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Background: Detectable Kaposi’s sarcoma–associated herpesvirus (KSHV) DNA in blood and increased antibody titres may 

indicate KSHV reactivation, while the transmission of KSHV occurs via viral shedding in saliva.

Methods: We investigated the risk factors for KSHV DNA detection by real-time polymerase chain reaction in blood and by 

viral shedding in saliva, in 878 people aged 3 to 89 years of both sexes in a rural Ugandan population cohort. Helminths were de-

tected using microscopy and the presence of malaria parasitaemia was identified using rapid diagnostic tests. Regression modelling 

was used for a statistical analysis.

Results: The KSHV viral load in blood did not correlate with the viral load in saliva, suggesting separate immunological controls 

within each compartment. The proportions of individuals with a detectable virus in blood were 23% among children aged 3–5 years 

and 22% among those 6–12 years, thereafter reducing with increasing age. The proportions of individuals with a detectable virus in 

saliva increased from 30% in children aged 3–5 years to 45% in those aged 6–12 years, and decreased subsequently with increasing 

age. Overall, 29% of males shed in saliva, compared to 19% of females (P = .008). 

Conclusions: Together, these data suggest that young males may be responsible for much of the onward transmission of KSHV. 

Individuals with a current malaria infection had higher levels of viral DNA in their blood (P = .031), compared to uninfected individ-

uals. This suggests that malaria may lead to KSHV reactivation, thereby increasing the transmission and pathogenicity of the virus.

Keywords. Kaposi’s sarcoma herpesvirus DNA; risk factors; Uganda.

Kaposi’s sarcoma-associated herpesvirus (KSHV) causes 

Kaposi’s sarcoma (KS), multicentric Castleman disease, and 

primary effusion lymphoma [1–6]. The prevalence of KSHV 

and incidence of KS both vary geographically [7–9], and are en-

demic in sub-Saharan Africa [10, 11].

Salivary exchange is the main route of transmission of KSHV, 

normally occurring in early childhood and increasing with age 

[12–15]. In a rural population cohort in Uganda (the general 

population cohort [GPC]), we previously reported KSHV in-

fections in children as young as 1 year [11, 16]. In addition to 

viral shedding in saliva, viral DNA detection in blood and in-

creased antibody titres to lytic antigens are markers of frequent 

KSHV reactivation [13]. The KSHV-associated oncogenesis 

and progression of diseases, as well as virus transmission, are all 

thought to be related to virus reactivation [17].

Viral DNA detection in blood has been associated with KS di-

sease risk and progression [18–21]. Additionally, treatment with 

combined antiretroviral therapy of KS patients living with acquired 

immunodeficiency syndrome has been shown to reduce the KSHV 

load in blood to undetectable levels [18, 22]. Determinants of KSHV 

DNA detection in blood among KSHV-seropositive people in the 

general population are not well understood. The presence of a viral 

load in plasma and peripheral blood mononuclear cells (PBMCs) 

has been reported mainly in high-risk groups, such as individuals 

living with human immunodeficiency virus (HIV) and patients 

with KSHV-related diseases [18, 23–27]. A  few studies have re-

ported KSHV viral loads in blood donors (adults) in nonendemic 

areas [28–30] and another study reported plasma viral loads in a 

population-based HIV survey in an endemic area [31].

Environmental factors may contribute to high KSHV trans-

mission in endemic areas. We have previously shown that 

KSHV seroprevalence is associated with malaria parasitaemia 

[16], higher malaria antibody titres [32], and helminth infec-

tions [33, 34]. We and others have reported that KSHV shed-

ding in saliva is more common in males, compared to females 

[35, 36], but no study has investigated KSHV viral loads in both 

blood and saliva in the same individuals within a population-

based study in a KSHV-endemic area.

This study investigated KSHV viral DNA detection in PBMCs 

and saliva in KSHV-seropositive individuals aged 3 to 89 years 
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from the GPC: a longstanding cohort in rural, southwestern 

Uganda. We also determined the risk factors associated with 

viral DNA detection and levels in PBMCs and in saliva, and the 

relationship between viral DNA detection in PBMCs and saliva 

and KSHV antibody levels in plasma.

METHODS

Study Population and Ethical Approvals

This work was carried out within the GPC. The GPC is a 

community-based cohort of 22 000 people in 25 adjacent vil-

lages in southwestern Uganda. It was established in 1989 to 

carry out HIV research; participants from the GPC have been 

followed ever since. Between July 2017 and November 2017, we 

nested a cross-sectional study within the GPC, enrolling 975 

KSHV-seropositive (tested previously [32]) individuals who 

were living without HIV and aged 3 to 89  years. Participants 

were selected randomly after stratification for age, sex, and 

household. Blood, stool, and saliva samples were collected from 

these individuals. PBMCs and plasma were obtained from blood 

for immunological and virological analyses. Stool samples were 

used for helminth diagnoses, while saliva samples were used 

for KSHV viral DNA detection and quantification. Socio-

demographic data were collected using standard question-

naires. This study was approved by the Uganda Virus Research 

Institute  (UVRI) Research and Ethics Committee (reference 

number GC/127/16/09/566), the Uganda National Council 

for Science and Technology (reference number HS2123), and 

the London School of Hygiene & Tropical Medicine (LSHTM) 

Ethics Committee (reference number 11881). Written informed 

consent was obtained from all adults aged 18 years and above. 

Parents or guardians consented for children below 18 years; ad-

ditionally, children aged 8–17 years provided written assent.

Laboratory Procedures

KSHV DNA was quantified in PBMCs and saliva from 878 

KSHV-seropositive individuals. About 2 million PBMCs and 

saliva pellets were processed for DNA extraction. Study parti-

cipants were instructed to rinse with 5 mL of Listerine mouth-

wash, emptying it, as well as saliva, in a falcon tube. Aliquots 

(of 1 mL each) of saliva were spun at 13 000 relative centrifugal 

force for 10 minutes to form saliva pellets. Thereafter, the super-

natant was removed, and the saliva pellet was stored at −80oC. 

Genomic DNA was extracted from PBMCs and saliva pellets 

using a QIAamp blood kit (Qiagen, Valencia, CA), following 

the manufacturer’s instructions. KSHV DNA was quantified 

using real-time polymerase chain reaction, following proced-

ures previously reported [13, 37, 38]. KSHV DNA was detected 

using primers and a probe specific to the K6 gene region [39]. 

Additionally, the numbers of cellular equivalents in PBMCs 

were determined using a quantitative assay specific to human 

endogenous retrovirus 3 [39], which is present in 2 copies per 

genomic cell. Raw copies were reported for saliva KSHV DNA. 

Samples were amplified in triplicate; the samples that were posi-

tive in 1 or 2 reactions in the KSHV K6 assay were designated as 

qualitative positives. The sensitivity of the K6 assay is 3 copies.

Using an in-house Luminex assay and enzyme-linked immu-

nosorbent assay, as previously reported [40–42], plasma sam-

ples were tested for immunoglobin G (IgG) antibody levels to 

the KSHV K8.1 (lytic) and open reading frame (ORF) 73 (la-

tent) antigens. The enzyme-linked immunosorbent assay was 

used to confirm serostatus, while the Luminex assay was used to 

determine antibody levels, due to its wider dynamic range. The 

presence of malaria parasitaemia was diagnosed using rapid di-

agnostic tests (ONE STEP Malaria HRP-II [Plasmodium falcip-

arum] and pLDH [Plasmodium species] Antigen Rapid Test). 

A  single stool sample was provided by each participant. This 

was analyzed for helminths (Schistosoma mansoni, Ascaris 

lumbricoides, Tichuris trichiura, Trichostrongylus spp, and hook-

worm) using the Kato Katz microscopy method, following the 

manufacturer’s instructions. Details of this procedure have been 

reported elsewhere [43, 44].

Statistical Analysis

A statistical analysis was carried out using STATA version 13 

(Statacorp, College Station, TX). Graphs were drawn using 

STATA and GraphPad Prism version 6.  Qualitative, positive 

samples were given a constant value of 0.04 for saliva and 0.5 

for PBMCs, which were below the values of the lowest quali-

fied samples for a quantitative analysis. Viral load levels were 

log
10

 transformed. First, the risk factors associated with viral 

DNA detection (as a categorical outcome variable) in saliva and 

blood, separately, were obtained using logistic regression mod-

elling. Thereafter, the risk factors associated with increasing 

levels of viral DNA (as a continuous outcome variable) in saliva 

and in blood were separately determined using linear regression 

modelling. Likelihood ratio tests were used to select the best fit 

models.

RESULTS

Study Participants’ Characteristics

We tested 878 individuals for KSHV viral DNA; 49% (410/834) 

were males and 3% (27/840), 11% (95/840), 13% (110/840), 

8% (67/840), 17% (139/840), 14% (121/840), 14% (118/840), 

9% (74/840), and 11% (89/840) were aged 3–5, 6–12, 13–18, 

19–25, 26–35, 36–45, 46–55, 56–65, and 66–89 years, respec-

tively (Table 1). The proportions of individuals with malaria 

parasitaemia were 4% (34/834) overall and 11% (13/120) 

among children aged 3–12  years. Previously, we reported an 

annual malaria prevalence of 18% in the same population 

[16]. The lower prevalence of malaria infection in this study 

might be attributed to sample collection during the dry season. 

Hookworm was the most prevalent helminth, at 15% (104/686), 

followed by Schistosoma mansoni and Ascaris lumbricoides at 

1% (8/686) each and Trichuris trichiura at 0.1% (1/686). We 
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may have slightly underestimated the true prevalence of hel-

minths, because a single-sample test was used rather than a 

triple-sample test.

Blood and Saliva DNA Detection and Levels 

We did not observe a correlation between KSHV DNA 

copy numbers in PBMCs and DNA copy numbers in saliva 

(Figure 1). The proportion of individuals with detectable viral 

DNA in saliva was higher than the proportion of people with 

the detectable viral DNA in PBMCs (Figure 2). Children had 

the highest proportions of detectable viral DNA in PBMCs 

(Figure 2A) and in saliva (Figure 2B), decreasing with 

increasing age in adults. The trends were similar for females 

and males, with males having higher proportions of detectable 

viral DNA in saliva.

Associations Between Risk Factors and DNA

The proportion of individuals with detectable viral DNA in 

PBMCs decreased with increasing age; this trend was significant 

even after adjusting for sex and parasite infections (Table 2).  

Individuals infected with malaria parasites had higher levels 

of KSHV DNA in blood, compared to malaria-uninfected in-

dividuals (adjusted regression coefficient 0.79 [confidence 

interval [CI], .07–1.50]; P = .031; Table 3). We observed no sta-

tistically significant associations with other measured risk fac-

tors, including age, sex, hookworm infection, and S.  mansoni 

infection (Table 3).

Associations Between Risk Factors and DNA in Saliva

Overall, males had a higher risk of shedding viral DNA, com-

pared to females (adjusted odds ratio 1.63 [CI,  1.14–2.34]; 

P = .008; Table 4). Similar to PBMCs, the proportion of parti-

cipants with shedding in saliva diminished with increasing age, 

even after adjusting for sex and parasite infections (P = .0001; 

Table 4). Additionally, compared to females, males had higher 

Table 1. General Characteristics and Parasite Infection Status

Sex, males 49% (410/834)

Age, mean (range) 36 (3–89)

Age groups

 2–5 3% (27/840)

 6–12 11% (95/840)

 13–18 13% (110/840)

 19–25 8% (67/840)

 26–35 17% (139/840)

 36–45 14% (121/840)

 46–55 14% (118/840)

 56–65 9% (74/840)

 66–89 11% (89/840)

Malaria parasitaemia

 Overall 4% (34/834)

 Children aged 3–12 years 11% (13/120)

Schistosoma mansoni infection status 1% (7/686)

Hookworm infection status 15% (104/686)

Ascaria lumbricoides infection status 1% (8/686)

Trichuris trichiura infection status 0.2% (1/685)

Data are among participants tested for Kaposi’s sarcoma–associated herpesvirus viral 

DNA. The presence of malaria parasitaemia was determined using rapid diagnostic tests. 

Helminth status was determined from a single stool sample using the Kato Katz method.

Figure 1. Kaposi’s sarcoma–associated herpesvirus (KSHV) viral load in saliva and in peripheral blood mononuclear cells. KSHV viral loads were measured using real-time 

polymerase chain reaction.
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levels of KSHV DNA in saliva (adjusted regression coefficient 

0.46 [CI, .05–.87]; P = .027; Table 5).

DNA Detection and Antibody Levels

Individuals with detectable viral DNA in PBMCs (Supplementary 

Figure 1A) and in saliva (Supplementary Figure 1B) had higher 

IgG antibodies to the K8.1 antigen (P  <  .0001), as previously 

reported [13]. There were no differences in IgG antibody levels 

to the ORF73 antigen between individuals with or without de-

tectable viral DNA in the blood (Supplementary Figure 1C) or 

in saliva (Supplementary Figure 1D).

DISCUSSION

This is the first population-based study to report on the pres-

ence and levels of KSHV viral DNA in the blood and saliva of 

apparently healthy people across the life course. The proportion 

of individuals with detectable viral DNA in saliva was higher 

than the proportion of individuals with detectable viral DNA in 

blood, consistent with previous reports [22, 45–47]. We previ-

ously reported KSHV and EBV DNA shedding in the saliva of 

children and their mothers in Uganda, and noted that Epstein-

Barr Virus DNA was shed more frequently and at higher levels 

than KSHV [38].

Figure 2. Proportion of individuals with detectable Kaposi’s sarcoma–associated herpesvirus (KSHV) in (A) peripheral blood mononuclear cells and (B) saliva. KSHV viral 

loads were measured using real time polymerase chain reaction. Abbreviation: KSHV, Kaposi’s sarcoma–associated herpesvirus.

Table 2. Risk Factors for the Presence of Detectable Kaposi’s Sarcoma–Associated Herpesvirus DNA in Blood (Categorically)

% Detectable Viral DNA in Blood OR (95% CI) P Value Adjusteda OR (95% CI) P Value

Age group

 3–12 23% (27/120) 1  1  

 13–25 15% (26/177) 0.59 (.33–1.08)  0.63 (.33–1.17)  

 26–50 7% (20/307) 0.24 (.13–.45)  0.29 (.15–.57)  

 50+ 8% (18/227) 0.30 (.16–.57) <.0001 0.34 (.16–.72) .0014

Sex

 Female 10% (41/419) 1  1  

 Male 12% (49/406) 1.27 (.82–1.96) .294 0.89 (.55–1.45) .638

Malaria parasitaemia

 Negative 10% (83/791) 1  1  

 Positive 21% (7/34) 2.21 (.93–5.24) .071 1.59 (.64–3.95) .321

Schistosoma mansoni

 Negative 11% (77/672) 1  1  

 Positive 43% (3/7) 5.80 (1.27–26.38) .023 11.04 (2.16–56.97) .004

Hookworm

 Negative 13% (74/576) 1  1  

 Positive 6% (6/103) 0.42 (.18–.99) .048 0.41 (.16–1.04) .061

Logistic regression was used for the statistical analysis. The presence of malaria parasitaemia was determined using rapid diagnostic tests. Helminth status was determined from a single 

stool sample using the Kato Katz method.

Abbreviations: CI, confidence interval; OR, odds ratio.

aAdjusted for age, sex, malaria parasitaemia, Schistosoma mansoni, and hookworm infection status. 
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In this study, we observed no correlation between levels of KSHV 

DNA in blood and in saliva. The detection of KSHV DNA in blood 

and in saliva may reflect a reactivation of the virus or an initial in-

fection that manifests with lytic replication. Viral shedding in saliva 

leads to transmission of the virus [13], while a viral load in blood 

has been implicated in disease risk and progression [18, 23]. The 

lack of a correlation between blood and saliva viral DNA suggests 

that the mechanisms for reactivation of the virus in blood and in sa-

liva may be different. This may imply that distinct immune control 

measures are required to prevent viral reactivation in the different 

compartments. For insistence, immunoglobin A production in sa-

liva may be important for viral control in oral fluids, while T and 

natural killer cell responses may play a more pivotal role in the 

control of viral reactivation in peripheral blood. Alternatively, envi-

ronmental factors, such as plant derivates that have been shown to 

reactivate KSHV in vitro [48], may play a role in viral reactivation 

in oral fluids if chewed. Therefore, studies of immune correlates of 

KSHV DNA detection in saliva and PBMC are warranted.

Table 3. Risk Factors Associated With Increasing Levels of Kaposi’s Sarcoma–Associated Herpesvirus DNA in Blood (Continuously)

Coef (95% CI) P Value Adjusteda Coef (95% CI) P Value

Age group

 3–12 Ref  Ref  

 13–25 −0.39 (−.86 to .07)  −0.35 (−.84 to .15)  

 26–50 0.19 (−.31 to .69)  0.26 (−.30 to .83)  

 50+ −0.32 (−.83 to .19) .084 −0.06 (−.70 to .57) .160

Sex

 Female Ref  Ref  

 Male 0.10 (−.27 to .47) .594 0.21 (−.19 to .61) .292

Malaria parasitaemia

 Negative Ref  Ref  

  Positive 0.71 (.05–1.38) .036 0.79 (.07–1.50) .031

Schistosoma mansoni

 Negative Ref  Ref  

 Positive 0.17 (−.87 to 1.21) .750 −0.15 (−1.30 to 1.00) .797

Hookworm

 Negative Ref  Ref  

 Positive 0.30 (−.45 to 1.05) .79 0.37 (−.46 to 1.21) .372

Linear regression modelling was performed on log
10

 transformed KSHV DNA levels for statistical analysis. The presence of malaria parasitaemia was determined using rapid diagnostic tests. 

Helminth status was determined from a single stool sample using Kato Katz method.

Abbreviations: CI, confidence interval; Coef, linear regression coefficient; KSHV, Kaposi’s sarcoma–associated herpesvirus; Ref, reference.

aAdjusted for age, sex, malaria parasitaemia, Schistosoma mansoni, and hookworm infection status.

Table 4. Risk Factors for the Presence of Detectable Kaposi’s Sarcoma–Associated Herpesvirus DNA in Saliva (Categorical)

% Detectable Viral DNA in Saliva OR (95% CI) P Value Adjusteda OR (95% CI) P Value

Age group

 3–12 42% (50/120) 1    

 13–25 31% (55/175) 0.64 (.40–1.40)  0.61 (.37–1.02)  

 26–50 18% (56/310) 0.31 (.19–.49)  0.38 (.24–.63)  

 50+ 17% (39/231) 0.28 (.18–.47) <.0001 0.30 (.18–.54) .0001

Sex

 Female 19% (79/423) 1  1  

 Male 29% (119/407) 1.80 (1.30–2.49) <.0001 1.63 (1.14–2.34) .008

Malaria parasitaemia

 Negative 24% (188/796) 1  1  

 Positive 29% (10/34) 1.35 (.63–2.87) .439 0.98 (.44–2.16) .952

Schistosoma mansoni

 Negative 26% (174/675) 1  1  

 Positive 43% (3/70) 2.16 (.48–9.74) .317 2.43 (.51–11.52) .265

Hookworm

 Negative 27% (158/578) 1  1  

 Positive 18% (19/104) 0.59 (.35–1.009) .054 0.66 (.38–1.14) .136

Logistic regression was used for statistical analysis. The presence of malaria parasitaemia was determined using rapid diagnostic tests. Helminth status was determined from a single stool 

sample using the Kato Katz method.

Abbreviations: CI, confidence interval; Coef, linear regression coefficient.

aAdjusted for age, sex, malaria parasitaemia, Schistosoma mansoni, and hookworm infection status. 
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The proportion of KSHV DNA detected in blood and saliva 

was highest in children, compared to adults. Previous studies 

have reported a high risk of KSHV seropositivity in children 

born to KSHV-seropositive mothers [13, 35, 49]. However, se-

ropositivity in children whose mothers were seronegative has 

also been reported [49, 50]. Our current study suggests that sib-

lings or playmates may also be a major source of transmission 

to uninfected children.

High viral loads among children could be associated with 

coinfections that are very prevalent in childhood, such as 

coinfection with malaria; we also observed the highest preva-

lence of malaria parasitaemia in the same age group. We showed 

that participants with malaria parasitaemia have higher levels 

of KSHV DNA in blood, compared to those uninfected with 

malaria. This is the first study to relate malaria parasitaemia di-

rectly with KSHV load in blood. We have previously reported 

associations between malaria (parasitaemia and antibodies) 

and KSHV seroprevalence [16, 32–34]. Results from the current 

study support a potential role of malaria in KSHV pathogen-

esis. The mechanisms for the association between malaria and 

KSHV viral load could include immunomodulation and dys-

function associated with repeated malaria infections [51, 52].

In the present study, males (both men and boys) were more 

likely to shed KSHV DNA in saliva and had higher levels of 

viral DNA, compared to females (women and girls). This is con-

sistent with previous studies by us and others [31, 36, 38]. Sex 

differences in the immune controls of KSHV infections might 

contribute to the higher risk of KS in men [53, 54]. These find-

ings warrant further study.

We previously reported that high KSHV K8.1 antibody titres 

were associated with and predictive of KS risk [55]. In the cur-

rent study, we have observed that people with detectable viral 

DNA in both blood and saliva have higher IgG antibody levels 

for K8.1, but not for ORF73, when compared to individuals 

without detectable viral DNA. This association confirms our 

previous hypothesis [55]: increased lytic antibody levels reflect 

more frequent KSHV reactivation.

In summary, our data are consistent with high rates of KSHV 

transmission in rural Uganda. This might be partly attributed to 

parasite coinfections, such as coinfection with malaria, which 

interferes with immune control or makes uninfected children 

susceptible to infections. Studies investigating the mechanism 

through which malaria affects KSHV are required. Additionally, 

the characterization of protective immune responses to KSHV 

is needed to inform vaccine development and to develop strat-

egies to lower KSHV transmission in endemic areas.
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Consisting of data provided by the authors to benefit the reader, the posted 
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Table 5. Risk Factors Associated With Levels of KSHV DNA in Saliva (Continuous)

Coef (95% CI) P Value Adjusteda Coef (95% CI) P Value

Age group

 3–12 Ref  Ref  

 13–25 −0.50 (−1.02 to .21)  −0.61 (−.13 to −.09)  

 26–50 −0.31 (−.82 to .21)  −0.26 (−.80 to .28)  

 50+ −0.78 (−1.35 to −.21) .049 −0.76 (−1.40 to −.11) .048

Sex

 Female Ref  Ref  

 Male 0.51 (.12–.89) .010 0.46 (.05–.87) .027

Malaria parasitaemia

 Negative Ref  Ref  

 Positive 0.20 (−.67 to 1.07) .651 0.05 (−.82 to .92) .909

Schistosoma mansoni

 Negative Ref  Ref  

 Positive −0.58 (−2.12 to .96) .460 −0.38 (−1.94 to 1.18) .635

Hookworm

 Negative Ref  Ref  

 Positive −0.36 (−.96 to .32) .326 −0.37 (−1.03 to .29) .270

Linear regression modelling was performed on log
10

 transformed KSHV DNA levels for statistical analysis. The presence of malaria parasitaemia was determined using rapid diagnostic 

tests. Helminth status was determined from a single stool sample using the Kato Katz method. Abbreviations: CI, confidence interval; Coef, linear regression coefficient; KSHV, Kaposi’s 

sarcoma–associated herpesvirus; Ref, reference.

aAdjusted for age, sex, malaria parasitaemia, Schistosoma mansoni, and hookworm infection status. 
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