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Spin injection is a powerful experimental probe into a wealth of nonequilibrium spin-dependent phenomena

displayed by materials with sizable spin-orbit interactions. Here, we present a theory of coupled spin-charge

diffusive transport in spin-valve devices built from two-dimensional materials. The formalism takes into account

realistic spin-orbit effects with both spatially uniform and random components in van der Waals materials arising

from the interfacial breaking of inversion symmetry. The various charge-to-spin conversion mechanisms known

to be present in diffusive metals, including the spin Hall effect and several mechanisms contributing to current-

induced spin polarization are accounted for. Our analysis shows that the dominant conversion mechanisms can

be discerned by analyzing the nonlocal resistance of the spin valve for different polarizations of the injected

spins and as a function of the applied in-plane magnetic field.

DOI: 10.1103/PhysRevB.100.245424

I. INTRODUCTION

The engineering of electronic and many-body effects in

van der Waals metamaterials is facilitated by the weak inter-

layer bonding that allows stacking of two-dimensional (2D)

crystals without the lattice-matching constraints of conven-

tional heterostructures [1,2]. The layer-by-layer assembly of

2D materials has provided a rich playground for studies of

emergent phenomena, including secondary Dirac points and

fractal spectra in moire superlattices [3–5], superconductivity

in twisted bilayer graphene [6,7] and long-lived excitons in

2D heterobilayers [8].

Matching graphene and atomically heavy 2D crystals is

particularly promising for spintronic applications, since it

provides a path to engineer atomically thin spin channels

with novel functionalities [9–15]. The recent discovery of

giant interface-induced spin-orbit coupling (SOC) in graphene

placed on semiconducting [16–19] and metallic [20] transition

metal dichalcogenides has fuelled a rapid progress towards

a microscopic understanding of interfacial effects in the ul-

timate 2D limit [21–34]. This approach is complementary

to adsorbate engineering [35–37], where the resulting SOC

generated by the impurities can be viewed as a spatially ran-

dom non-Abelian gauge field that generates spin Hall currents

that can be tuned efficiently by a back-gate voltage [38].

Moreover, in proximitized bilayer graphene, valley-Zeeman

spin-orbit fields are sensitive to the electrostatic imbalance

between layers and thus can be tuned by an externally ap-

plied perpendicular electric field [39–42]. The unprecedented

control over spin-orbit effects in 2D Dirac materials provides

a rich arena for the study of coupled spin-charge transport

phenomena that is not accessible in conventional 2D electron

gases. Examples include resonantly enhanced skew scattering

from spin-orbit scatterers [38,43–45], or spin-transparent im-

purities in graphene with noncollinear spin texture [29], and

anisotropic-spin precession scattering from impurities that

break the inversion symmetry [43].

Previous studies have modeled proximity-induced SOC

in heterostructures made of graphene on transition metal

dichalcogenides by treating the interfacial coupling as a per-

turbation to the band structure that is compatible with the lat-

tice symmetries of pristine graphene [29,30,46,47]. This min-

imal model treats the proximity-induced SOC as “intrinsic”

and reproduces accurately the spin splitting and k-dependent

spin polarization of low-energy states from first-principles

calculations [18,19]. Thus it may be regarded as an accurate

description of ultra-clean heterostructures, where conduction

states (e.g., laying within the band gap of a semiconducting

substrate) are only weakly affected by interfacial SOC. How-

ever, a realistic model should incorporate spatially random

fluctuating SOC components that describe the effect of struc-

tural inhomogeneities and impurities [35,36], unvoidable even

in the cleanest samples [19]. The kinetic theory formulated in

Ref. [48] describes spin-coherent transport in graphene con-

taining a dilute ensemble of SOC-active impurities. Notably,

current-induced spin polarization (CISP) can arise purely

from random SOC [43,48] via a direct spin-charge conversion

mechanism dubbed “anisotropic spin precession scattering”.

This effect directly couples the electric current to the spin

polarization, and therefore yields an additional contribution

to the nonequilibrium spin polarization. By contrast, the stan-

dard inverse spin galvanic (Edelstein) effect in 2D systems

with uniform Bychkov-Rashba interaction [30,49] is an in-

direct spin-charge conversion mechanism, which requires the

spin current to be coupled to the spin precession in the SOC

field. In this work, both mechanisms will be assumed to be

present.

Below we shall study spin injection in spin-valve devices

made from 2D metals with SOC induced by proximity effect.
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In such devices, we have found that the polarization of the

injected spins determines the dominant spin-to-charge conver-

sion mechanism at distances ∼ls where ls is the spin-diffusion

length. Thus it is possible to ascertain which mechanism

yields the dominant contribution by performing spin preces-

sion (Hanle-type) measurements. The two mechanisms that

can contribute to the nonlocal resistance are either the inverse

spin Hall effect or the spin-Galvanic effect, which are the

Onsager reciprocal phenomena of the spin Hall effect and the

Edelstein effect, respectively. Hereafter we shall refer to them

simply as spin Hall effect (SHE) and CISP.

Our study of nonlocal transport in spin-valve geometry is

complemented with a microscopic derivation of the under-

lying spin diffusion equations describing diffusive transport

in 2D metals, where the proximity-induced SOC contains

randomly fluctuating components. To this end, we consider

two distinct physical scenarios. First, we consider a model

of random SOC induced by impurities. The single-impurity

potential is treated by means of the T -matrix approach, which

allows us to capture resonant-scattering effects. In a second

scenario, the proximity-induced SOC potential consists of a

uniform and a random component, which are treated at the

level of the Gaussian (‘white noise”) approximation. These

two models allow us to derive the form of the transport

and spin-charge conversion coefficients appearing in the spin

diffusion equations. Thus we expect this set of equations will

apply to a fairly broad class of 2D diffusive metals with

proximity-induced SOC.

The manuscript is organized as follows. In Sec. II, we

present the coupled spin-charge transport equations and

briefly discuss how they compare with previous works. In

Sec. III, the equations are applied to a nonlocal spin valve

device and the key signatures of spin-charge conversion are

discussed. Sections IV and V are concerned with the micro-

scopic derivation of the spin-charge coefficients. Section VI

presents our conclusions.

II. COUPLED SPIN-CHARGE DIFFUSION EQUATIONS

In the diffusive regime where the elastic mean free path ℓ is

much larger than the Fermi wavelength k−1
F , the coupled spin-

charge dynamics is described by the following set of equations

(henceforth summation over repeated indices is implied unless

otherwise stated):

∂tρ + ∂iJi = 0, (1)

[∇t s]a + [∇iJi]
a = −Ŵab

s sb + κa
i Ji, (2)

Ji = −D
(

∂iρ + κ i
asa

)

+ γ a
i jJ

a
j , (3)

J a
i = −D[∇is]a + γ a

i jJ j, (4)

where we have used the following notation:

[∇iO]a = ∂iO
a − ǫabcAb

i Oc, (5)

[∇t O]a = ∂t O
a + ǫabcAb

0Oc. (6)

Equations (1) and (2) are the continuitylike equations for

the charge carrier density (ρ) and electron’s spin density

(sa, where a ∈ {x, y, z}), respectively. Ŵab
s are the (anisotropic)

relaxation rates for the spin; Ji and J a
i are the charge and

spin current densities with i = x, y. Equations (3) and (4) are

the generalized constitutive relations for the local charge and

spin observables; D is the diffusion constant, which we have

assumed to be the same for charge and spin (relaxing this

assumption only affects our results quantitatively at the cost

of introducing additional complexity). The coupling between

charge current (Ji), spin current (J a
i ) and spin density (sa)

is described by two sets of spin-charge conversion rates:

γ a
i j controls the magnitude the SHE, and κa

i = −κ i
a controls

the magnitude of the direct magnetoelectric (DMC) coupling

[48], a contribution to CISP additional to the Edelstein effect

(EE) [50]. In addition, the coupling between J a
i to sa is

hidden in the covariant derivative defined in Eq. (5). In this

equation, Aa
i describes the coupling to the uniform compo-

nent of the Rashba-type SOC and Ab
0 = gμLH

b describes the

Zeeman coupling. The discussion of spin-swapping [51] term

in Eq. (4) is relegated to Sec. IV since they are not directly

related to spin-charge current, and we treat Ab
i , γ a

i j , κa
i in

Eqs. (3) to (5) phenomenologically since they are model-

dependent as shown in Secs. IV and V.

A similar set of coupled spin-charge diffusion equations

were derived for 2D electron gases by means of the Kelydsh

formalism with SOC treated as a non-Abelian (SU(2)) gauge

field in Refs. [49,52]. However, in addition to the spin-charge

conversion mechanisms described therein, Eqs. (2) and (3)

also account for the DMC mechanism. As aforementioned,

the latter describes a (direct) coupling between the charge

current, Ji, and the spin polarization, sa, and it is parametrized

by the coefficients κa
i = −κ i

a. We shall show in Secs. IV

and V that the DMC can emerge from the scattering of

the carriers with the spatially random components of the

SOC, and more specifically, from a nonvanishing correla-

tion between in-plane and out-of-plane electric fields at the

interface.

In Refs. [53,54], coupled spin-charge diffusion equations

for 2D systems were derived from the noninteracting density

matrix response function. This approach has been applied to

the strong SOC regime where the intrinsic SOC is comparable

to the Fermi energy, as in the case of surface states of 3D

topological insulators [54]. Such strong SOC regime, strictly

speaking, lies outside the applicability of the microscopic

models discussed in Secs. IV and V and used to derive Eqs. (1)

to (4). Nevertheless, on phenomenological grounds, it is worth

exploring how such regime can be described starting from

the above set of equations. In the strong SOC regime, the

spin density is not a diffusive mode of the system and the

only relevant spin-charge conversion rate corresponds to κa
i

in Eq. (2) for the DMC. Thus, upon setting γ a
i j = 0 in Eq. (3),

we recover Eq. (5) of Ref. [54] with κa
i = ℓ−1ǫa

i , ℓ = vF τ (τ )

being the elastic mean-free path (elastic scattering time). Fi-

nally, we note that a similar set of equations has been obtained

for superconductors within the quasiclassical approximation

in Refs. [55–57]. The latter are complicated by the fact that

quasiparticle spectral weights are no longer peaked on the

Fermi surface and in general are altered by the nonequilibrium

dynamics. However, in the normal state, they can be brought

to the form of Eqs. (1)–(4).
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FIG. 1. Illustration of the nonlocal transport device considered in

this work. The external magnetic H field is applied along the y axis,

on the plane of the device.

III. SPIN VALVE

In this section, our goal is to describe the properties of

the nonlocal resistance in a lateral spin-valve device of the

type employed to measure the inverse spin Hall effect in the

seminal experiments by Valenzuela and Tinkham [58], see

Fig. 1 for an illustration of the device.

We shall be concerned with 2D metals that are isotropic in

the long wavelength limit, but, due to presence of a substrate

or absorbates, have broken mirror reflection symmetry about

the 2D plane. This includes van der Waals heterostructures,

such as graphene on transition metal dichalcogenides [59].

From these symmetry considerations, the conversion rates

describing the SHE and DMC are given by

γ a
i j = θsHǫi jδ

az κa
i = l−1

DMCǫ a
i , (7)

where θsH is the spin Hall angle and lDMC is a parameter with

units of length that determines the conversion efficiency of the

DMC (ǫ
y

x = ǫx
y = ǫxy = −ǫ x

y = −ǫ
y
x = −ǫyx = 1 is the fully

antisymmetric 2D tensor). In addition,

Aa
i = l−1

R ǫa
i (8)

where lR (units of length) parametrizes the strength of the

inversion-symmetry breaking Rashba SOC (cf. Secs. IV and

V). In order to reduce the number of parameters in the model,

we shall assume that the spin relaxation time to be isotropic:

Ŵab
s = δabτ−1

s (i.e., it is the same for the in-plane and out-of-

plane spin components). These assumptions will allow us to

derive simple analytical expressions for the output nonlocal

resistance (see Ref. [60] for a discussion of the corrections to

the nonlocal transport introduced by spin lifetime anisotropy).

In what follows, we shall work in the limit where SOC

is weak compared to the Fermi energy of the electron gas.

Therefore the spin diffusion length ls =
√

Dτs ≫ ℓ. In ad-

dition, the dimensionless spin-charge conversion ratios θsH,

ls/lDMC, and ls/lR will be assumed to be small (compared to

unity) and therefore contributions of quadratic order in these

coefficients can be safely neglected. Under such conditions,

the build-up of a nonlocal voltage in the lateral spin valve

(Fig. 1) can be regarded as the result of a three-stage process.

First, a finite spin density, s(x = 0), is injected by driving a

current I through the ferromagnetic metal contact. Second,

the injected spin polarization s(x = 0) diffuses away from the

injection point according to Eq. (2). And finally, at a distance

x from the injector, s(x) generates a transverse electric current

via Eq. (3) and leads to the appearance of a finite nonlocal

voltage, Vnl(x) The measured nonlocal resistance, Rnl(x) is

the ratio Vnl(x)/I . Notice that, for large SOC, these processes

are not independent and one has to solve Eqs. (1) to (4)

self-consistently, see, e.g., Ref. [61]. In the following, we shall

describe the three stages in detail.

A. Spin injection

For a ferromagnetic metal contact whose dimensions are

much smaller than the spin diffusion length (ls) in the 2D

material, the injected spin density can be described by a single

vector s(x = 0) whose direction and magnitude depends on

the details of the contact. From the conservation of charge and

spin current at the contact, the following boundary conditions

are obtained [62]:

JF(z = 0) = J (x = 0), (9)

JF(z = 0) = n̂p · [J x(x = 0+) − J x(x = 0−)]. (10)

Here, JF (JF ) stands for the charge (spin) current den-

sity flowing into the 2D metal, and n̂p = sin θp cos ϕpx̂ +
sin θp sin ϕpŷ + cos θpẑ is the polarization direction of the

injected spins near the contact. Equations (9) and (10) assume

that the contact does not trap charge or accumulate any spin

torque. In this situation, the spin polarization of the injected

carriers is parallel to the ferromagnet magnetization. Thus, as

we show below, the magnitude of the spin density depends on

the applied current I and the contact conductance.

At the contact position (i.e., x = 0), the terms proportional

to the gradient of the charge and spin densities in the consti-

tutive relations [cf. Eqs. (3) and (4)] dominate. Thus we can

approximate

J (x = 0) ≈ −D
dρ(x)

dx

∣

∣

∣

∣

x=0

, (11)

n̂p · J x(x = 0±) ≈ −D
d (s(x) · n̂p)

dx

∣

∣

∣

∣

x=0±
. (12)

B. Spin diffusion away from injection

Next, we derive the spin diffusion (Bloch) equation from

the set of drift-diffusion equations introduced in Sec. II by

eliminating the charge and spin-currents. In addition, we shall

assume that the spin channel in the 2D metal has a large

length-to-width ratio L/w ≫ 1 and also w ≪ ls, so that the

spin relaxation along the transverse direction is suppressed.

Within this one-dimensional channel approximation, the re-

sulting spin diffusion equation can be written as follows:

D̄ · s(x) + ωL(n̂H × s(x)) = 0, (13)

where

D̄ = D

⎛

⎝

∂2
x − l−2

s 0 2l−1
R ∂x

0 ∂2
x − l−2

s 0

−2l−1
R ∂x 0 ∂2

x − l−2
s

⎞

⎠ (14)

and ωL = gμL|H|/h̄ is the Larmor frequency induced by the

magnetic field H = |H|ŷ, and n̂H = ŷ.
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The general solution to Eq. (13) can be written as follows:

sx(x) = sx(0)Re z(x) − sz(0)Im z(x), (15)

sz(x) = sz(0)Re z(x) + sx(0)Im z(x). (16)

The sy(x) component decouples from the others and does

not contribute to the spin-charge conversion processes (its

behavior is discussed in Appendix A). The function z(x)

characterizes the oscillatory decay of the two spin components

and reads

z(x) = exp

(

−κ|x| + i
x

lR

)

, (17)

where κ =
√

l−2
s − l−2

R + iωLD−1 and the two constants,

sx(0) and sz(0) are obtained by matching the solution with

the boundary conditions, Eqs. (9) and (10). The calculation of

sx(0) and sz(0) is described in Appendix A. Here it suffices to

note that the result depends on the injected current I and the

conductance of the junction between the ferromagnetic metal

contact and the 2D material.

C. Spin-charge conversion and nonlocal voltage

Next, we use the solution of the spin Bloch equation

to obtain the charge current flowing along the y direction,

Jy(x). This transverse electric current generates a voltage

drop Vnl(x). The nonlocal resistance is thus defined by the

expression

Rnl(x) =
Vnl(x)

I
=

wJy(x)

IσN

, (18)

where σN is the electric conductivity of the device and w is

the channel width. The solution of the spin diffusion equations

contains three contributions to the nonlocal signal:

Rnl,sH(x) =
wD

IσN

θsH∂xsz, (19)

Rnl,EE(x) = −
wD

IσN

θsHl−1
R sx, (20)

Rnl,DMC(x) = −
wD

IσN

l−1
DMCsx. (21)

Experimentally, Rnl,EE(x) and Rnl,DMC(x) cannot be distin-

guished and therefore we shall combine them into one single

contribution to Rnl(x) arising from the current-induced spin

polarization (CISP) mechanisms:

Rnl,CISP(x) = Rnl,EE(x) + Rnl,DMC(x). (22)

For simplicity, the coefficients θsH, lDMC, lR and ls are

treated as independent phenomenological parameters. The

relative magnitude of the kinetic coefficients in a concrete

physical setup will depend on microscopic parameters, such as

strength of proximity-induced SOC and impurity potentials.

In a 2D material with (z → −z) inversion symmetry, one

has l−1
R , l−1

DMC → 0 as required by symmetry, while in 2D

heterostructures with strong interface-induced SOC, one has

(lsθsH)/lR ≫ 1 [30]. The former condition will be violated if

the spin texture of energy bands is noncoplanar in k space

(e.g., due to spin-valley coupling), for which CISP processes

are accompanied by SHE [29].

In realistic spin-valve measurements, there is always some

level of background noise, which masks the pure spin contri-

bution to the nonlocal resistance [58]. The background signal

can be eliminated by subtracting the nonlocal resistances

obtained for injected spins with opposite polarization (see

Appendix A for details):

�Rnl(x) = Rnl(x)|n̂p
− Rnl(x)|−n̂p

= R0Cinje
−q̃ cos θLx f (n̂p, ωL ). (23)

In the above expression,

q̃ = |κ| =
1

ls

[(

1 − l2
s /l2

R

)2 + (ωLτs)2
]1/4

(24)

is the characteristic wave number associated with

spatial variation of the nonlocal resistance, θL =
1
2

tan−1 [ωLτs/(1 − l2
s /l2

R)] ≈ 1
2

tan−1 (ωLτs), and R0 =
(w/ls)GF , where GF is the conductance of the ferromagnetic

metal. The dimensionless parameter Cinj characterizes the

properties of the junction between the ferromagnet and

the 2D material. Typically, the conductance of the normal

metal is much smaller than the ferromagnet GN/GF ∼ 10−2

(tunneling limit). Thus, in this regime where GN ≫ GF , the

injection spin efficiency becomes

Cinj ≃
PJGF

GN q̃ls
. (25)

On the other hand, in the transparent limit where G ≫ GF ,

Cinj ≃
2PF

1 − P2
F

1

cos θL + (q̃ls − cos θL ) sin2 θp sin2 ϕp

. (26)

The dimensionless function f (n̂p, ωL ) in Eq. (23) describes

the interplay between different spin-charge conversion effects,

the Larmor precession, and the quantization axis (magneti-

zation direction) of the ferromagnet described by np. Its full

form is given in Eq. (A13) in Appendix A.

Let us first discuss the main features of the nonlocal resis-

tance in the absence of magnetic field, i.e., f (n̂p, ωL = 0). It

takes the following form for np along the in the x and z axes,

respectively:

f (ẑ, 0) = − θsHq̃ls cos

(

x

lR

)

+
ls

lDMC

sin

(

x

lR

)

, (27)

f (x̂, 0) = − θsHq̃ls sin

(

x

lR

)

−
ls

lDMC

cos

(

x

lR

)

. (28)

From the above expressions, it can be seen that, up to an ex-

ponential decay factor (cf. Eq. (23)), for x ≪ lR, the nonlocal

resistance �Rnl(x) ∼ θsH for n̂p = ẑ, whereas �Rnl ∼ ls/lDMC

for n̂p = x̂. Thus, at distances much smaller than the typical

distance for precession under the Rashba field, lR, the nonlocal

resistance is approximately proportional to the spin Hall angle

θsH when the injected spins are polarized out of the plane of

the device, i.e., for n̂p = ẑ. On the other hand, the nonlocal

resistance is approximately proportional to the ratio ls/lDMC

when the injected spins lie on the plane of the device, i.e.,

for n̂p = x̂. The full spatial dependence of �Rnl(x) for zero

magnetic field is shown in Fig. 2. The left panels correspond

to out-of-plane polarization (n̂p = ẑ) whereas the right panels

correspond to in-plane polarization (n̂p = x̂).
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Out-of-plane spin injection In-plane spin injection

FIG. 2. Nonlocal resistance Rnl(x) versus distance from the spin injection contact (x). In (a), (b), and (c) [(d), (e), and (f)] the polarization of

the injected spins is perpendicular (parallel) to the plane of the 2D electron gas. The results depend on three spin-charge conversion coefficients,

namely the spin-Hall angle θsH, a length scale associated with the spin precession induced by the Rashba SOC, lR, and a length scale associated

with a direct magnetoelectric coupling, lDMC. For each panel, we have chosen the following experimentally relevant values: ls = 10−6 m;

θsH = −0.01, lR = 2lDMC = 10ls in (a) and (d); θsH = −0.1, lR = 2lDMC = 10ls in (b) and (e); θsH = −0.1, lR = −0.12lDMC = 2ls in (c) and

(f); PJ = 0.4 [63], PF = 0.73 [64], GN/GF = 0.01 [65], and G/GF = 5 × 10−4.

The above observations concerning the behavior of

�Rnl(x) at short distances disclose the possibility of measur-

ing the spin-charge conversion coefficients θsH and ls/lDMC or

at least experimentally discerning the dominant spin-charge

conversion mechanism in a device. Theoretically, these coef-

ficients (together with ls/lR) depend on the microscopic details

of the model (see Secs. IV and V) and we have treated them

phenomenologically. Thus, in Fig. 2, we have plotted �Rnl(x)

for a wide range of choices of θsH, ls/lR, and ls/lDMC. The

two contributions to �Rnl(x) arising from the SHE and CISP

mechanisms are also displayed in Fig. 2 (dashed lines). We

note that the SHE is dominant for n̂p = ẑ and CISP is domi-

nant for n̂p = x̂, as noted above. However, this does not mean

that the CISP (SHE) contribution is negligible in the former

(latter) case. Indeed, a word of caution is necessary since the

SHE contribution does not only correspond to the first term (∝
q̃θsH) in the right-hand side of Eqs. (27) and (28)). By the same

token, the second term in Eqs. (27) and (28)) does not exactly

correspond to the CISP contribution: it arises from the DMC

contribution. Indeed, there is an additional term in the expres-

sion for the SHE contribution which is equal in magnitude but

opposite in sign to the EE contribution to CISP (∝θsHls/lR).

This explains why in the bottom right panel the contribution

from SHE takes a nonzero value at x = 0 despite that the

injected spins point along the x axis. Indeed, Rnl,sH(x = 0) ∼
∂xsx(x = 0) = sx(0) Im[∂xz(x = 0)] ∝ ls/lR. That is, even if

the polarization of the spins at x = 0 is along the x axis and

therefore sz(0) = 0, the gradient of sz(x) at x = 0 does not

vanish and thus the contribution of the SHE is nonzero. This

is also visible (although less clearly) in Figs. 2(d) and 2(e).

A few other interesting features of Fig. 2 are noteworthy.

For n̂p = ẑ (left panels), as the spin Hall angle is increased

from θsH = 0.01 (panel a) to θsH = 0.1 (panel b) while keep-

ing ls/lDMC constant, the nonmonotonic behavior of �Rnl(x)

disappears. Indeed, even though the SHE dominates at dis-

tances x � ls for small spin Hall angle, as noted above, the

contribution arising from CISP, which is small for x � ls
becomes comparable to the SHE contribution for x ≈ ls. This
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FIG. 3. Nonlocal resistance versus magnetic field (measured in units of the Larmor frequency times the spin relaxation time, i.e., ωLτs) at

x = ls. We take ls/lR = 0.1 for all curves. The parameters for the solid black curve are θsH = −10−3 and ls/lDMC = 0.2. The parameters for the

dashed (brown) curve are θsH = −0.2 and ls/lDMC = 2 × 10−3. The parameters for the dashed (green) curve are θsH = −0.1 and ls/lDMC = 0.2.

is because spins at x ∼ ls spins have undergone relaxation and

precession under the Rashba field onto the plane where the

DMC mechanism is most effective. However, as the spin Hall

angle is increased to θsH = −0.1 [panel (b)], the contribution

from the SHE becomes an order of magnitude larger and it is

dominant even for x ∼ ls. Thus, the peak in �Rnl(x), which

results from CISP taking over SHE for x ∼ ls, disappears.

Finally, at the bottom panel (c) of Fig. 2, we show results with

a decreased ratio lR/ls = 2, which implies that for x/ls ∼ 1 the

spins undergo a sizable precession in the Rashba field. This

enhances the EE contribution to the CISP, which now shows a

quantitatively different behavior from panels (a) and (b). For

the plots on the right, the spins are injected in plane (along

the x axis), and CISP essentially accounts for most of the

nonlocal resistance of the device, even though for the bottom

panel (lR/ls = 2) the Rashba precession gives rise to a sizable

contribution from the SHE for x � ls.

Finally, let us briefly discuss the effect of the applied mag-

netic field. The dimensionless function f (n̂p, ωL ) takes the

following forms when n̂p points along the x and z directions,

respectively:

f (ẑ, ωL ) =
[

−θsHq̃ls −
ls

lDMC

sin θL

]

cos

(

x

leff

)

+
ls

lDMC

cos θL sin

(

x

leff

)

, (29)

f (x̂, ωL ) =
[

−θsHq̃ls −
ls

lDMC

sin θL

]

sin

(

x

leff

)

−
ls

lDMC

cos θL cos

(

x

leff

)

, (30)

where l−1
eff = l−1

R − q̃ sin θL. Thus, at short distances,

�Rnl ∼ θsH + (sin θL/q̃ls)ls/lDMC for n̂p = ẑ. On the

other hand, �Rnl ∼ cos θL(ls/lDMC) for n̂p = x̂. Recall

that θL ≈ 1
2

tan−1 (ωLτs), which means that the dominant

mechanism at short distance is modified (relative to ωL = 0)

by the Larmor precession in the external magnetic field, as

expected.

In Fig. 3(c), we plot �Rnl versus the magnitude of applied

magnetic field measured in units of the Larmor frequency

times the spin relaxation time, i.e., ωLτs. For n̂p = ẑ, �Rnl

is almost symmetric because the SHE contribution dominates

over CISP. On the other hand, �Rnl is nearly anti-symmetric

when CISP dominates the nonlocal resistance. For n̂p = x̂,

�Rnl is highly symmetric when CISP dominates over SHE

(i.e., for θsH ≫ ls/lDMC), while �Rnl is highly asymmetric in

the opposite limit where SHE dominates over CISP. Thus, in

summary, the symmetry of this curve, combined with the very

different behavior of �Rnl(x) as a function of the distance x

to the injection contact for zero magnetic field and different

polarization of the injected spins should provide a “smoking

gun” for the dominant spin-charge conversion mechanism in

lateral spin-valve devices.

IV. PURELY EXTRINSIC SOC

In what follows, we present a derivation of the drift-

diffusion equations introduced in Sec. II starting from a model

that assumes purely extrinsic SOC. This model is appropri-

ate to graphene decorated with absorbates. We treat single-

impurity scattering nonperturbatively within the T matrix

approach. The latter is very important in graphene due to

appearance of scattering resonances in the neighborhood of

the Dirac point. This approximation is valid in the limit of a

dilute concentration of scatterers.

We shall rely on the (linearized) quantum Boltzmann equa-

tion (QBE) that describes the dynamics of the 2-by-2 density

matrix distribution nk (r, t ) in spin space and reads

∂tδnk (r, t ) + (vk · ∂r)δnk (r, t ) +
i

h̄
γ [δnk (r, t ), s · H(t )]

+ eE(t ) ·
∇kn0

k

h̄
= I[δnk]. (31)

In the above expression, the spin operator is given by s = h̄
2
σ

where σ is the Pauli matrices, and the deviation of the distri-

bution from equilibrium is given by δnk (r, t ) = nk (r, t ) − n0
k ,

where n0
k = fFD[εk]1, fFD(ǫ) = [e(ǫ−μ̄)/T + 1]

−1
the Fermi-

Dirac distribution at temperature T and chemical potential μ̄,

and 1 is the 2 × 2 identity matrix in spin space. For graphene,

the dispersion relation for electron is given by εk = h̄vF k,

E(t ) is the applied electric field, and H(t ) is the applied

magnetic field.

The collision integral in the above QBE was derived in

Ref. [43] to leading order in the density of impurities (nimp),
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and is given by the following expression:

I[δnk] =
i

h̄
[δnk, Re �k] +

2πnimp

h̄

∑

p

δ(ǫk − ǫp)

×
[

T +
kpδnpT −

pk −
1

2
{δnk, T +

kpT −
pk }

]

. (32)

The self-energy �R
k reads as

Re �R
k =

nimp

2
(T +

kk + T −
kk ). (33)

In order to derive the drift-diffusion equations, we use the

following ansatz to solve the QBE:

n0
k + δnk (r, t ) = fFD[εk − μ(r, t ) − h0σ · n0(r, t )

− h̄k · vc(r, t ) − h̄k · vs(r, t )(σ · n1(r, t ))].

(34)

In what follows, we shall look for a solution of the QBE to

linear order in μ, h0, vc, vs, and μ. Here, μ(r, t ) is the local

deviation from the average chemical potential, μ̄; vc(r, t )

(vs(r, t )) is the local drift velocity of the charge (spin); n0(r, t )

(n1(r, t )) is the polarization direction of the nonequilibrium

magnetization (spin current). The parameters in the above

ansatz are related to the charge density ρ(r, t ), spin density

s(r, t ), charge density current J(r, t ), and spin current density

J a(r, t ) by the following expressions:

ρ(r, t ) =
gsgv

2�

∑

k

Tr[δnk (r, t )] = gsgvN0μ(r, t ), (35)

s(r, t ) =
gsgv

2�

∑

k

Tr[σδnk (r, t )] = gsgvN0h0n0(r, t ), (36)

J(r, t ) =
gsgv

2�

∑

k

Tr[δnk (r, t )]vk = gsgv

N0

2
εF vc(r, t ),

(37)

J a(r, t ) =
gsgv

2�

∑

k

Tr[σ aδnk (r, t )]vk

= gsgv

N0

2
εF vs(r, t )na

1(r, t ). (38)

Here, gs and gv are spin degeneracies and valley degeneracies

receptively, N0 is the density of states per spin per valley at the

Fermi surface. In evaluating the sums over momentum above,

we have assumed the low-temperature limit where T ≪ μ̄ and

approximated ∂ǫn0
k ≃ −δ(ǫk − ǫF ) where εF = μ̄(T = 0) is

the Fermi energy.

Note in Eqs. (37) and (38), the currents are given by the

first moment of deviation from equilibrium of the distribution

function. In the presence of SOC, they are not the conserved

current that enters the continuity equation. The conserved

current is a sum of two distinct contributions: the first moment

excitation of the Fermi surface and the anomalous current

which arised from evaluating the collision integral to order

k−1
F ∇r [57]. In fact, the anomalous current contributes pre-

cisely to the so-called side-jump contribution, see Ref. [55] for

more in-depth discussion. However, if we limit ourselves to

study spin-charge coefficients to the leading order in impurity

density nimp, the collision integral in Eq. (32) is sufficient and

the conserved currents are still given by Eqs. (37) and (38).

Next, we compute the (retarded) T matrix for a single

impurity. The latter is a 2 × 2 matrix in spin space, which can

written as follows:

T +
kp = Ckp1 + Bkp · σ, (39)

where the coefficients Ckp and Bkp are given by

Ckp = γ0 cos

(

θk − θp

2

)

, (40)

Bkp = γR sin

(

θk + θp

2

)

x̂ − γR cos

(

θk + θp

2

)

ŷ

+ iγI sin

(

θk − θp

2

)

ẑ. (41)

This parametrization of T matrix follows from symmetry

considerations. It respects the rotation generated by total an-

gular momentum (spin angular momentum + orbital angular

momentum), in-plane parity and time-reversal symmetry but

breaks z → −z symmetry.

For a given single-impurity T matrix, the equations of

motion for the different moments of the distribution function

[Eqs. (35)–(38)] can be obtained to leading order in the

impurity density. This involves taking the zeroth and first

moments of Eq. (31) followed by the trace of the result over

the spin indices. Those manipulations yield the following set

of equations:

∂tρ(r, t ) + ∂iJi(r, t ) = 0, (42)

∂t s(r, t ) + ∂iJ i(r, t ) + γH(t ) × s(r, t ) = Q(r, t ), (43)

∂t Ji(r, t ) +
v

2
F

2
∂iρ(r, t ) −

σD

τc

Ei(t ) = −
Ji(r, t )

τc

+ αskεi jJ
z
j (r, t ) + αaspvF εi js

j (r, t ), (44)

∂tJ
a

i (r, t ) +
v

2
F

2
∂is

a(r, t ) + γ [H(t ) × J i(r, t )]a = χa
i (r, t ).

(45)

The components of Q(r, t ) and χa
i (r, t ), as well as the scat-

tering rates are given in Appendix B.

To proceed further, we set ∂t Ji = ∂tJ
a

i = 0 as corresponds

to the steady state. Hence, the constitutive relations for the

charge current density Ji(r) and the spin current density J a
i (r)

are derived from the Eqs. (44) and (45):

Ji = −D∂iρ + σDEi + θsHεi jJ
z
j + αaspτcvF εi js

j, (46)

J z
i = −D∂is

z + θsHεi jJ j + αRτcvF si, (47)

J x
x = −D′∂xsx − α⊥

R τ ′
cvF sz − αLDτ ′

cJ
y

y , (48)

J y
y = −D′∂ysy − α⊥

R τ ′
cvF sz − αLDτ ′

cJ
x

x , (49)

J y
x = −D′′∂xsy + α⊥

LDτ ′′
c J

x
y , (50)

J x
y = −D′′∂ysx + α⊥

LDτ ′′
c J

y
x . (51)

Here, θsH = αskτc is the spin-Hall angle, and the diffusion

constants are given by D = 1
2
v

2
F τc, D′ = 1

2
v

2
F τ ′

c, and D′′ =
1
2
v

2
F τ ′′

c .
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In order to further simplify the calculations, we shall take

τc = τ ′
c = τ ′′

c . and αR = α⊥
R since they differ by terms that

are proportional to the SOC induced by the impurities, which

are typically small compared to the scalar potential term. In

addition, we shall drop the terms proportional to αLD and α⊥
LD,

which describe the Lifshitz-Dyakonov spin swapping effect

[51]. For αLDτc ≪ 1, this effect leads to corrections that are

second order in the spin-charge conversion coefficients. The

latter, as pointed out above, are typically smaller than one in

spintronic devices. Thus, second order effects are negligible.

The resulting equations can be brought to the form of Eqs. (3)

and (4) with the following choice of parameters:

γ a
i j = αskτcǫi jδ

az, (52)

Ab
i =

2αR

vF

εb
i = l−1

R εb
i, (53)

κa
i =

2αasp

vF

ε a
i = l−1

DMCε a
i , (54)

Ŵxx,yy
s =

1

τEY

, (55)

Ŵzz
s =

1

τ⊥
EY

, (56)

and Ŵab
s = 0 for a �= b. The detailed forms of αsk, αR, αasp,

τEY, and τ⊥
EY in terms of the scattering rates with the impurities

are given in Appendix B.

By relying on the one-dimensional approximation intro-

duced in Sec. III, the diffusion equation for the spin density s

in the presence of a weak external magnetic field (ωLτc ≪ 1)

can be written as follows:

D̄s(x) − ωL[n̂H × s(x)] = S(x), (57)

where S is the source term:

S(x) =
(

2αasp

Jy(x)

vF

,−2αasp

Jx(x)

vF

, θsH∂xJy(x)

)

, (58)

The diffusion matrix D̄ is

D̄ =

⎛

⎜

⎝

D′∂2
x − 1

τEY
0 θRvF ∂x

0 D′′∂2
x − 1

τEY
0

−θRvF ∂x 0 D∂2
x − 1

τ⊥
EY

⎞

⎟

⎠
, (59)

where θR = τcαR + τ ′
cα

⊥
R . The above diffusion matrix can

be reduced to Eq. (14) if we assume τEY = τ⊥
EY in order to

simplify the model, as explained in Sec. III.

Furthermore, concerning the source term, screening en-

sures that the charge density is uniform for length scales

larger than the Thomas-Fermi screening length. Therefore,

to leading order in the spin-charge conversion coefficients,

the charge current density J ≈ −D∇ρ + σDE = 0 and hence

S(x) = 0 in the bulk of the device described in Sec. III.

V. SMOOTH AND RANDOM SOC FLUCTUATIONS

In the diffusive regime with ǫF ≫ τ−1 ≫ λ, where ǫF and

λ denote the Fermi energy and dominant SOC energy scale,

respectively, the density matrix linear response is governed

by the dynamics of zeroth moment (ρ, sa) and first moment

(Ji,J
a

i ) on the Fermi surface. The equations of motion for

ρ, sa, Ji,J
a

i are collectively known as the spin-charge dif-

fusion equations, cf. Eqs. (1)–(4). In this section, we shall

illustrate the universality of the diffusive equation by consid-

ering the effect of a Bychkov-Rashba interaction with uniform

and random components. To simplify the calculations, we

will assume a conventional 2D electron gas. This is justified

in the regime of interest, where the spin dynamics of 2D

Dirac fermions and conventional fermions were shown to

be equivalent using rigorous quantum diagrammatic meth-

ods [47]. Importantly, the SOC is treated as a non-Abelian

gauge field [46,49,52] that has a spatially uniform component

(i.e.,“intrinsic”) and a random component that varies slowly

in space. The Rashba Hamiltonian is given by the following:

HR =
p2

2m
+ α(σ ∧ p) =

∑

i=x,y

(pi − Ai )
2

2m
+ const. (60)

Here, a ∧ b = ǫi jaib j , and α is the strength of uniform (in-

trinsic) part of the SOC whilst Ai is the non-Abelian gauge

field:

Ai =
∑

a=x,y,z

Aa
i σa. (61)

For Rashba SOC, the only nonvanishing components are are

Ax
y = −A

y
x = mα. In the literature on proximity effects in

2D metals, it is often assumed that proximity-induced SOC

is uniform in space and therefore [p j,Ai] = 0. Thus the

violation of momentum conservation that is needed in order

for the system to reach the steady state is assumed to be

driven by scattering with impurities. However, as emphasized

above, a realistic SOC induced by proximity should contain

both uniform and spatially random components. Thus, in

order to account for the random spatial fluctuations, we have

generalized the Rashba model introduced above in Eq. (60)

by introducing an electrostatic potential φ(r) and shifting the

gauge field as Ai → Ai + δAi(r), which yields the following

model:

H =
∑

i=x,y

(pi − Ai − δAi(r))2

2m
+ φ(r). (62)

The potential φ(r) is a slowly varying function in space and its

spatial variation gives rise to finite electric field that generates

SOC. In fact, the spatially varying gauge-field is induced by

the gradient of the electrostatic potential φ(r):

δAz
i (r) = mα1ǫi j∂ jφ(r), (63)

δA
j

i (r) = mα2ǫ
j

i ∂zφ(r). (64)

Here, ∂zφ = ∂zφ(r, z)|z=0 where z = 0 is the material plane;

α1 ∼ α (α2 ∼ α) are material-dependent coefficients that

characterize the strength of SOC induced by in-plane (out-

of-plane) electric field (E = −∇φ). Note that the generalized

Hamiltonian (62) breaks translational symmetry but retains all

other symmetries of the Rashba Hamiltonian. (60).

In order to proceed further, it is convenient to isolate

the part that breaks translation symmetry from the Rashba
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Hamiltonian: H = HR + U (r, p) where HR is given in

Eq. (60) and

U (r, p) = −
1

2m
{pi , δAi(r)} + φ(r). (65)

We have dropped the subleading term ∝(δAi)
2 since it is ∼α2

and small compared to the other two. The matrix elements of

this potential are

Ukp = φk−p

{

1 + iα1(k ∧ p)σ z −
α2

2ξ
[(p + k) ∧ σ]

}

, (66)

where φk−p is the Fourier component of the electric potential

and we have approximated ∂zφ ≈ φ/ξ . Here ξ is a typical

length scale of variation in the direction out of the 2D

plane. The resulting potential is similar to those described in

Refs. [46,66,67],

We shall consider the situation where both the fluctuating

and uniform components of the SOC are small compared

to the Fermi energy α1 p2
F ∼ α2 pF /ξ ∼ α/vF ≪ 1. In this

limit, starting from the structure of Eq. (62), one can write

down a kinetic equation for the (spin) density-matrix distri-

bution function nk(r, t ) by relying on gauge invariance (cf.

Ref. [52,56,68]):

(∇t nk + vk · ∇rnk) + 1
2
{Fk, ∂knk} = I[δnk]. (67)

The intrinsic SOC (i.e., the non-Abelian gauge field) modifies

the left hand side (dissipation-less part) of the kinetic equation

in two essential ways. First, it turns the space-time derivatives

into covariant derivatives: ∇r (∇t ) is the covariant space

(time) derivative that describes the precession of electron spin

induced by SOC (external magnetic field). Mathematically,

the covariant derivatives on the right-hand side of the kinetic

equation have a structure is identical to Eq. (5). However,

as we shall see later, the non-Abelian gauge connections are

renormalized by the fluctuating part of the SOC. Second, Fk

is the non-Abelian generalization of external applied force

acting on electron. The three spatial components of the non-

Abelian force are obtained from F
j

k
= VaF

a j where (Va) =
(1, vxk, vyk, 0) is the four-velocity and Fab = ∂aAb − ∂bAa −
[Aa,Ab] is the field strength tensor. Here the indices j =
x, y, z while the indices a, b = t, x, y, z. For example, if we

apply an electric field E in the presence of Rashba SOC

with gauge-field Ax
y = −Ax

y = mα, the resulting non-Abelian

force contains a spin-dependent Lorentz force responsible for

the intrinsic spin Hall effect:1

Fk = e E + vk × (eBs), (68)

where Bs = (8m2α2/e2)σ z ẑ is the spin-dependent magnetic.

The potential φ(r) is treated as a random potential, which

contributes to the relaxation of momentum and spin and

therefore must described by the collision integral of the

kinetic equation. The collision integral to second order in

δA, in the self-consistent Born-approximation, takes the

1Note this intrinsic spin Hall effect is not a result of summation of

the band Berry curvature.

form

I
[

δnk

]

=
i

h̄

[

δnk, Re �B
k

]

+
2π

h̄

∑

p

δ(ǫk − ǫp)

×
[

UkpδnpUpk −
1

2

{

δnk,UkpUpk

}

]

, (69)

where �B
k is the Hermitian part of the self-energy

Re �B
k = U kk + P

∫

d2q

(2π )2

UkqUqk

ǫ − ǫq

(70)

Here, O[φ] =
∑

φ P[φ]O[φ] and P[φ] is the probability distri-

bution function of the random potential φ. For simplicity, we

assume they are distributed according to Gaussian distribution

with zero mean:

φq =0, (71)

φq1
φq2

= nsv0
2 δ2(q1 + q2). (72)

The parameter ns has dimensions of inverse length square and

is akin to nimp in Sec. IV; v0 is the typical energy scale of the

random part of the proximity induced electric potential φ(r).

Since φ(r) has zero mean value, the first term in Eq. (70)

vanishes under potential average. However the second term

does not vanish and still contributes to the energy shift. Then,

unlike the uniform gauge field Ai, the fluctuating gauge-field

δAi generates dissipation and enters the kinetic theory via the

collision integral. For a potential φ(r) with short-range corre-

lations, the collision integral in Eq. (32) suffices to describe

the spin-charge relaxation since it accounts for the matrix

structure of the disorder potential, i.e., Eq. (65). However, it is

still an approximation because Eq. (32) does not account for

the modification of the scattering states by the uniform part of

the SOC (Ai ∼ α): The asymptotic scattering states are given

by spin-independent Bloch waves with energy ǫk = vF k. This

is consistent with our assumption of a weak SOC with our

treatment of the left-hand side of Eq. (67), which is valid to

second order in α.

After using the same ansatz as in Eq. (34) to solve the

above kinetic equation, we arrive at the set of drift-diffusion

equations, Eqs. (1) to (4) with the following identification for

the parameters:

γ a
i j =

8mα2

πnsN0v
2
0

ǫi jδ
az

(

2 + α2
1k4

F + 2
(

α2

2ξ

)2
k2

F

)

, (73)

Ab
i =

[

Ax
y −

4mns

π h̄vF

v
2
0

(

α2

2ξ

)2

ln

(

qc

kF

)

]

ǫb
i, (74)

κa
i =

4πns

h̄vF

N0v
2
0α1

(

α2

2ξ

)

k3
F ǫ a

i , (75)

Ŵxx,yy
s =

1

τ
x,y
s

(76)

=
2πns

h̄
N0v

2
0

[

2

(

α2

2ξ

)2

k2
F + α2

1k4
F

]

, (77)

Ŵzz
s =

1

τ z
s

=
8πns

h̄
N0v

2
0

(

α2

2ξ

)2

k2
F . (78)

In the above equations, kF is the Fermi momentum, and qc ∼
kF is high-momentum cut-off. Note that the total gauge-field
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Ab
i appearing in the diffusion equation receives contributions

from both the uniform gauge field (Ax
y) and the fluctuating

gauge field (δA ∝ nsv
2
0).

VI. SUMMARY

In this work, we have extended the semiclassical theory

of spin-injection in 2D metals to account for proximity in-

duced spin-orbit coupling (SOC). The theory relies on a set

of coupled spin-charge drift-diffusion equations that capture

the main relativistic SOC transport effects responsible for

charge-spin conversion, namely, the spin Hall effect (SHE)

and the current-induced spin polarization (CISP), as well as

their Onsager reciprocal phenomena. For the CISP, two kinds

of contributions have been identified and accounted for: the

Edelstein effect, which generates a spin polarization via the

(intrinsic-type) SHE coupled with spin precession caused by

the Rashba SOC, and the direct magneto electric coupling

(DMC). The latter describes a direct coupling between the

spin polarization and the electric current, which can arise in

systems with random SOC. We would like to emphasize that

such random SOC should be generically present in 2D metals

with proximity induced SOC, including van der Waals het-

erostructures of atomically thin materials currently attracting

much interest [16–20].

Our calculations for a lateral spin-valve device allowed us

to identify the characteristics of SHE and CISP contributions

to the output nonlocal resistance of the device. Thus we have

been able to ascertain the conditions under which, by chang-

ing the quantization axis of the injected spins, the observed

nonlocal output signal is dominated by a specific spin-charge

conversion mechanism.

In addition, we have provided a microscopic derivation of

the diffusion equations in two physically distinct limits. In

the disordered limit, we have assumed that SOC is induced

by spatially localized impurities. This limit is applicable, e.g.,

to graphene randomly decorated with absorbates (or clusters

thereof). In the ultraclean limit, we have assumed that SOC

consists of a uniform part plus a random component, which is

appropriate to 2D heterostructures of graphene and transition

metal dichalcogenides. We have shown that the resulting set

of equations is identical, which suggests that the coupled

spin-charge diffusive equations derived here apply to a broad

class of 2D materials in the metallic regime.

The theory presented here can be extended in a number

of directions. For instance, the giant spin-lifetime anisotropy

recently observed in in heterostructures of graphene and tran-

sition metal dichalcogenide [27,28] could be included at the

expense of introducing an additional (anisotropy) parameter

reflecting the interplay of spin-orbit effects with different

symmetries [32].
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APPENDIX A: SOLUTION OF THE BLOCH EQUATION

In this section, we provide the details of the calculation

leading to the dimensionless parameters, Cinj and f (n̂p, ωL ), is

given. The solution to the spin-diffusion equation, Eq. (13) is

displayed in Eqs. (16). The equation for sy is decoupled from

those of sx and sz and its solution reads sy(x) = sy(0)e−x/ls .

Since the injected spin of polarization is along the polariza-

tion direction n̂p of the ferromagnet, the problem of enforcing

the boundary conditions [cf. Eqs. (9) and (10)] is largely

simplified by projecting the spin current density along n̂p on

both sides of the ferromagnet-2D material junction, i.e.,

JN (x = 0) =
∑

σ

σJ σ
N (x = 0) ≈ −2Dn̂p · ∂xs(x = 0),

(A1)

JF (z = 0) =
∑

σ

σJ σ
F (z = 0). (A2)

Here, J σ
N (x = 0) and J σ

F (z = 0) are the spin current density

in the channel σ = ±1 (+ ≡↑,− ≡↓), which points in the

direction σ n̂p. Note that we neglect any interfacial spin-flip

scattering, so that the polarization of the total spin-current

flowing into the 2D metal is parallel to the polarization of the

spin current in the ferromagnet:

[J N (x = 0+) − J N (x = 0−)] ‖ n̂p. (A3)

Since nonlocal resistance must depend on several junction

properties such as interfacial conductance, interfacial current

polarization, and the current polarization within the ferro-

magnetic metal, we construct the following electrochemical

potential model with two channels pointing in ±n̂p direction,

respectively, in ferromagnetic metal and 2D metal in order to

capture the influence of junction properties:

μσ
N (x) = μ̄N (x) +

σ

2Ne

s(x) · n̂p, (A4)

μσ
F (z) =

e2I

σF AJ

z + eV1 + bσ

(

σF

σ σ
F

)

e−z/λF , (A5)

where μ̄N (x) = e2I
wσN

x for x < 0, μ̄N (x) = 0 for x > 0, V1 is

the voltage drop between the ferromagnet and the 2D metal,

AJ is the cross section of the ferromagnetic metal, Ne is the

density of states per spin when the system is at equilibrium,

λF is the spin-diffusion length in the ferromagnet, σ σ
F is the

spin-dependent electric conductivity of the ferromagnet, and

σF = σ
↑
F + σ

↓
F is the total electric conductivity in the ferro-

magnet. The electrochemical potential Eqs. (A4) and (A5) are

constructed within the guideline that the spin current density

projected onto channel σ should be given by the following:

J σ
N (F ) = −

σ σ
N (F )

e
∂rμ

σ
N (F ). (A6)

To proceed further, we assume that the spin current pro-

jected onto the quantum axis, Is, is continuous and arrive at

the following equations:

Is = w[JN (x = 0+) + JN (x = 0−)], (A7)

Is = AJJF

(

z = 0+)

. (A8)
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Next, the spin current in each channel stems from the drop of

electro-chemical potential between ferromagnetic metal and

2D metal is given by Iσ
I = (Gσ /e2)[μσ

F (z = 0) − μσ
N (x = 0)].

The total spin current and charge current are thus given by

I =
∑

σ

Iσ
I , (A9)

Is =
∑

σ

σ Iσ
I . (A10)

Finally, by solving Eqs. (A3), (A7), (A8), (A9), and (A10),

we arrive at the solutions of s(0), b, and Is. Then, the differ-

ence in the nonlocal resistance between quantum axis pointing

in n̂p and quantum axis pointing in −n̂p can be evaluated by

plugging the solution of sx(0) and sz(0) into the following

equation:

Rnl(x) =
wJy(x)

IσN

=
wD

IσN

[

θsH∂xsz(x) −
(

θsHl−1
R + l−1

DMC

)

sx(x)
]

= Rnl,sH + Rnl,EE + Rnl,DMC. (A11)

Therefore the difference in the nonlocal resistance between

quantum axis pointing in n̂p and quantum axis pointing in −n̂p

is given by

�Rnl(x) = R0Cinje
−q̃ cos θLx f (n̂p, ωL ), (A12)

where the dimensionless factors f (n̂p, ωL ) and Cinj read

f (n̂p, ωL ) =
{[

−θsHq̃ls cos θp −
ls

lDMC

(sin θL cos θp + sin θp cos ϕp cos θL )

]

cos
[(

l−1
R − q̃ sin θL

)

x
]

+
[

−θsHq̃ls sin θp cos ϕp +
ls

lDMC

(cos θL cos θp − sin θp cos ϕp sin θL )

]

sin
[(

l−1
R − q̃ sin θL

)

x
]

}

, (A13)

Cinj =
2
(

G
GF

PF
1−P2

J

1−P2
F

+ PJ

)

2GN

GF

[

1 + G
GF

1−P2
J

1−P2
F

]

q̃ls + G
GF

(

1 − P2
J

)

[cos θL + (q̃ls − cos θL ) sin2 θp sin2 ϕp]
, (A14)

where θL = 1
2

tan−1 [ωLτs/(1 − l2
s /l2

R)], q̃ls = [(1 − l2
s /l2

R)
2 + (ωLτs)2]

1/4
, GF = AJσF /λF is the conductance of the ferromag-

net, PJ = |G↑ − G↓|/G is the interfacial current poalrization, PF = (σ
↑
F − σ

↓
F )/(σ

↑
F + σ

↓
F ) is the current polarization of the

ferromagnetic metal, GN = wσN/ls is the characteristic conductance of the 2D metal, and G = G↑ + G↓ is the total interfacial

conductance. Note that we track to all order in the conversion factors (θsH, ls/lDMC, and ls/lR) here and only track to the first

order in every conversion factor in the main text.

Lastly, �Rnl(x) can be decomposed into the SHE, EE, and DMC contributions:

�Rnl,sH(x) =
2wD

IσN

θsH∂xsz

= R0Cinje
−q̃ cos θLx

{[

−θsHq̃ls cos θp +
θsHls

lR
(sin θL cos θp + sin θp cos ϕp cos θL )

]

cos
[(

l−1
R − q̃ sin θL

)

x
]

+
[

−θsHq̃ls sin θp cos ϕp −
θsHls

lR
(cos θL cos θp − sin θp cos ϕp sin θL )

]

sin
[(

l−1
R − q̃ sin θL

)

x
]

}

, (A15)

�Rnl,EE(x) = −
2wD

IσN

θsHl−1
R sx

= R0Cinje
−q̃ cos θLx

{

−
θsHls

lR
(sin θL cos θp + sin θp cos ϕp cos θL ) cos

[(

l−1
R − q̃ sin θL

)

x
]

+
θsHls

lR
(cos θL cos θp − sin θp cos ϕp sin θL ) sin

[(

l−1
R − q̃ sin θL

)

x
]

}

, (A16)

�Rnl,DMC(x) = −
2wD

IσN

l−1
DMCsx

= R0Cinje
−q̃ cos θLx

{

−
ls

lDMC

(sin θL cos θp + sin θp cos ϕp cos θL ) cos
[(

l−1
R − q̃ sin θL

)

x
]

+
ls

lDMC

(cos θL cos θp − sin θp cos ϕp sin θL ) sin
[(

l−1
R − q̃ sin θL

)

x
]

}

. (A17)
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APPENDIX B: SCATTERING RATES AND SOURCES

The source term Q(r, t ) on the right-hand side of the equation for the spin density [cf. Eq. (43)] is given by the following

expressions:

Qx(r, t ) = −
sx(r, t )

τEY

− 2αasp

Jy(r, t )

vF

− 2αR

J z
x (r, t )

vF

, (B1)

Qy(r, t ) = −
sy(r, t )

τEY

+ 2αasp

Jx(r, t )

vF

− 2αR

J z
y (r, t )

vF

, (B2)

Qz(r, t ) = −
sz(r, t )

τ⊥
EY

+ 2α⊥
R

(

J x
x (r, t )

vF

+
J

y
y (r, t )

vF

)

. (B3)

Next, the source term χa
i (r, t ) of the time-evolution equation of the spin density [cf. Eq. (45)] is given by the following

expressions:

χ z
x (r, t ) = −

J z
x (r, t )

τc

+ αskJy(r, t ) + αRvF sx(r, t ), (B4)

χ z
y (r, t ) = −

J z
y (r, t )

τc

− αskJx(r, t ) + αRvF sy(r, t ), (B5)

χ x
x (r, t ) = −

J x
x (r, t )

τ ′
c

− α⊥
R vF sz(r, t ) − αLDJ

y
y (r, t ), (B6)

χ y
y (r, t ) = −

J
y

y (r, t )

τ ′
c

− α⊥
R vF sz(r, t ) − αLDJ

x
x (r, t ), (B7)

χ y
x (r, t ) = −

J
y

x (r, t )

τ ′′
c

+ α⊥
LDJ

x
y (rs, t ), (B8)

χ x
y (r, t ) = −

J x
y (r, t )

τ ′′
c

+ α⊥
LDJ

y
x (r, t ). (B9)

Finally, in terms of the quantum mechanical amplitudes for scattering with a single impurity, the various scattering and relaxation

rates are given by the following expressions:

αasp =
−2πnimp

h̄
N0Re(γIγ

⋆
R ), (B10)

αsk =
πnimp

h̄
N0Im(γIγ

⋆
0 ), (B11)

αR =
nimp

h̄
[Re(γR) + πN0Im((γ0 + γI )γ ⋆

R )], (B12)

α⊥
R =

nimp

h̄
[Re(γR) + πN0Im((γ0 − γI )γ ⋆

R )], (B13)

1

τc

=
πnimp

2h̄
N0[|γ0|2 + 3|γI |2 + 4|γR|2], (B14)

1

τ ′
c

=
πnimp

2h̄
N0[|γ0|2 + |γI |2 + 6|γR|2], (B15)

1

τ ′′
c

=
πnimp

2h̄
N0[|γ0|2 + |γI |2 + 2|γR|2], (B16)

1

τEY

=
2πnimp

h̄
N0(|γI |2 + |γR|2), (B17)

1

τ⊥
EY

=
4πnimp

h̄
N0|γR|2, (B18)

αLD =
πnimp

h̄
N0[Re(γ0γ

⋆
I ) + |γR|2], (B19)

α⊥
LD =

πnimp

h̄
N0[Re(γ0γ

⋆
I ) − |γR|2]. (B20)

245424-12
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