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Abstract1

Regression modelling where explanatory variables are measured with error is a common prob-2

lem in applied sciences. However, if inappropriate analysis methods are applied, then unreliable3

conclusions can be made. This work deals with estimation and diagnostic analytics in regression4

modelling based on the Birnbaum-Saunders distribution using additive measurement errors. The5

maximum pseudo-likelihood and regression calibration methods are used for parameter estima-6

tion. We also carry out a residual analysis and apply global and local diagnostic techniques in7

order to detect anomalous and potentially influential observations. Simulations are conducted to8

validate the proposed approach and to evaluate performance. A real-world data set, related to9

earthquakes, is used to illustrate the new approach.10

Keywords: Diagnostic techniques; Likelihood methods; Measurement errors; Monte Carlo11

simulation; Ox and R software; Regression analysis.12

1 Introduction13

When studying the relationship between a variable of interest (the response) and a set of ex-14

planatory variables (the covariates), ignoring possible measurement error in the explanatory variables15

can cause inconsistent estimators of model parameters; see Stefanski (1985) and Skrondal and Kuha16

(2012). In this case, the estimators obtained by some usual estimation method, such as least squares17

or maximum likelihood (ML), when the unobserved covariates are simply replaced by the observed18

covariates, are called naive estimators. Instead, when variables are subject to measurement error, or19

are not observed directly, errors-in-variables models should be used, otherwise unreliable inferential20

results could be obtained; see Stefanski and Carroll (1985).21
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There are many reasons why such errors occur, the most common ones being instrument errors.22

For example, these errors can be present in agriculture and environmental variables, such as rainfall,23

soil nitrogen content, farm crop acreage; in medical variables, such as blood pressure, pulse rate,24

temperature, and blood analytics; in management sciences, social sciences and related other fiends,25

many variables can only be measured with error. In addition, Buonaccorsi (2010, Ch.1, pp. 1-3)26

mentioned several examples where measurement error occurs. A relevant specific environmental27

example is described in Fuller (1987, Ch.1, p. 18), where yield of corn is related to the level of28

nitrogen in the soil, and that this level is measured with error as it is obtained indirectly through29

laboratory analysis.30

In the statistical literature, errors-in-variables regression models are often formulated in terms of a31

response as a function of covariates, which are measured with error, or are indirectly observed. Thus,32

in place of true measurements of the covariates, values of another covariate are measured with error.33

Three forms of modelling are often used when such measurement problems exist: (i) structural mod-34

elling, where the unobserved covariate is described by a probability distribution; (ii) functional mod-35

elling, where the unknown values of the covariates are treated as parameters and (iii) ultra-structural36

modelling. Note that the ultra-structural model is a generalization of the structural and functional37

models; see Gleser (1991). In this paper, we consider a BS errors-in-variables model where the unob-38

served covariate follows a normal distribution, that is, a structural model, which is a particular case of39

the ultra-structural model. In addition to theoretical and computational problems, the structural and40

functional models can suffer from non-identifiability and unbounded likelihood function problems,41

respectively, as described by (Kendall and Stuart, 2010, Ch. 29, p. 380). Therefore, one of the objec-42

tives of the methodology generated from errors-in-variables models is to find consistent estimators of43

the parameters of interest. Several methods lead to consistent estimators in structural and functional44

linear models. Some of them involve explicit bias correction of the estimators, while others propose45

alternative estimators under particular assumptions, as shown by Fuller (1987, Ch.1, p. 18) and Cheng46

and Van Ness (1999, Ch. 1, pp. 1-48). For the case of non-linear models, some proposed methods are47

suitable only for estimates under the structural models approach, as they require knowledge of the48

conditional distribution of the unobserved covariate given the observed covariates; see (Carroll et al.,49

2006, Ch. 3, p. 65). These estimation methods include maximum pseudo-likelihood techniques and50

regression calibration; see Guolo (2011).51

Errors-in-variables modelling has been addressed using parametric distributions such as the beta52

and simplex laws; see Carrasco et al. (2014) and Carrasco et al. (2019). A plausible alternative dis-53

tribution to derive errors-in-covariates models is the Birnbaum-Saunders (BS) distribution, which is54

skewed to the right and unimodal, having two parameters which modify its shape and scale. The BS55

distribution has been widely studied and applied in different areas, including engineering and envi-56

ronmental sciences; see Marchant et al. (2013, 2018, 2019), Leiva et al. (2015, 2016), Balakrishnan57

and Kundu (2019), Martinez et al. (2019), and references therein. In statistical modelling, the BS dis-58

tribution has received considerable attention. Rieck and Nedelman (1991) developed a BS log-linear59

model based on the logarithmic version of the BS distribution (in short log-BS), and established a60

relationship between the BS and log-BS distributions. Subsequently, Villegas et al. (2011) considered61

an extension of the BS log-linear model, proposed by Rieck and Nedelman (1991), using a BS mixed62

log-linear model. Leiva et al. (2014) focused modelling on a re-parameterization of the BS distri-63

bution. However, although a vast literature on errors-in-variables models exists, formulations of this64

type based on the BS distribution are still unexplored. We extend the errors-in-variables modelling65
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framework for dealing with covariates measured with errors to include the BS distribution. This adds66

a new option to the toolbox for applied statistical analysis of error-in-variable problems, which is67

especially designed for skew measurements.68

Diagnostic analytics, a vital step in any modelling, consists of checking model assumptions and69

identifying departures from these assumptions, as well as identifying the existence of outlying and70

influential cases. Residuals can be based on their standardized ordinary versions (Leiva et al., 2016),71

built from deviance components (McCullagh and Nelder, 1983, Ch. 2, p. 35), or using generalized72

versions (Cox and Snell, 1968). Many studies have used residuals in regression modelling. Pregibon73

(1981) proposed a deviance component residual in the class of generalized linear models. McCullagh74

and Nelder (1983, Ch. 6, p. 398) presented a standardization to correct for the effects of skewness75

and kurtosis. Atkinson (1985) used Monte Carlo methods to construct bands for the residuals called76

envelopes, which allows appropriate interpretation if the residuals have the expected distribution un-77

der the model assumptions. Williams (1987) constructed envelopes in generalized linear models.78

Fuller (1987, Ch. 1, p. 25), Carroll and Spiegelman (1992) and Buonaccorsi (2010, Ch. 4, p. 94) pre-79

sented residuals in the presence of measurement errors, suggesting the use of residual plots rather than80

estimating the predicted values of the unobserved variable. Global and local influence techniques to81

detect potentially influential cases were proposed by Cook (1977, 1986) and Cook et al. (1988). Some82

recent papers on the topic are attributed to Santana et al. (2011), Marchant et al. (2016), Garcia-Papani83

et al. (2017, 2018a,b), Huerta et al. (2018, 2019), Leão et al. (2018), Saulo et al. (2019), and Rodriguez84

et al. (2020).85

The objective of this work is to derive a methodology based on BS errors-in-variables models. The86

remainder of this paper is organized as follows. In Section 2, we formulate a BS regression model87

with measurement errors under additivity, whereas its parameter estimation is considered in Section88

3. Section 4 presents methods for diagnostic analytics. In Section 5, we describe the numerical results89

from a simulation study to evaluate the performance of the estimators and a real data illustration to90

show the potential applications of our methodology. Finally, some conclusions and suggestions for91

future work are given in Section 6.92

2 The model93

In this section, we provide background to the BS and log-BS distributions, as well as their mod-94

elling. Then, we formulate the new errors-in-variables model based on the log-BS distribution.95

2.1 The Birnbaum-Saunders distribution96

Consider a random variable T that follows a BS distribution, which is denoted by T ∼ BS(α, η),
with shape parameter (α > 0) and scale parameter (η > 0). The probability density function of T is

given by

fT (t;α, η) =
t−3/2(t+ η)

2α
√
n

φ

(
1

α

(√
t

η
−
√

η

t

))
, t > 0,

where φ represents the probability distribution function of the standard normal distribution, while η97

is also the median of the distribution. Rieck and Nedelman (1991) developed a sinh-normal (SN)98

distribution. If the random variable Y follows an SN distribution with shape (α > 0), location99
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(µ ∈ R), and scale (σ > 0) parameters, its probability density function is expressed as100

fY (y;α, µ, σ) =
2

ασ
cosh

(y − µ

σ

)
φ

(
2

α
sinh

(y − µ

σ

))
, y ∈ R,

and then the notation Y ∼ SN(α, µ, σ) is used. If T ∼ BS(α, η), then Y = log(T ) ∼ SN(α, µ, σ =101

2), where µ = log(η). For this reason, the SN distribution is also known as the log-BS distribu-102

tion, where Y ∼ log-BS(α, µ). Rieck and Nedelman (1991) proposed a fixed-effects log-linear BS103

regression model with systematic component µi = z⊤i γ, for i = 1, . . . , n, where µi is the mean of104

Yi ∼ log-BS(α, µi), γ ∈ R
p is the vector of the regression coefficients, and z⊤i = (zi1, . . . , zip)

⊤ is105

the vector of covariates.106

2.2 Birnbaum-Saunders errors-in-variables models107

In practice, some covariates may not be directly observed but, instead, are measured with errors.108

To illustrate this situation in the log-BS regression model, we assume the presence of a single covariate109

obtained with error. This methodology can then be easily extended to situations in which the data set110

has more than one covariate measured with error. Specifically, we consider that µi = z⊤i γ + βxi,111

where β ∈ R is the unknown parameter and xi is the unobserved true variable. As mentioned above,112

models with measurement errors can be addressed in three ways. In this work, we study the log-BS113

regression model with measurement errors under the structural approach. Thus, we leave the analysis114

under the functional approach to future research.115

Suppose (y1, w1), . . . , (yn, wn) are pairs of variables observed in a sample of size n — here, we

omit the vector of covariates zi from the notation since they are known and fixed. In addition, recall

that x1, . . . , xn are unobserved true variables corresponding to the observed variables w1, . . . , wn.

Furthermore, let θ = (θ⊤1 ,θ
⊤
2 )
⊤ denote the vector of model parameters with θ1 representing the

parameters of interest and θ2 are irrelevant parameters known as nuisance parameters. The joint

probability density function of (Yi,Wi), for the case i, is obtained by integrating with respect to Xi

the joint probability density function of the complete set (Yi,Wi, Xi), corresponding to

fYi,Xi,Wi
(yi, xi, wi;θ1,θ2) = fYi,Xi|Wi=wi

(yi, xi;θ1,θ2)fWi
(wi;θ2).

Therefore, the associated log-likelihood function is given by116

ℓ(θ1,θ2) =
n∑

i=1

log

(∫
fYi,Wi|Xi=xi

(yi, wi;θ1,θ2)fXi
(xi;θ2)dxi

)
. (1)

In general, the likelihood function defined in (1) is analytically intractable due to the presence of117

the integral. An approach used in the literature to approximate the integral is the Gaussian-Hermite118

quadrature method, which is formulated as119

∫

R

exp(−x2)f(x)dx ≈
Q∑

q=1

νqf(sq), (2)
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where νq, sq are the weights and roots of the Hermite polynomial, respectively, whereas f is the func-120

tion to be approximated; see (Abramowitz and Stegun, 1972, p. 890). In models with measurement121

error, practical situations lead us to assume an additive or multiplicative structural link between the122

observed variable Wi and the unobserved true variable Xi. Here, we assume an additive structure.123

SupposeXi is an unobserved covariate, for i = 1, . . . , n and the covariateWi is observed in place

of Xi, assuming

Wi = τ0 + τ1Xi + εi, i = 1, . . . , n,

where (ε1, . . . , εn) is a vector of independent random errors and τ0, τ1 are possibly unknown parame-124

ters. Carrasco et al. (2014) defined τ0 and τ1 as the additive and multiplicative bias of the mechanism125

of measurement errors, respectively. If τ0 = 0 and τ1 = 1, the model reduces to the classical measure-126

ment error model. Under the structural approach, we assume thatXi ∼ N(µX ; σ
2
X) and εi ∼ N(0; σ2

ε).127

The log-likelihood function for a sample of size n is given by128

ℓ(θ) =
n∑

i=1

log(fWi
(wi;θ2)) +

n∑

i=1

log

(∫
fYi|Xi=xi

(yi;θ)fXi|Wi=wi
(xi;θ2)dxi

)
, (3)

where fYi|Xi=xi
is the log-BS density, fXi|Wi=wi

is the density of the conditional distribution of Xi

given Wi = wi, which is normally distributed with mean and variance defined by

µX|W = µX + k(wi − µX) and σ2
X|W = σ2

εk,

for k = σ2
X/(σ

2
X+σ2

ε), and fWi
is the marginal probability density function ofWi. From (2), and using129

the standardization transformation (X−µX|W )/σX|W to reduce the the conditional distribution ofXi130

given Wi = wi to a standard normal, the log-likelihood function defined in (3) can be approximated131

by132

ℓ(θ) =
n∑

i=1

log(fWi
(wi;θ2)) +

n∑

i=1

log

(
Q∑

q=1

νq√
π
f
Yi|Xi=µx|w+

√

2σ2

x|w
sq
(yi;θ)

)
.

3 Estimation133

In this section, we use the maximum pseudo-likelihood and regression calibration estimation tech-134

niques. The simulation studies of Carrasco et al. (2014) and Guolo (2011) showed that the maximum135

pseudo-likelihood estimation method provides the best asymptotic properties for the estimators. How-136

ever, the regression calibration method, which is widely used because of its computational simplicity,137

presents slightly biased estimators.138

3.1 Maximum pseudo-likelihood139

Consider θ = (θ⊤1 ,θ
⊤
2 )
⊤ as defined above. The central idea of the maximum pseudo-likelihood

estimation method is to replace the vector of nuisance parameter vector θ2 with a consistent estimator

in the original likelihood function, thereby generating a pseudo-likelihood function. The pseudo-

log-likelihood function is maximized in two steps. First, such as in Skrondal and Kuha (2012) and
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Carrasco et al. (2014), we estimate θ2 by maximizing a reduced log-likelihood function defined as

ℓr(θ2) =
n∑

i=1

log(fWi
(wi;θ2)),

which, using the approach defined in Guolo (2011), can be written as140

ℓr(θ2) =
n∑

i=1

log

(∫
fWi|Xi=xi

(wi;θ2)fXi
(xi;θ2)dxi

)
. (4)

In the model with additive measurement errors, the second step consists of plugging the estimate θ̂2

obtained using (4) into the log-likelihood function defined in (3), the result of which is the pseudo

log-likelihood function expressed as

ℓp(θ1, θ̂2) =
n∑

i=1

log
(
fWi

(wi; θ̂2)
)
+

n∑

i=1

log

(∫
fYi|Xi=xi

(yi;θ1, θ̂2)fXi|Wi=wi
(xi; θ̂2)dxi

)
.

3.2 Regression calibration141

Regression calibration is a simple and widely-used method, which can be applied to any regression142

model with measurement error to estimate parameters, and it has less computational burden than the143

ML method; see Thurston et al. (2005), Carroll et al. (2006, Ch. 4, pp. 65-96), Freedman et al. (2008),144

and Guolo (2011). The central idea of this method is to replace the unobserved variable Xi with an145

estimate of the conditional expectation of Xi given Wi = wi, Ê(Xi|Wi = wi), in the original log-146

likelihood function. This allows us to obtain a modified version of the usual log-likelihood function147

of the BS log-linear regression model expressed as148

ℓrc(θ1) = −n

2
log(2π) +

n∑

i=1

log

(
2

α
cosh

(
yi − µi

2

))
− 1

2

n∑

i=1

(
2

α
sinh

(
yi − µi

2

))2

,

where µ∗i = z⊤i γ + x∗iβ, with x∗i = Ê(Xi|Wi = wi) = µ̂X + k̂(wi − µ̂X), k̂ = σ̂2
X/(σ̂

2
X + σ̂2

ε), and k̂
being known as reliability ratio. In this case,

w =
1

n

n∑

i=1

wi, s2W =
1

n− 1

n∑

i=1

(wi − w)2

are the optimal sampling estimators of µ̂X and σ̂2
X + σ̂2

ε , respectively.149

4 Diagnostic analysis150

In this section, we provide diagnostic methods based on residual analysis and global and local151

influence techniques for BS errors-in-variables log-linear regression models. Removing cases and152

re-estimating model parameters is a typical strategy for evaluating the impact of each case on the153
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parameter estimates. The Cook distance (Cook, 1977), originally developed for normal linear models,154

can be quickly assimilated and extended to different classes of models. However, the elimination of155

individual cases can lead to a masking effect, as it fails to detect jointly discrepant cases. Another156

important feature of diagnostic analytics is the detection of influential observations. Cook (1986)157

proposed assessing the influence of cases by examining the likelihood curvature.158

4.1 Residual analysis159

This subsection is concerned with finding a measure of the discrepancy between the adjusted

model and the data. Thus, one can define a residual as a measure using the difference yi − Ê(Yi).
Then, we define the ordinary residual for the BS regression model with measurement errors as

ri =
yi − µ̂∗i√
V̂ar(Yi)

, i = 1, . . . , n,

where µ̂∗i = z⊤i γ̂+X̂iβ̂ and V̂ar(Yi) = α̂2 (1 + 5α̂2/4) exp(µ̂∗i ), with X̂i = Ê(Xi|Wi = wi). Atkinson160

(1985) suggested that, in order to better interpret the normal probability plot of the proposed residuals,161

this must be supplemented by envelopes, which are simulated bands obtained byMonte Carlo methods162

from the adjusted model to assess the existence of serious deviations in the proposed distribution. In163

a half-normal probability plot, the ith residual value, for i = 1, . . . , n, is compared with the expected164

values of the order statistics, in absolute value, of the standard normal distribution, given by Φ−1((i+165

n− 1/8)/(2n+ 1/2)), where Φ is the N(0, 1) cumulative distribution function. The graphical plot of166

the simulated envelope can be used even if the residuals do not have a normal distribution. When this167

occurs, we do not expect the values to be close to the identity line.168

4.2 Global influence169

Global influence methods consist of studying the effect of removing the case i of a data set.

Consider the log-likelihood function depending on parameter θ denoted by ℓ(θ). Let θ̂(i) be the

estimator of θ without the case i. Influence of this case can be evaluated as the difference between

θ̂(i) and θ̂. If removal of a case causes significant variations in the estimates, more attention should

be given to this case. If θ̂(i) is far from θ̂, then the case i is considered to be potentially influential.

A first measure of global influence may be defined as a standardized norm and is also known as the

generalized Cook distance, defined by

CDi(θ) = (θ̂(i) − θ̂)⊤(−ℓ̈(θ))(θ̂(i) − θ̂), i = 1, . . . , n,

where ℓ̈(θ) = ∂2ℓ(θ)/∂θ∂θ⊤ is the corresponding Hessian matrix. An alternative measure (Cook et

al., 1988) to the Cook distance is the case-deletion likelihood distance (LDi), which is defined by

LDi(θ) = 2(ℓ(θ̂)− ℓ(θ̂(i))), i = 1, . . . , n,

where ℓ is the corresponding log-likelihood function.170
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4.3 Local influence171

The local influence method consists of checking the existence of cases that, under small perturba-

tions, cause significant changes in the results. The method suggested by Cook (1986) is based on the

perturbation likelihood distance (LD), which is defined as

LD(δ) = 2(ℓ(θ̂)− ℓ(θ̂δ)),

where θ̂ and θ̂δ are the ML estimates based on ℓ(θ) and on the perturbation log-likelihood function172

ℓδ(θ), respectively. Further, let δ = (δ1, δ2, . . . , δn)
⊤ denote a vector of perturbations and let δ0173

represent the absence of perturbation, so that ℓ(θδ0) = ℓ(θ).174

Cook (1986) proposed studying the local behaviour of LD(δ) around δ0 to evaluate how the175

geometric surface, called the influence graph, α̌(δ) = (δ,LD(δ))⊤, deviates from the tangent plane176

at δ0 as δ moves slowly away from δ0 (that is, when small perturbations are introduced into the177

model). This analysis is performed by examining the curvature of the surface α̌(δ) around δ0 in178

direction d. Cook (1986) showed that the curvature of the surface, Cd(θ), in the direction d is given179

by Cd(θ) = 2|d⊤F̈ (θ)d|, where F̈ (θ) = ∆
⊤(−ℓ̈(θ))−1∆, with ∆ = ∂2ℓδ(θ)/∂δ∂θ

⊤ being an180

array of dimension n(θ) × n evaluated at θ = θ̂, δ = δ0, and n(θ) representing the dimension of θ.181

One can express Cd(θ) as182

Cd(θ) = 2
n∑

m=1

λmvmv
⊤
m,

where λ1 ≥ λ2 ≥ · · · ≥ λn(θ) ≥ λn(θ)+1 ≥ · · · ≥ λn are the sorted eigenvalues of the array183

F̈ (θ) and v1, . . . ,vn are their respective eigenvectors. The interest is in the direction that produces184

the greatest local influence. This direction, dmax, is the normalized eigenvector corresponding to the185

largest eigenvalue of F̈ (θ). Comparing the graph of the eigenvector components of the dmax with the186

index of cases is useful in identifying influential observations.187

Lesaffre and Verbeke (1998) suggested considering the direction of the case i, the vector di =
(0, . . . , 1, . . . , 0)⊤, with the ith element being one. In this sense, a normal curvature, called the total

local influence of the case i, is given by

Cd,i(θ) = 2|∆⊤
i (−ℓ̈(θ))−1∆i|, i = 1, . . . , n,

where ∆i denotes the ith column of the matrix ∆. In addition, Lesaffre and Verbeke (1998) proposed

comparing the graph of Cd,i(θ) against i to detect influential cases. It is also suggested to use twice

the mean value of this measure as the cut-off value on the graph of Cd,i(θ). Thus, if for the case i the
following condition holds

Cd,i(θ) >
2

n

n∑

i=1

Cd,i(θ),

then it is classified as potentially influential. In this work, we consider the the diagnostic methods:188

case-weight, response variable, covariate measured without error, and covariate measured with error.189

The surfaces for the different schemes of perturbation are calculated numerically using the program-190

ming language Ox; see Doornik (2006).191
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5 Numerical results192

In this section, we provide the numerical results of our study divided into (i) a Monte Carlo193

simulation study to evaluate the performance of our proposal, and (ii) an illustration with real data of194

the BS errors-in-variables model.195

5.1 Simulation study196

The simulation study presented in this subsection is carried out to understand the asymptotic be-197

haviour of the estimators obtained by using the maximum pseudo-likelihood and regression calibra-198

tion methods. Our simulation model is given by Yi|Xi = xi ∼ log-BS(α, µi), for i = 1, . . . , n, where199

µi = γ0+γ1zi+βxi, wi = xi+εi, xi ∼ N(µX , σ
2
X), εi ∼ N(0, σ2

ε) and zi ∼ U(0, 6). We also assume200

α = 0.4, γ0 = 12, γ1 = −1.5, β = 2.0, µX = 3.0, σ2
X = 2.5 and k = 0.50 (high measurement er-201

ror), 0.75 (moderate measurement error) and 0.95 (low measurement error). In addition, we consider202

Q = 80 and n = 25, 50, 100, 200. Empirical mean, bias, and root of the mean square error (RMSE) of203

the estimators are calculated using the maximum pseudo-likelihood, calibration regression and naive204

methods. Tables 1-3 report the results obtained for this scenario when k = 0.50, k = 0.75 and 0.95,205

respectively. These tables show the superiority of the maximum pseudo-likelihood method compared206

to the regression calibration and naive methods when the measurement error is high. In this situation,207

the estimators of the regression calibration and naive methods seem to be biased, specifically for the208

parameters α and β, the latter of which is associated with the variable measured with error. These209

tables also show that as the sample size increases, the maximum pseudo-likelihood estimators become210

closer to the true values. When the reliability coefficient k is close to one (that is, the variance of the211

measurement error approaches zero), the estimators based on the maximum pseudo-likelihood and212

regression calibration methods display good results as the sample size increases, particularly for the213

parameter β, which is associated with the variable measured with error. However, if we do not assume214

the presence of measurement errors in the variable, this can lead to misinterpretation, specially when215

the variability of the measurement error is high. When the variance of the measurement error is small,216

the regression calibration method is less computationally demanding.217

5.2 Empirical illustration218

Our illustration analyzes magnitudes of Alaskan earthquakes for the period from 1969 to 1978219

taken from Fuller (1987, Ch. 1, p. 56). Three measures of earthquake magnitude have been observed,220

corresponding to the logarithm of the seismogram amplitude of 20-second surface waves, denoted by221

Yi, the logarithm of the seismogram amplitude of longitudinal surface waves, denoted by Xi, and the222

logarithm of maximum seismogram trace amplitude at short distance, denoted by Wi. The measure-223

ment error includes mistakes made in determining the amplitude of ground motion arising from the224

location of a limited number of observation stations related to the fault plane of the earthquake. Table225

4 gives statistical summary including minimum and maximum values, 1st and 3rd quartiles (Q1, Q3),226

median, mean, standard deviation and the coefficients of skewness (CS) and kurtosis (CK). This sum-227

mary indicates that the variable “surface wave” has moderate skewness indicating that a non-normal228

distribution is appropriate.229
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Table 1: Mean, bias and RMSE of the estimator of the indicated parameter and n with k = 0.50,
where the true parameter values are: α = 0.4, γ0 = 12, γ1 = −1.5, β = 2.0.

n Method Parameter Mean Bias RMSE

25

Naive

α 3.63 -3.23 3.50
γ0 15.01 -3.01 3.46
γ1 -1.50 0.00 0.41
β 1.00 1.00 1.05

Regression calibration

α 3.64 -3.24 3.51
γ0 8.92 3.08 21.99
γ1 -1.50 0.00 0.41
β 3.04 -1.04 7.41

Pseudo likelihood

α 0.49 -0.09 0.71
γ0 11.31 0.69 3.12
γ1 -1.50 0.00 0.26
β 2.23 -0.23 1.01

50

Naive

α 4.02 -3.62 3.80
γ0 14.98 -2.98 3.27
γ1 -1.50 0.00 0.32
β 1.00 1.00 1.03

Regression calibration

α 4.02 -3.62 3.80
γ0 10.72 1.28 10.71
γ1 -1.50 0.00 0.32
β 2.42 -0.42 3.58

Pseudo likelihood

α 0.45 -0.05 0.46
γ0 11.64 0.35 2.03
γ1 -1.50 0.00 0.19
β 2.12 -0.12 0.65

100

Naive

α 4.31 -3.90 4.00
γ0 15.00 -3.00 3.17
γ1 -1.50 0.00 0.25
β 1.00 1.00 1.02

Regression calibration

α 4.31 -3.91 4.02
γ0 11.62 0.38 2.11
γ1 -1.50 0.00 0.25
β 2.13 -0.13 0.64

Pseudo likelihood

α 0.46 -0.06 0.38
γ0 11.89 0.11 0.97
γ1 -1.50 0.00 0.14
β 2.04 -0.04 0.29

200

Naive

α 4.52 -4.12 4.19
γ0 15.00 -3.00 3.11
γ1 -1.50 0.00 0.20
β 1.00 1.00 1.01

Regression calibration

α 4.52 -4.12 4.19
γ0 11.84 0.16 1.39
γ1 -1.50 0.00 0.20
β 2.05 -0.05 0.40

Pseudo likelihood

α 0.49 -0.09 0.32
γ0 11.98 -0.01 0.66
γ1 -1.50 0.00 0.10
β 2.00 0.00 0.19
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Table 2: Mean, bias and RMSE of the estimator of the indicated parameter and n with k = 0.75,
where the true parameter values are: α = 0.4, γ0 = 12, γ1 = −1.5, β = 2.0.

n Method Parameter Mean Bias RMSE

25

Naive

α 1.99 -1.59 1.66
γ0 13.50 -1.50 1.85
γ1 -1.50 0.00 0.24
β 1.50 0.50 0.55

Regression calibration

α 1.99 -1.59 1.66
γ0 11.59 0.41 1.86
γ1 -1.50 0.00 0.24
β 2.143 -0.14 0.57

Pseudo likelihood

α 0.42 -0.02 0.42
γ0 11.91 0.09 1.13
γ1 -1.50 0.00 0.20
β 2.02 -0.02 0.32

50

Naive

α 2.14 -1.74 1.78
γ0 13.47 -1.49 1.70
γ1 -1.50 0.00 0.18
β 1.50 0.50 0.52

Regression calibration

α 2.14 -1.74 1.78
γ0 11.82 0.18 1.13
γ1 -1.50 0.00 0.18
β 2.06 -0.06 0.31

Pseudo likelihood

α 0.43 -0.03 0.35
γ0 11.98 0.02 0.77
γ1 -1.50 0.00 0.14
β 2.00 0.00 0.20

100

Naive

α 2.23 -1.83 1.86
γ0 13.50 -1.50 1.62
γ1 -1.50 0.00 0.14
β 1.50 0.50 0.52

Regression calibration

α 2.23 -1.83 1.85
γ0 11.92 0.08 0.79
γ1 -1.50 0.00 0.14
β 2.03 -0.03 0.21

Pseudo likelihood

α 0.43 -0.03 0.29
γ0 12.00 0.00 0.55
γ1 -1.50 0.00 0.10
β 2.00 0.00 0.14

200

Naive

α 2.28 -1.88 1.89
γ0 13.50 -1.50 1.57
γ1 -1.50 0.00 0.10
β 1.50 0.50 0.51

Regression calibration

α 2.28 -1.88 1.89
γ0 11.97 0.03 0.58
γ1 -1.50 0.00 0.10
β 2.001 -0.01 0.15

Pseudo likelihood

α 0.43 -0.03 0.23
γ0 12.00 0.00 0.39
γ1 -1.50 0.00 0.07
β 2.00 0.00 0.10
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Table 3: Mean, bias and RMSE of the estimator of the indicated parameter and n with k = 0.95,
where the true parameter values are: α = 0.4, γ0 = 12, γ1 = −1.5, β = 2.0.

n Method Parameter Mean Bias RMSE

25

Naive

α 0.80 -0.40 0.43
γ0 12.30 -0.30 0.57
γ1 -1.50 0.00 0.10
β 1.90 0.10 0.15

Regression calibration

α 0.80 -0.40 0.43
γ0 11.96 -0.04 0.52
γ1 -1.50 0.00 0.10
β 2.02 -0.02 0.12

Pseudo likelihood

α 0.27 0.13 0.25
γ0 11.98 0.02 0.48
γ1 -1.50 0.00 0.10
β 2.01 -0.01 0.12

50

Naive

α 0.84 -0.44 0.45
γ0 12.30 -0.30 0.45
γ1 -1.50 0.00 0.07
β 1.90 0.10 0.13

Regression calibration

α 0.84 -0.44 0.45
γ0 11.98 0.02 0.35
γ1 -1.50 0.00 0.07
β 2.01 -0.01 0.08

Pseudo likelihood

α 0.32 0.08 0.20
γ0 11.99 0.01 0.34
γ1 -1.50 0.00 0.07
β 2.01 -0.01 0.08

100

Naive

α 0.86 -0.46 0.46
γ0 12.30 -0.30 0.38
γ1 -1.50 0.00 0.05
β 1.90 0.10 0.11

Regression calibration

α 0.86 -0.46 0.47
γ0 11.99 -0.01 0.24
γ1 -1.50 0.00 0.05
β 2.00 0.00 0.06

Pseudo likelihood

α 0.35 0.05 0.15
γ0 11.99 0.01 0.24
γ1 -1.50 0.00 0.05
β 2.00 0.00 0.06

200

Naive

α 0.87 -0.47 0.47
γ0 12.30 -0.30 0.34
γ1 -1.50 0.00 0.03
β 1.90 0.10 0.11

Regression calibration

α 0.87 -0.47 0.47
γ0 12.00 0.00 0.17
γ1 -1.50 0.00 0.03
β 2.00 0.00 0.04

Pseudo likelihood

α 0.37 0.03 0.11
γ0 12.00 0.00 0.16
γ1 -1.50 0.00 0.03
β 2.00 0.00 0.04
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Table 4: Statistical summary of surface wave data.

Min Q1 Median Mean Q3 Max SD CS CK

3.60 4.43 5.05 5.08 5.60 7.00 0.79 0.31 -0.52

Here, we consider the maximum pseudo-likelihood method, which was found to give the best

results in the simulation. We propose a regression model with BS distributed measurement error, with

the structure

Yi|Xi = xi ∼ log-BS(α, µi), i = 1, . . . , n,

where µi = γ + βxi, Wi = π1 + π2xi + εi, Xi ∼ N(µX , σ
2
X), and εi ∼ N(0, σ2

ε), consequently230

Wi ∼ N(π1 + π2µX , π
2
2σ

2
X + σ2

e). To avoid identifiability problems, when considering the structural231

approach to measurement error models, the vector of parameters (σ2
ε , π1, π2)

⊤ can be obtained when232

we have replications of Wi or using an instrumental variable. Then, this vector can be considered233

as a nuisance parameter. Thus, the estimate of (σ2
ε , π1, π2)

⊤ is obtained when Xi ∼ N(µX , σ
2
X) and234

εi ∼ N(0, σ2
ε). Therefore, we take σ̂2

ε = 0.0873, calculated from the variance of the error (ε) in the235

model Wi = π1 + π2xi + εi, with Wi ∼ N(π1 + π2µX , π
2
2σ

2
X + σ2

e), π̂1 = 2.28835 and π̂2 = 0.55805.236

Estimates of the remaining parameters, their corresponding standard errors, z-scores and p-values237

using naive, maximum pseudo-likelihood, and regression calibration methods are shown in Table 5.238

From this table, note that the estimates obtained by the naive method are affected by the presence239

of the measurement error. We can also observe that the parameter γ is not significant when the240

measurement error is not considered in the model.241

Table 5: Estimates, standard errors and p-values of the indicated parameter with earthquake data.

Method Parameter Estimate Standard Error z-score p-value

Naive

α 0.5472 0.0491 11.1355 -

γ -1.3531 0.7484 -1.8078 0.071

β 1.2358 0.1433 8.6256 0.000

Pseudo likelihood

α 0.2003 0.2154 0.9297 -

γ -6.2210 2.3110 -2.6920 0.007

β 2.1677 0.4419 4.9049 0.000

Regression calibration

α 0.5472 0.0491 11.1355 -

γ -5.9903 1.2848 -4.6624 0.000

β 2.1251 0.2464 8.6256 0.000

In order to identify outlying and/or influential cases, residual, global and local influence plots are242

constructed. Figure 1(a) shows the ordinary residuals versus the index of cases. In this graph, we can243

see that the residuals are randomly distributed around zero without any evidence of lack of fit of the244

model. Also, note that the case # 54 can be considered as possibly influential.245

Graphs of global influence are presented in Figure 1(b)-(c), revealing that cases # 35 and # 54 have246

an impact on the maximum pseudo-likelihood estimates when they are removed from the data set. In247

addition, Figures 2 correspond to the measures of local and total local influence for the Alaskan248

earthquake data on the perturbation schemes of the model, of the response variable and covariate.249
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From these graphs, we can identify cases #30 and # 45 as being influential.250

We complete our diagnostic analytics by finding the percentage relative deviation, PRD = [(θ̂ −251

θ̂∗)/θ̂]× 100%, where θ̂∗ represents the estimator of θ obtained after removing one or more outlying252

and/or influential cases. Table 6 reports estimates, standard errors, z-scores, p-value and PRD when253

we remove the case # 54 from the data. From this table, the strong changes when deleting the case254

# 54, specifically in the parameters γ and β, when removing this case, are not significant. Then, we255

decide to keep these observations in the final predictive BS errors-in-variables model. Once the final256

model is established, we compare it to the Gaussian (normal) errors-in-variables model (standard257

model) by means of Akaike information criterion (AIC) and Bayesian information criterion (BIC).258

Note that the BS model has a better performance (AIC = 95.50,BIC = 101.88) than the normal259

model (AIC = 102.65,BIC = 109.04).260
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Figure 1: Index plot of the (a) ordinary residual, (b) generalized Cook distance and (c) likelihood

displacement for the earthquake data.

Table 6: Estimates, standard error, z-value, p-values and PRD (in %) for the indicated parameters

when the case # 54 is removed from earthquake data.

Parameter Estimate Standard error z-value p-value PRD (%)

α 0.04389 0.06072 0.72284 - 78.0879

γ -7.59199 5.38881 -1.40884 0.15888 -22.0381

β 2.42193 0.99916 2.42398 0.01535 -11.7281
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Figure 2: Index plot of |dmax| of (left) local influence and (right) total local influence for perturbation

of (a)-(b) case weigh, (c)-(d) response, and (e)-(f) covariate, using earthquakes data.

6 Conclusions261

In this work, we studied a model with measurement errors based on the Birnbaum-Saunders dis-262

tribution. We estimated its parameters using maximum pseudo-likelihood and regression calibration263

techniques, and also compared them with the method in which measurement errors are not consid-264

ered (naive likelihood method). The results suggest that not taking into account measurement errors265

leads to biased estimates, inducing possible inaccurate decisions — this has critical implications for266

many data-driven scientific studies. We also studied global, local and local total influence under three267

perturbation schemes, namely perturbation of cases, perturbation of the response variable, and per-268

turbation of the covariate measured with error. Then, we validated the proposed methodology with269

a real data set and demonstrated that the Birnbaum-Saunders errors-in-variables model has a better270

performance than the Gaussian errors-in-variables model for these data according to model selection271

criteria based on loss of information. This suggest that the BS error-in-variables model could also be272

useful in the analysis of other environmental data sets.273
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The proposed approach incorporates errors-in-variables modelling which accounts for situations274

where covariates are measured with error or indirectly. Such modelling leads to better estimation and275

hence more reliable prediction and inference. The use of the Birnbaum-Saunders distribution allows276

direct modelling of data sets which are take positive values and follow asymmetric (skewed to the277

right) distributions. Thus, the present study extended applicability of errors-in-variables modelling278

beyond the routine symmetric and normal distribution based approaches. Furthermore, the proposed279

diagnostic analytics complemented the modelling and allowed outlying and influential cases to be280

identified and hence obtained the final fitted models more robust. Thus, this methodology can have281

wide ranging applications and has great potential to have significant impact in data analysis. Note282

that error-in-variables models in general, and in particular our model, can also be used for prediction,283

considering x⋆
i (an estimate of the conditional expectation of Xi given Wi; see Section 3.2) as the284

predictor on a future unit.285

Further work should include extension of the methodology to functional and ultra-structural mod-286

elling approaches to give a full range of techniques. Here, we have only presented the methodology287

for a single covariate measured with error and hence application to situations in which the data set288

has more than one covariate measured with error will further highlight the modelling importance. In289

addition, the approach presented here has a high potential in applied science and there is substantial290

opportunity for development and validation on other important environmental problems. The method291

can be added to the toolbox of techniques of data scientists to better model error-in-variables problems292

and then leading to more reliable and robust decision making.293
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