior studies have shown that increasing levels of FXIII A* affect the rate and extent of 

fibrin crosslinking [12, 33, 50].  Taking this property into consideration, the fibrin clot network 

could be further manipulated by regulating proteolytic activation of FXIII.  In the current work, 
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we showed that the FXIII V34X variants (L34, F34, and W34) influenced such FXIIIA* 

generation rates and in response affected fibrin crosslinking. Faster proteolytic activation (and 

hence, higher amount of FXIIIA*) during blood coagulation resulted in a greater extent of fibrin 

crosslinking and incorporation of other proteins into the clot (FXIII L34>V34,F34>W34). The 

current results effectively complement FXIII activation peptide models examined by Duval and 

coworkers.  Their studies focused on A34, L34, M34 along with surrounding FXIII AP residues 

[32]. Our focus has been on fast activing L34 versus aromatic V34X substitutions that are well 

tolerated by the anticoagulant thrombin W215A species [30]. Thus, therapeutic strategies to 

specifically limit thrombin’s ability to activate FXIIIA and/or fibrinogen, may be promising.  

The tunable FXIII-based 34XVPRtG38 amino acid sequence might also be employed as a prodrug 

linker.  Thrombin-dependent cleavage of the linker sequence would release the pharmaceutical 

agent at a desirable rate and specifically at the clotting site. This approach would also ensure that 

neither FXIIIA°,low nor FXIIIA°,high are affected. 

Overall, the presented research expands the understanding of the functional outcomes of 

FXIII activation pathways. Based on our previous and current results, we offer the following 

model: nonproteolytic FXIIIA activation proceeds relatively slow, but constantly. High mM Ca2+ 

levels, such as in bone ECM, stabilize the FXIIIA°,high form and provide its constitutive activity 

as part of the tissue remodeling processes. By contrast, thrombin-mediated AP-removal 

facilitates binding of Ca2+ at its low level in plasma, thus promoting fast buildup of FXIII 

crosslinking activity. The resultant FXIIIA* species have higher affinity towards glutamine 

substrates and respond even to low concentrations of these substrates, ensuring clot-stabilizing 

function during blood coagulation. At the same time, the tendency of FXIIIA* to aggregation 

may determine its relatively short life time in plasma. Different activation conditions also result 
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in conformationally different FXIIIA forms, thus providing a possible basis for developing 

therapeutic strategies for compartment-specific management of FXIIIA function. 

 

EXPERIMENTAL PROCEDURES 

Materials – Recombinant yeast expressed FXIIIA was a gift from the late Dr. Paul Bishop 

(Zymogenetics, Seattle, WA, USA). Recombinant human thrombin was generously provided by 

Dr. Enrico Di Cera and Dr. Leslie Pelc (St. Louis University, MO, USA). Bovine thrombin was 

purchased from Sigma-Aldrich (USA). Human FXIII-free peak 1 fibrinogen was purchased from 

Enzyme Research Laboratories (South Bend, IN, USA). Murine plasma was obtained from mice 

lacking the FXIII catalytic A subunit (FXIII A-/-) [26, 51]. Such FXIII-deficient mice were 

engineered to be missing the FXIII A subunits but still express the FXIII B subunits. These mice 

were maintained at the Cincinnati Children’s Hospital Medical Center animal care facility. All 

studies involving the use of animals were approved by the Cincinnati Children’s Hospital 

Medical Center Institutional Animal Care and Use Committee. Cincinnati Children’s Hospital is 

an AAALAC accredited institution. Thrombin inhibitor D-phenylalanyl-prolyl-arginyl 

chloromethyl ketone (PPACK) was purchased from Haematologic Technologies (Essex Junction, 

VT, USA). A transglutaminase glutamine substrate peptide K9 (1LGPGQSKVIG10) was 

synthesized by New England Peptide (Gardner, MA, USA).  All other reagents were of the 

highest purity available. 

 

 

 



 

17 

 

AUC studies of FXIIIA – Molar concentration in this work refers to A-subunits as opposed to 

A2-dimers of FXIIIA. 2 µM zymogen FXIIIA was incubated in borate buffer (20 mM boric acid, 

pH 7.8, 150 mM NaCl) in the presence of 25 – 100 mM CaCl2 for 30 min – 6 h at 37 °C. FXIIIA 

was also incubated in the borate buffer at a lower 4 mM CaCl2 for 30 min – 96 h. To achieve 

better solubility of FXIIIA under these conditions, the 4 mM Ca2+-samples were supplemented 

with 5% DMSO. For proteolytic activation, 2 µM FXIIIA was incubated in the borate buffer 

with bovine thrombin (3.5 NIH units/ml) and 4 mM CaCl2 for 30 min at 37 °C, followed by 

inhibition of thrombin with 760 nM PPACK. In addition to 4 mM CaCl2, some samples of the 

proteolytically activated FXIIIA were supplemented with 100 mM MgCl2. 

A detailed description of AUC experimental parameters can be found in [27]. Briefly, 

samples of activated FXIIIA were subjected to sedimentation velocity AUC in an Optima XL-A 

ultracentrifuge (Beckman Coulter) at 20 °C and 50,000 rpm. Data were analyzed using the 

program SEDFIT (www.analyticalultracentrifugation.com), and experimental sedimentation 

coefficients were corrected based on the measured density and viscosity of the buffer, thus 

allowing direct comparison of results obtained with different experimental conditions. Analytical 

runs were performed with two independent samples for each condition examined. Control studies 

repeated in the current project yielded Sedimentation Coefficient values that were highly 

comparable.  

 

Expression and purification of FXIIIA V34X variants and Fibrinogen gC (233-425) – 

pGEX plasmid vectors encoding GST-tagged FXIIIA V34 and GST-tagged fibrinogen gC (233-

425) were employed [52]. Single amino acid V34X substitutions (L, F, or W) were introduced 

into the GST-FXIIIA plasmid using the QuikChange II Mutagenesis kit (Agilent Technologies). 
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The expression vectors were transformed into E. coli BL21 (DE3) Gold cells and proteins were 

expressed using auto-inducing media [53]. Using an AKTA Prime FPLC, GST-tagged proteins 

were purified by affinity chromatography on a GST-trap column (GE Healthcare, USA) system. 

Target proteins were cleaved from the GST-tag by in-column digestion with PreScission protease 

and eluted with tris buffered saline (TBS, Tris Acetate 50 mM, pH 7.4, NaCl 150 mM). The 

purity was assessed using SDS-PAGE, and molar concentration was determined from absorbance 

readings at β80 nm using i = 1β5710 M−1cm−1 for V34, F34, L34 FXIIIA variants and 131210 

M−1cm−1 for Wγ4 FXIIIA. An i = 41480 M−1cm−1 was applied for fibrinogen gC (βγγ-425). 

These extinction coefficients were calculated using Protparam tool (www.expasy.org). 

 

Fibrin crosslinking in the presence of FXIIIA V34X variants – Human FXIII-free fibrinogen 

(1 mg/ml), a recombinant FXIII AP variant (V34, L34, F34, or W34, 50 nM), and recombinant 

human thrombin (12 nM) were incubated in a 20 µL TBS containing 2.5 mM CaCl2 at 37 °C. At 

each time point (5 – 60 min), the reaction was quenched by addition of 10 µL of reducing sample 

loading buffer followed by boiling for 5 min, resulting in full solubilization of formed clots. 

Samples were then subjected to SDS-PAGE on an 8% gel. These fibrin crosslinking reactions 

were performed three independent times, with essentially the same results. 

 

SEM analysis of plasma clots formed in the presence of FXIIIA V34X variaants – A 

recombinant FXIII AP variant (L34, V34, or W34, 100 nM final concentration) was administered 

into citrated plasma from FXIIIA-deficient mice. Our FXIII concentration (100 nM) is within the 

physiological range of 86-173 nM [54].  After 5 min incubation at 37 °C, clotting was initiated 

by addition of bovine thrombin (to a final concentration of 2.1 NIH units/ml) and CaCl2 (final 
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13.5 mM, to exceed the citrate in plasma) in the borate buffer, resulting in a 1:4 dilution of the 

stock plasma. Clots were incubated for 2 h at 37 °C in closed microfuge tubes, rinsed with 

deionized H2O, and dehydrated in the presence of increasing (10 – 100%) concentrations of 

ethanol and dried with hexamethyldisilazane. The samples were next sputter-coated with Au-Pd 

and imaged using a Zeiss Supra 35 electron microscope.  

Since we aimed to study FXIIIA-mediated crosslinking of the fibrin clots, no 

glutaraldehyde (a chemical crosslinking agent) was used to stabilize the samples. Undiluted 

plasma clots suffered great deformation during drying and were too dense. A 1:4 dilution of the 

plasma (and hence, endogenous fibrinogen) resulted in thinner, more suitable SEM samples that 

allowed for adequate comparisons between exogenous FXIIIA variants.  These experiments were 

performed in duplicate. 

 

MDC crosslinking SDS-PAGE based activity assay – In order to compare activities of 

proteolytically and nonproteolytically activated FXIIIA, a series of MDC crosslinking assays 

was performed. For proteolytic activation, 1 µM FXIIIA was incubated in TBS with 30 nM 

recombinant human thrombin and 4 mM CaCl2 for 30 min at 37 °C, followed by addition of 760 

nM thrombin inhibitor PPACK. Nonproteolytic activation was achieved by 30 min incubation of 

1 µM FXIIIA in TBS in the presence of 100 mM CaCl2. 

Recombinantly expressed fibrinogen gC (βγγ-425) was used as a glutamine donor (Q-

substrate). gC (5 – 40 µM final) was preincubated for 5 min at 37 °C with a lysine mimic MDC 

(K-substrate, 1 mM final, from a 20 mM stock solution in methanol) in TBS containing CaCl2 (4 

– 100 mM final concentration). The crosslinking was initiated by addition of activated FXIIIA 

(final concentration 100 nM). Reaction aliquots were taken at 1 – 7 min and quenched by 
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addition of reducing sample loading buffer, followed by 3 min of boiling. Samples were resolved 

using SDS-PAGE on 15% gels. Prior to Coomassie blue staining, the gels were photographed 

under UV light. The different MDC assay series were performed three independent times with 

comparable results obtained each time.   

 

Continuous spectrophotometric kinetic assay – In this assay adapted from de Macedo et al. 

[55], FXIIIA incorporated chromogenic K-substrate N,N-dimethyl-1,4-phenylenediamine 

(DMPDA) into a Q-substrate K9-peptide. The reaction progress was monitored by an increase in 

absorbance at 278 nm resulting from an anilide functionality of the crosslinked product. 

Nonproteolytic and proteolytic activation were performed as described for the MDC assay, 

except that FXIIIA was 4 µM in the activation mix. K9-peptide (46 – 1386 µM final) was 

preincubated with DMPDA (700 µM final, from a 100 mM stock solution in methanol) in the 

borate buffer with 4 or 100 mM of CaCl2 for 5 min at 37 °C. The reaction was initiated by 

addition of activated FXIIIA (final concentration 1 µM). Reaction velocities were determined 

over the initial part of the absorbance curve. An i = 8940 M−1 cm−1 [55] was applied to convert 

absorbance to µM of crosslinked product. Less than 15% of both Q and K substrates reacted in 

the initial linear region of the absorbance curves. Velocities in µM min−1 were fitted to the 

Michaelis-Menten equation as a function of the K9 concentrations using Kaleidagraph software 

(Synergy). The resultant Km and Vmax parameters represent apparent values and serve for 

comparison of nonproteolytically and proteolytically activated FXIIIA. The kinetic assays were 

performed in triplicate (three independent trials) for each activation condition. Results are 

presented as mean ± SD (N = 3). 
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Fig. 1. Sedimentation properties and activation rate of FXIIIA under different conditions. A – 
Sedimentation profiles of FXIIIA studied by AUC: 2 µM FXIIIA was activated at 37 °C for 30 min 
nonproteolytically by 100 mM CaCl2 (trace I, green) or proteolytically by 3.5 NIH units/ml bovine 
thrombin in the presence of 4 mM CaCl2 (trace ii, purple). An additional sample of thrombin-activated 
FXIIIA contained 4 mM CaCl2 and 100 mM MgCl2 (trace iii, orange). Two independent samples were 
analyzed for each condition, with the same results.  
B – Dissociation progress of 2 µM FXIIIA in the presence of 4 (open blue circles) and 25 mM CaCl2 
(filled green circles). Graph on the left presents quantitative analysis of sedimentation velocity AUC data. 
The insert demonstrates fraction of soluble protein (estimated from absorbance at 280 nm) in samples of 4 
mM Ca2+-activated FXIIIA as a function of time. The panel on the right depicts AUC sedimentation 
profiles for the FXIIIA samples incubated in the presence of 25 mM CaCl2 for 30 min (dotted green line), 
3 h (dashed green line) and 6 h (solid green line). 
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Fig. 2. Effect of the rate of FXIIIA proteolytic 
activation on fibrin crosslinking. 
A – 1 µM recombinant FXIIIA AP variants were 
incubated with 30 nM recombinant human 
thrombin at 37 °C. Aliquots were withdrawn at 
denoted time points and thrombin was inhibited 
with 760 nM PPACK. The samples were then 
subjected to SDS-PAGE on 8% gels. FXIIIA AP 
cleavage resulting in a 4 kDa molecular weight 
loss could then be followed by monitoring the 
appearance of a 79 kDa band. 
B – Fibrin crosslinking by FXIIIA AP variants. 1 
mg/ml human FXIII-free fibrinogen was 
combined with a recombinant FXIIIA AP-variant 
(50 nM) at 37 °C, and crosslinking was initiated 
by addition of 12 nM recombinant human 
thrombin and 2.5 mM CaCl2. At each denoted 
time point, the reaction was stopped by addition 
of reducing sample loading buffer and boiling. 
The samples were resolved via SDS-PAGE (8% 
gel). Fibrinogen chains Ag, Bく, け, HMW (high 
molecular weight crosslinks), and け–け crosslinks 
are annotated. *  symbol denotes the earliest 
detection of HMW species during the course of 
the crosslinking reaction.    
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Fig. 3. Scanning electron microscopy of fibrin clots in the presence of FXIIIA AP variants. 
100 nM FXIIIA AP variants were combined with plasma from FXIIIA-deficient mice (final dilution of 
plasma was 1:4). Control samples were made without FXIIIA (FXIIIA −). Clotting was initiated by 
addition of 2.1 NIH units/ml bovine thrombin and 13.5 mM CaCl2. Clots were formed for 2 h at 37 °C 
and prepared for SEM as described in Materials and Methods. For each FXIIIA AP variant, two clots 
were studied, with essentially the same results. Each set of clots (FXIII −, W34, V34, and L34) was 
formed using plasma obtained from the same mouse. Shown are representative SEM photographs at two 
magnifications: 10,000x (left) and 20,000x (right), scale bars are 2 µm. Note that during the SEM sample 
preparation process, the fixative agent glutaraldehyde was not included to avoid artificial protein 
crosslinking. As a result, the FXIIIA−  clots were significantly flattened during the dehydration process.  
In response, the resultant FXIIIA−  fibrin fibers on the SEM images appeared denser packed. 
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Fig. 4. Transglutaminase activity of FXIIIA under different conditions. 
A – Spectrophotometric kinetic assay. Glutamine donor K9 peptide was preincubated with the lysine 
mimic DMPDA at 37 °C for 5 min, and the crosslinking reaction was initiated by addition of 1 µM 
FXIIIA° ,high (green circle) or FXIIIA* (purple circle). The reaction was followed by an increase in 
absorbance at 278 nm due to formation of the anilide crosslinked product. The plot represents Michaelis-
Menten fits of the initial reaction velocities as function of the K9 concentration. Apparent Km and Vmax 
resulting from the fits are shown in the table insert. Values are presented as mean ± SD (N=3). 
B – MDC crosslinking SDS-PAGE based assay. Recombinant fibrinogen gC (βγγ-425) was preincubated 
with 1 mM MDC at 37 °C for 5 min. The crosslinking reaction was initiated by addition of 100 nM 
FXIIIA° ,high or FXIIIA*. Reaction aliquots were withdrawn at 1 – 7 min and quenched by addition of 
reducing sample buffer and boiling. The time point samples were loaded on 15% SDS-PAGE side by side 
for FXIIIA* (triangles) and FXIIIA°,high (circles). Two gels were run (1 – 4 and 5 – 7 min time points). 
The gels were aligned and photographed under UV light (panels i – iii). Panel iv – Coomassie Blue-
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stained gel pair from panel iii demonstrating absence of gC–gC conjugation. FXIIIA* was always 
preactivated in the presence of 4 mM CaCl2, and FXIIIA°,high – in the presence of 100 mM CaCl2. 
Concentrations of gC and CaCl2 in the crosslinking reaction mix are annotated on the right.  


