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Discrete-modulation continuous-variable quantum

key distribution enhanced by quantum scissors
Masoud Ghalaii, Carlo Ottaviani, Rupesh Kumar, Stefano Pirandola, and Mohsen Razavi

Abstract—It is known that quantum scissors, as non-
deterministic amplifiers, can enhance the performance of
Gaussian-modulated continuous-variable quantum key distribu-
tion (CV-QKD) in noisy and long-distance regimes of operation.
Here, we extend this result to a non-Gaussian CV-QKD protocol
with discrete modulation. We show that, by using a proper setting,
the use of quantum scissors in the receiver of such discrete-
modulation CV-QKD protocols would allow us to achieve positive
secret key rates at high loss and high excess noise regimes of
operation, which would have been otherwise impossible. This
also keeps the prospect of running discrete-modulation CV-QKD
over CV quantum repeaters alive.

Index Terms—Quantum key distribution, quantum amplifiers,
quantum communication, cryptography.

I. INTRODUCTION

Quantum key distribution (QKD) is a promising technology

for establishing private cryptographic keys between two users

[1–3]. The security of QKD, which was first introduced in

1984 [4], is based on restricting the eavesdropper by the laws

of quantum mechanics rather than her ability to efficiently

solve certain mathematical problems of high computational

complexity [5]. If properly implemented, this makes QKD

secure against the most powerful computers now and in the

future.

QKD can be implemented using a number of optical

techniques, the most well-known genre of which relies on

encoding the key bits on, e.g., the polarization of single

photons, among other discrete degrees of freedom of optical

signals. Continuous-variable QKD (CV-QKD) protocols, such

as the Gaussian-modulated technique proposed by Grosshans

and Grangier in 2002 (GG02) [6, 7], are introduced as an

alternative class, where coherent communication techniques,

such as homodyne or heterodyne detection, are employed [8–

10]. In a CV-QKD protocol, data is encoded on the quadratures

of an optical field [6, 7, 11–13].

The progress in implementing CV-QKD protocols has been

noteworthy in the past few years [14, 15]. This has been
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facilitated by removing some of the security challenges arisen

from regenerating the local oscillator [16–18] at the receiver,

and by the involvement of some commercial actors [19] to

further deploy such technologies. Despite this progress, it is

generally believed that CV-QKD is perhaps a good option for

short-distance or low-loss links [20], while discrete-variable

QKD could be more suitable for long distances. This is partly

because of the difficulties with implementing highly efficient

reconciliation algorithms for CV-QKD, as well as the less

developed quantum repeater paradigms for CV systems.

The scope for long-distance CV-QKD has, however,

changed with some recent developments in the field. For

instance, one solution is to use non-deterministic amplification

[21–24]. It has been shown that by using a realistic imple-

mentation of an amplification device, e.g., a quantum scissor

(QS) [24–26], the security distance of Gaussian-modulated

CV-QKD protocols can be increased. Quantum scissors have

already been demonstrated experimentally [27, 28] and used

for entanglement distillation [29]. Using quantum scissors, or

similar ideas, the first generation of CV quantum repeaters

have then been proposed [30–32]. Another technique that can

potentially improve the rate-versus-distance behavior in CV-

QKD protocols is to use a non-Gaussian discrete modulation

[33–37]. It is generally perceived that, especially, at low signal-

to-noise ratio levels, which we have to deal with at long

distances, it would be easier to design an error correction

scheme for discrete-modulation encoding as opposed to the

Gaussian one [37, 38].

In this paper, we consider all above enabling factors within

a single setup to study the rate-versus-distance behavior for

a discrete-modulation CV-QKD system that uses quantum

scissors at its receiver. This is effectively the main building

block in the quantum repeater setup proposed in Ref. [30],

which, in our work, is used for discrete-modulation CV-QKD.

A realistic analysis of our setup could then be used to assess

the practicality of the proposed repeater setups. It has already

been shown that, by using an ideal non-deterministic linear

amplifier (NLA) at the receiver’s side, one can increase the

maximum transmission distance and tolerable excess noise

of the quadrature-phase-shift-keying (QPSK) protocol [23].

However, a study that accounts for a realistic NLA, such as

a quantum scissor, is missing. This is important, because one

of the key incentives for using discrete-modulation CV-QKD

is its similarity with existing coherent optical communications

systems, which possibly makes its adoption and implemen-

tation more straightforward. It is also important to consider

a physical realization of the NLA in our system, as opposed

to measurement-based ones [39–41], because otherwise the
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system cannot be used in a repeater setup. Measurement-

based NLAs often offer lower key rates when used in CV-

QKD setups [42], which is another reason for considering

the physical deployment of a QS in our setup. For further

clarification on this matter, interested readers are referred to

the discussions in Ref. [24].

The security analysis of discrete-modulation CV-QKD has

turned out to be more challenging than its Gaussian counter-

part. The reported analysis in Ref. [33] relies on the linearity

of the channel for its security. But, the authors admit that

this is not an easy condition to verify. In order to rectify this

problem, in Ref. [37], they come up with a modified scheme in

which they can relax the assumption on the channel linearity

by requiring Alice to send three types of signals: Gaussian

modulated ones for channel estimation, discrete-modulation

ones for key generation, and a range of decoy states to conceal

the discrepancy between the latter two in the eyes of an

eavesdropper. The decoy states would, effectively, make the

modulated signals look Gaussian, which makes the security

analysis more manageable. This approach, however, to a large

extent, takes away the practical aspects of discrete-modulation

CV-QKD. Very recently, new analyses have emerged, which

rely on numerical optimization of the key rate based on certain

constraints obtained from the measurement results [43, 44].

In our setup, we have another complication that results from

using the QS, which is non-deterministic. This would further

make the channel non-Gaussian, which implies that the opti-

mal attack by an eavesdropper could also be non-Gaussian. By

carefully engineering our system to remain close to Gaussian,

we can, however, obtain a reasonable estimation of the secret

key rate by restricting the eavesdropper to Gaussian attacks

enabled by an entangling cloner [45]. This allows us to use a

thermal-loss model for the channel, for which we calculate the

key rate. We show how the performance of our non-Gaussian

CV-QKD system is enhanced in this case, especially in high-

loss and high-excess noise regimes.

The outline of the paper is as follows. In Sec. II, we

describe the system under study. In Sec. III, we present the key

rate analysis of the QS-assisted CV-QKD protocol with non-

Gaussian modulation. We then discuss our numerical results

in Sec. IV and conclude our paper in Sec. V.

II. SYSTEM DESCRIPTION

In this section, we present our proposed QS-amplified CV-

QKD protocol with discrete modulation and its equivalent

entanglement-based (EB) version. Both schemes are depicted

in Fig. 1. Different components of the system are described

below.

A. Modulation and Detection

In a conventional non-Gaussian/discrete modulation pro-

tocol, a particular finite constellation of coherent states is

considered and used for encoding data. A constellation of four

and eight coherent states are the well-known cases [23, 33–

35, 37]. In this study, we focus on the QPSK protocol. We

assume that the sender, Alice (A), sends her prepared signals to

the receiver, Bob (B), via a quantum channel. In our proposed

𝜇

Receiver, B

Hom: X or P

Sender, A

Sender, A
Receiver, B

Hom: X or P

(a)

(b)

QS

QS

ො𝑎0 ො𝑎1

XA

PA 𝛼

𝑇, 𝜀tm
𝑇, 𝜀tm

Ψ|ۄ 01P

Ƹa2
Ƹa1

Ƹa3

መbN
መb3
መb2መb1𝑇 𝜇Ƹa0

ƸaN
Ψ|ۄ 01

Fig. 1. System description. (a) Schematic view of discrete-modulation CV-
QKD protocol equipped with a quantum scissor as part of its receiver. Here,
the four yellow circles at the sender side represent the constellation of the
four coherent states used at the encoder. (b) The entanglement-based CV-
QKD protocol equivalent to (a). The quantum channel is modeled by the
equivalent excess noise at the transmitter side, represented by εtm, and its
transmissivity T . |Ψ〉01, QS, Hom and P boxes, respectively, represent the
bipartite entangled state in Eq. (1), a probabilistic quantum scissor as seen
in Fig. 2, the homodyne detection and projective measurement modules in
{|ψk〉0} basis.

protocol, however, Bob is equipped with a single QS in order

to amplify the received signal. Bob applies the QS operation

just before his homodyne detection, which are both owned

and handled by him. The homodyne measurement results are

recorded whenever the QS operation is successful.

More precisely, the prepare and measure (P&M) version of

the protocol runs as follows. First, Alice randomly chooses a

coherent state from the set {|αk〉 = |αe(2k+1)iπ/4〉}3k=0, with

α ∈ ❘+, and sends it to Bob through a quantum channel; see

Fig. 1(a). Such a constellation can be generated by rotation of

a coherent state in the position-momentum phase space. The

parameter α can be optimized to give the maximum secret

key rate. In addition, we assume αk = (xAk + ipAk)/2, k =
0, . . . , 3, with real parameters xAk and pAk being chosen

randomly according to the following uniform probability mass

functions: fXA
(xAk) = fPA

(pAk) = 1/4. At the receiver,

Bob randomly measures one quadrature, x̂B = â†B + âB
or p̂B = i(â†B − âB), of the QS output using homodyne

detection, where â†B represents the creation operator for the

output mode of the QS. The trusted parties, Alice and Bob,

keep the detection results only if the QS operation is successful

in the respective round; that is, only one of detectors D1 or

D2, in Fig. 2, clicks. By doing reconciliation and privacy

amplification, the parties can then obtain a common string

of secret bits.

In order to calculate the secret key generation rate, espe-

cially the Holevo information term, it is often easier to con-

sider the equivalent EB scheme, which is shown in Fig. 1(b).

In the EB version, instead of randomly choosing and sending

single-mode coherent states, Alice measures one mode of a

bipartite entangled state, and sends the other one to Bob. In

the Gaussian modulation case, the employed entangled state

is a two-mode squeezed vacuum (TMSV) state, and Alice

measurement is heterodyne detection. In the case of the QPSK

protocol, it has been shown that one can start with a TMSV
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state, and apply a certain measurement to obtain the following

state [37]

|Ψ〉01 =

3∑

k=0

√
λk |φk〉0|φk〉1

=
1

2

3∑

k=0

|ψk〉0|αk〉1, (1)

where

|φk〉 =
−α2

2√
λk

∞∑

n=0

(−1)n
α4n+k

√
(4n+ k)!

|4n+ k〉

and

|ψk〉0 =
1

2

3∑

m=0

e(2k+1)imπ/4|φm〉0

are orthogonal non-Gaussian states, with λ0,2 =

e−α2/2
(
cosh(α2) ± cos(α2)

)
/2 and λ1,3 =

e−α2/2
(
sinh(α2) ± sin(α2)

)
/2. The subscripts 0 and 1

refer to optical modes represented by â0 and â1, respectively.

In the procedure described in Ref. [37], there is a chance that

instead of the state in Eq. (1), we end up with a decoy state.

In this paper, we focus only on the key generation part, which

results from the state in Eq. (1), and do not consider the

parameter estimation task, for which we should either send

Gaussian modulated states [37], or use numerical techniques

[43]. In the end, the equivalence of P&M and EB schemes of

the protocols is obtained via a proper projective measurement

P̂ in {|ψk〉0}, k = 0, . . . , 3, basis.

B. Quantum Channel

The parties are assumed to use a thermal-loss channel with

transmittivity T and an excess noise ε. A potential model for

such a channel is given by a beam splitter, with transmissivity

T , that mixes Alice’s signals and the eavesdropper’s thermal

state, given by the following expression:

ρ̂th =

∫
d2β

e−
|β|2

ε/2

πε/2
|β〉âN

〈β|, (2)

where âN is the annihilation operator corresponding to the

noise port, and d2β = dℜβdℑβ. The equivalent excess noise

at the input to the channel is then given by εtm = (1−T )ε/T .

In principle, the parties cannot tell what kind of channel

they have without proper parameter estimation. As we will

explain in Sec. III, the assumption of a thermal-loss channel

corresponds to the case of a Gaussian attack enabled by an

entangling cloner, which may not be optimal for our non-

Gaussian system. However, as long as the system does not

deviate considerably from the Gaussian framework, the results

obtained are expected to provide us with a reasonable estimate

of the potential key rate [46] that can be obtained by a more

rigorous analysis. We use the above model to calculate the

relevant parameters of the co-variance matrix when QSs are

in use.

SPS

Input signal 

Output signal 
Vacuum

𝜇
D1

D2
50:50

Γ𝑇 𝜇
 a3  a2

 a1  b2
 b3 b1 a0 |  Ψ 01

50:50

 bN

 aN

Fig. 2. The schematic view of a quantum scissor. Here, we assume that a
ready-to-shoot ideal single-photon source (SPS) is in use, and that the single-
photon detectors have unity efficiencies. The QS amplification gain is defined

as g =
√

(1− µ)/µ .

C. Quantum Scissors

Quantum scissors are at the core of the NLA module

proposed by Ralph and Lund [26]. A single QS has two beam

splitters in its setup, one of which is balanced while the other

has a transmittance µ; see Fig. 2. The 50:50 beam splitter

couples the incoming signal to a single photon that has gone

through the imbalanced beam splitter. A click on exactly one

of detectors D1 and D2 would herald success of the QS. We

note that an on-demand ideal single photon source assumed

here in our analysis.

Here we obtain the output state of the QS, upon successful

operation, for an input state ρ̂ = 1
4

∑3
k=0 |αk〉〈αk| to the

thermal-loss channel described in Sec. II-B. In order to do so,

we use the results reported in Ref. [24], in which the output

state of such a setup for an arbitrary coherent state at the input

has been derived. We then obtain

ρ̂QS(α) =a(α)|0〉1〈0|+ c(α)|1〉1〈1|, (3)

where ρ̂QS(α) is the density matrix at the output of the QS

upon successful operation and




a(α) = 2µ[2F (2F+1)+T |α|2]
(2F+1)3P PS(α)

e−
T |α|2

2F+1

c(α) = 2(1−µ)
P PS(α)

(
e
−

T |α|2

2F+1

2F+1 − e−
T |α|2

2F

4F

)
,

(4)

with F = 1
2 + 1

4Tεtm. In Eq. (4),

PPS(α) =
2[(2F + 1)2 − µ(2F + 1) + µT |α|2]

(2F + 1)3
e−

T |α|2

2F+1

− 1− µ

2F
e−

T |α|2

2F

=Psucc(α)/2, (5)

where Psucc(α) is the success probability for the QS.

An interesting observation from Eq. (3) is that the output

state of the QS is non-Gaussian. This is not just because we

have used non-Gaussian modulation, but even for a single

coherent state at the input, as discussed in Ref. [24], the

output state is in the subspace spanned by {|0〉, |1〉}. There are

two implications for this behavior. First, the QS amplification

cannot be noise free, as in an ideal NLA, but the amount of

noise can vary based on the input signal and the amplification

gain. Further, this non-Gaussianity can complicate the secu-

rity analysis of the protocol. In our work, we manage this

additional complexity by restricting the eavesdropper (Eve) to

collective Gaussian attacks [47], as we will discuss in Sec. III.
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The non-Gaussianity of the channel manifests itself in the

statistics that we can obtain from Bob’s homodyne measure-

ment. In particular, using similar techniques as in Ref. [24],

the output probability distribution of x̂B-quadrature can be

calculated as follows:

fXB
(xB) = tr[ρ̂QS(α)|xB〉〈xB |]

=
[
a(α) + 2c(α)x2B

]e−x2
B

√
π
, (6)

with x̂B |xB〉 = xB |xB〉. As can be seen in Eq. (6), similar to

the Gaussian-modulation case, the output probability distribu-

tion function is composed of a Gaussian and a non-Gaussian

term. In the regime, where a(α) ≫ c(α), we are very close

to a fully Gaussian system. For this to happen α needs to

be small. In the other extreme, when c(α) ≫ a(α), we get

a bimodal form for the output distribution, which is clearly

non-Gaussian. A similar observation, although via a different

technique, has been made in earlier experiments on QSs, where

the asymmetry in the measured Wigner functions grows with

increase in the intensity of the input state [27].

Similarly, we can work out the conditional output probabil-

ity distribution:

fXB
(xB |xAk) = tr[ρ̂QS,c(xAk)|xB〉〈xB |], (7)

where

ρ̂QS,c(xAk) =ac(xAk)|0〉1〈0|+ bc(xAk)|0〉1〈1|
+ b∗c(xAk)|1〉1〈0|+ cc(xAk)|1〉1〈1| (8)

is the QS output state conditioned on Alice sending a signal

with X quadrature xAk and observing a click on D1. In this

case,




ac(xAk) =
2µ
(
4F (2F+1)+T (α2+2x2

k)
)

(2F+1)3P PS
c (xAk)

e−
T (α2+2x2

k)

2(2F+1)

bc(xAk) = − 2
√

µ(1−µ)T xk

(2F+1)2P PS
c (xAk)

e−
T (α2+2x2

k)

2(2F+1)

cc(xAk) = 1− ac(xAk)

(9)

and

PPS
c (xAk) =

2(2F + 1)2 − 2µ(2F + 1) + µT (α2 + 2x2k)

(2F + 1)3

× e−
T (α2+2x2

k)

2(2F+1) − 1− µ

2F
e−

T (α2+2x2
k)

4F . (10)

We will later use the above expressions in order to calculate

the mutual information between the parties.

III. SECRET KEY RATE ANALYSIS

In this section, we present the key rate analysis for our QS-

equipped QKD system. We calculate the secret key generation

rate for our system under the assumption that the eavesdropper

is limited to Gaussian attacks. That is, we assume that the

eavesdropper replaces the channel with an entangling cloner,

where one part of a TMSV state is coupled, at a beam splitter,

with Alice’s signal and sent to Bob, while the other part would

be retained by Eve and will be measured once Alice and Bob

have sifted their data. In this case, we can assume that the

effective channel between Alice and Bob is a thermal-loss

channel as we described in Sec. II-B. Note that, the key rate

obtained in this case is not necessarily a lower bound on the

key rate in the most general case because the optimal attack

by an eavesdropper can be non-Gaussian. That is, for a given

joint state between Alice and Bob, the required purification by

Eve may not be obtained by an entangling cloner. Assuming

that Eve uses an entangling cloner, however, at each run of the

protocol, the state between Alice, Eve, and Bob, before the QS,

is pure. Now because in the QS operation we make a projective

measurement, the conditional state between Alice, Eve, and

Bob, after the QS, is also pure. This is exactly the same state

by which we calculate the Holevo information component of

the key rate. As it is pointed out in Refs. [46], the key rate

obtained in our case is expected to be a close approximation

to a true lower bound on the key rate for the nominal joint

state obtained by Alice and Bob.

In the asymptotic limit of many runs of the protocol, the

secret key rate of a CV-QKD protocol under collective attack

is given by [12]

K = βIAB − χEB , (11)

where β, IAB , and χEB are, respectively, the reconciliation

efficiency, the mutual information between the parties, and the

leaked/accessible information to Eve when reverse reconcili-

ation is used. However, since the QS is a non-deterministic

operation, the key rate should be multiplied by the average

probability of success, Psucc(α), where all possible inputs are

considered in the averaging. Therefore, the secret key rate

reads as follows

KQS ≥ Psucc(α)(βIAB − χEB). (12)

In our protocol, we discard data associated to the unsuccessful

events and use only the post-selected data in order to produce

a secret string of bits. In the following, we first derive the

exact value for IAB , in Sec. III-A, and an upper bound for

χEB , in Sec. III-B, for the thermal-loss channel.

A. Mutual Information

By definition, the mutual information of two random vari-

ables XA and XB is the difference between the entropy

function H(XB) and the conditional entropy H(XB |XA):

IAB = H(XB)−H(XB |XA), (13)

where

H(XB) =

∫
dxB fXB

(xB) log2
1

fXB
(xB)

(14)

and

H(XB |XA) =
1

4

3∑

k=0

∫
dxB fXB

(xB |xAk) log2
1

fXB
(xB |xAk)

.

(15)

Functions fXB
(xB) and fXB

(xB |xAk) are given in Eqs. (6)

and (7), using which and the above equations, we numerically

calculate the mutual information. We note that the input

quadrature is a discrete random variable whereas the output

is, in principle, continuous.
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B. Holevo Information

We upper bound the leaked information, χEB , by calculat-

ing the Holevo term for a Gaussian channel with the same co-

variance matrix (CM) between Alice and Bob’s quadratures

as that of our system [48, 49]. In order to find the CM, in

the case of our thermal-loss channel, we first need to find

the bipartite state between Alice mode â0 and Bob mode b̂3
for the proposed QPSK setup in Fig. 3. In doing so, we let

mode â1 of the state in Eq. (1) to propagate through the noisy

quantum channel, which we model via a beam splitter, with

transmissivity T , which couples Alice’s signal to the thermal

state in Eq. (2), and subsequently undergoes the QS operation.

Quantum scissors involve a measurement as they are success-

ful if only one of their detectors clicks. We define measurement

operator M̂ = (✶−|0〉1〈0|)⊗|0〉2〈0|, corresponding to a click

on detector D1 and no click on D2, where ✶ represents the

identity operator for optical mode entering D1, and |0〉1 and

|0〉2 are vacuum states corresponding to, respectively, optical

modes b̂1 and b̂2.

In order to calculate the joint state of modes â0 and b̂3, we

follow the same procedure as in Ref. [24] that relies on finding

input-output characteristic functions for the module Γ in Fig. 3.

Upon a successful QS operation, i.e., M̂ measurement, we

obtain

ρ̂03 =
1

4PPS

3∑

k=0

3∑

l=0

|ψk〉0〈ψl| ⊗ Ω̂kl
3 , (16)

where

Ω̂kl
3 =

∫
d2ξ3
π

ζklA (ξ3)D̂N (̂b3, ξ3) (17)

is the state that Bob measures, with D̂N (̂b, ξ) = eξb̂
†

e−ξ∗b̂

being the normally-ordered displacement operator of mode b̂.
In Eq. (17),

ζklA (ξ3) =

∫
d2ξ1
π

d2ξ2
π

χkl
A (ξ1, ξ2, ξ3) (18)

where, for |αk〉1〈αl| as the input state,

χkl
A (ξ1, ξ2, ξ3) =e

−F |ξ1−ξ2|2e
√

T
2 [α∗

l (ξ1−ξ2)−αk(ξ
∗
1−ξ∗2 )]

× e−
µ
2 |ξ1+ξ2+

√
2 gξ3|2e−

1−µ
2 |ξ1+ξ2−

√
2 /gξ3|2

× (πδ2(ξ1)− 1)
(
1− µ

2
|ξ1 + ξ2 +

√
2 gξ3|2

)

(19)

is the antinormally-ordered characteristic function of the out-

put states in Fig. 3 after tracing over the noise mode b̂N, which

belongs to a potential eavesdropper. Also, success probability

for measurement M̂ is given by

PPS =
1

4

3∑

k=0

∫
d2ξ1
π

d2ξ2
π

χkk
A (ξ1, ξ2, 0)

=
1

4

3∑

k=0

ζkkA (0) = ζ00A (0), (20)

where ζklA (0) is given by Eq. (23). This result exactly matches

that of the P&M scheme, given in Eq. (5). We remark that the

total success probability is given by Psucc = 2PPS = 2ζ00A (0),
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Fig. 3. Entanglement-based version of the QS-amplified CV-QKD scheme.
The noisy quantum channel and the QS are considered as a combined system,

with input modes â1 − â3, and âN, and output modes b̂1 − b̂3, and b̂N. The
initial state of modes represented by â0 − â1 is given by |Ψ〉01. The initial
state of the modes represented by operators â2, â3, and âN is, respectively,
given by a single photon, a vacuum, and the thermal state in Eq. (2).

which also accounts for the case of D2 clicking and D1 not

clicking.

Next, in order to find a lower bound on the secret key rate,

following original works in [33, 37], we use the optimality of

Gaussian collective attacks in the asymptotic limit for a given

CM [48, 49]. Now that the bipartite state between Alice and

Bob is given by Eq. (16), we can work out the first and second

order moments in the CM, which is turned out to be in the

standard symplectic form [13] below:

VAB =

(
Vx✶ Vxyσz
Vxyσz Vy✶

)
, (21)

where ✶ = diag(1, 1) and σz = diag(1,−1) are Pauli matrices.

In Appendix A, we derive the closed form expression of the

triplet (Vx, Vxy, Vy). Note that the obtained CM, in the case of

having a successful QS operation for vacuum state at the input,

i.e., when α = 0, results in identity CM, i.e., VAB = ✶⊗✶, as

one would expect. Having found the CM, one can then work

out a bound on Holevo information using the set of equations

given in Appendix C.

An important feature of the CM in Eq. (21) is its correlation

parameter, defined as Z
(QS)
4 = Vxy/

√
T , which characterizes

the amount of correlation between the parties’s quadratures

upon a successful QS operation. Figure 4 compares Z
(QS)
4

in our QS-based system with that of the no-QS setup, Z4,

in [37], and then compares both with that of the Gaus-

sian modulation case without (ZG) and with (Z
(NLA)
G ) an

ideal NLA. In the case of Gaussian modulation without an

NLA, instead of |Ψ〉01, we start with a TMSV state given

by
√
1− λ2

∑∞
n=0 λ

n|n〉0|n〉1, for which the corresponding

CM is given by

(
(VA + 1)✶ ZGσz
ZGσz (VA + 1)✶

)
, with ZG =

√
V 2
A + 2VA , where VA = 2λ2/(1− λ2) is its corresponding

modulation variance. The parameter λ in the above TMSV

state would ideally change to gλ once one arm of the TMSV

state goes through an ideal NLA with gain g [26]. The corre-

sponding correlation term, Z
(NLA)
G , can then be calculated by√

(V ′
A)

2 + 2V ′
A , where V ′

A = 2g2λ2/(1− g2λ2).
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Figure 4 compares the above four correlation parameters as

a function of VA. In the case of the QPSK protocol, VA = 2α2.

We can see that Z
(QS)
4 overtakes the two no-NLA curves at a

VA around 0.15. This suggests that the amount of correlation

between the trusted parties’ signals has been enhanced by the

use of a QS. This may imply that higher key generation rates

can be obtained in certain regimes of operation. One should,

however, note that by increasing VA, hence α, we may reduce

the success probability of the QS system. Furthermore, by

increasing α, Eve’s Gaussian attack would be further away

from her optimal attack. We will discuss this point in our

numerical results when we optimize the secret key rate over

system parameters. One final interesting point in Fig. 4 is that

the correlation term for the ideal NLA is always better than

the QS system. This may suggest that the earlier analysis that

rely on an ideal NLA may overestimate what can be achieved

with a realistic NLA system.

IV. NUMERICAL RESULTS

In this section, we present some numerical results for the

secret key rate of our QS-amplified QPSK CV-QKD system

and compare it with that of the no-QS protocol, and its

Gaussian modulated (GM) variants. To that end, we solve a

dual optimization problem. We find the maximum value for the

lower bound in Eq. (12) by optimizing over α, which specifies

the modulation variance, and the QS parameter g, which

specifies the QS amplification gain. In our numerical results,

for a channel with length L, we assume that T = 10−κL/10,

where κ = 0.2 dB/km is the loss factor for optical fibers.

Also, we nominally assume a reconciliation efficiency equal

to one and that Bob, upon successful QS events, uses an ideal

homodyne detection, with no electronic noise, to measure the

received signals.

Figure 5 shows the optimized key rates for the no-QS

[33, 37] and QS-equipped discrete modulation protocols versus

distance. We observe that the behavior of the different curves

shown in Fig. 5 is very much akin to the Gaussian modulation
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Fig. 5. Numerical results of the optimized secret key rate for QS-equipped
QPSK modulation CV-QKD protocol versus distance (dashed lines), as
compared to that of the protocol with no-QS (solid lines). The ultimate
thermal-loss PLOB bound [50] is shown at the top.

QS-equipped CV-QKD presented in Ref. [24]. In particular,

the QS-based systems are capable of beating their no-QS

counterparts after a certain distance, and considerably increase

the maximum security distance achievable by the underlying

QKD protocol. The crossover distance at an input excess noise

equal to 0 and 0.01 shot-noise units (SNU) is, respectively,

around 120 km and 110 km. In the case of εtm = 0.05,

the no-QS system has a very low reach, whereas, by using

a QS, the system can now provide positive secret key rates at

distances over 140 km. It can also be seen that the QS based

system offers either zero or very low secret key rates at short

distances. This, as pointed out in Ref. [24], can be because

of the additional noise by the QS, especially, for large inputs,

which requires us to use much lower values of α that would

be used in the no-QS system. This could make the signal

component, at short distances, less than the excess noise part,

hence resulting in no secure keys.

The opposite effect is seen at long distances where QS-

based systems are offering a key rate parallel to the funda-

mental bounds for secret key generation rate for a thermal-

loss channel (labeled by TL-PLOB). This is the bound given

in Eq. (23) of Ref. [50] at an equivalent mean thermal photon

number, n̄ = εtmT/(2(1 − T )), to our receiver excess noise

(here at εtm = 0.05) [51]. This extended security distance

suggests that once the input to the QS is low enough, which

is at long distances, the post-selection offered by the QS can

improve the signal-to-noise ratio to a level that positive secret

key rates are distillable. We have numerically verified that

positive key rates are indeed achievable for εtm < 0.09 for

the QS-based system.

The QS-equipped discrete modulation (DM) system in this

work seems to offer more resilience to excess noise and

channel loss than its GM counterpart considered in Ref. [24].

For instance, the maximum tolerable excess noise in the latter

case is around 0.06 SNU as compared to 0.09 SNU in the

former case. The secret key rate obtained at a high excess noise

value of 0.05 SNU is also higher for the DM versus GM case.

This has been shown in Fig. 6 where the secret key rate for
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both systems, in the presence and absence of a QS, has been

shown. This result is, however, counter-intuitive, and must be

taken with caution. There is a fundamental difference between

the GM and DM case in that the latter is not a Gaussian

modulation especially for large values of α. As shown in

Fig. 7, the optimal value of α is around 0.7 at εtm = 0.05. In

our analysis, we have, however, assumed that Eve is restricted

to a Gaussian attack, which will become less optimal as the

input modulation deviates further from a Gaussian one. What

our numerical results would then suggest is that for an Eve

restricted to an entangling cloner, it is better to use a non-

Gaussian modulation as this would make Eve’s attack even

less optimal.

If we want to obtain a more realistic account of what a

non-restricted Eve could achieve in our system, we should

then cap the choice of α in our optimization to a value that

preserves the Gaussianity of the input signal to some good

extent. A suggested cap for α is given in [43] to be around

0.5. The lower curve in Fig. 6 shows the secret key rate under

this constraint, while the corresponding optimal value of g
is shown in Fig. 7. It is now clear that the rate obtained

for the DM case, at β = 1, is lower than that of the GM

case. The no-QS GM system will, however, offer no positive

key rate for β < 0.98, which implies that, if one considers

the more efficient reconciliation techniques for DM systems,

there would be regimes of operation where the DM system

outperforms the GM case. Note that, as shown in Fig. 7, by

capping α, larger values of gain is needed by the QS to achieve

the optimal key rate.

Finally, we would like to comment on the suitability of

quantum scissors in CV quantum repeaters. One of the objec-

tives of calculating the key rate of a QS equipped CV-QKD

system was the similarity of the setup to what was proposed, as

the main building block, in recent proposals for CV repeaters

[30, 32]. Our intuition was that if a realistic QS could not

offer any advantage over the no-QS one, then the prospect

of a CV repeater that relies on such QS devices would also

be questionable. Our results suggest that there are regimes
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Fig. 7. Optimized input amplitude (marked by circles) and optimized
amplification gain (marked by diamonds) versus channel length at εtm = 0.05
with an without a cap (0.5, not shown on the graph) on α.

of operation that QS-based systems offer some advantage. We

are, however, short of a convincing argument that such regimes

of operation would be those in which repeater systems could

operate as well. In fact, while our results keep the prospect

of functioning CV repeaters open, they also highlight the

importance of considering all noise effects before jumping into

any conclusions. Our analysis could then be used to further

study the proposed repeater setups and assess how, in practice,

they can perform.

V. CONCLUSIONS AND DISCUSSION

In this work, we studied the performance of a CV-QKD

system that used quadrature phase shift keying modulation at

the encoder and a certain optical state truncation device, i.e., a

quantum scissor, before its homodyne receiver. The objective

was to find if and to what extent the use of a QS, as a non-

deterministic amplifier, could improve the rate behavior of

the system at long distances. We showed that, by optimizing

the relevant system parameters, the QS-equipped system could

tolerate more excess noise than the no-QS discrete-modulation

system, and therefore could reach longer distances at positive

values of excess noise. This effect was similar to that of a

Gaussian-modulated CV-QKD system [24], but in the discrete-

modulation case we observed additional tolerance against

excess noise if only Gaussian attacks are considered, or assume

lower reconciliation efficiencies for the Gaussian modulation

case, as is often the case in practice. This enables us to extend

the reach of CV-QKD systems provided that we supplement

them with additional devices such as single-photon sources

and single-photon detectors [52, 53]. This, at first, may sound

counterproductive as it takes away some of the practical

advantages of CV-QKD systems. But, one should note that

these additional equipment are only needed at the receiver end

of the link, which, in a practical setup, can represent a shared

network node in a quantum network. Moreover, our analysis

would specify the range of distances for which the use of a

quantum scissor could be beneficial. Over shorter distances,

one could still use a conventional system without an NLA.

There are several experimental advances in the field that

make the implementation of the analysed system here feasible
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in the short term. An early demonstration of the QS operation

using heralded single-photon sources based on parametric

down-conversion and avalanche photodiodes, as single-photon

detectors, has already provided a proof-of-principle for the

main building block of the system. With current technology,

one can use higher quality single-photon sources based on

quantum dot structures, and nanowire superconducting detec-

tors for highly efficient low-noise photodetetion [52, 53]. A

combination of these two could bring down the internal noise

in a QS module below a critical level that one can observe the

benefits of deploying QSs in long-distance CV-QKD systems,

as we have predicted in this work. This will be experimentally

tested as part of our future work.

The research conducted here can be further extended in

several directions. Our study would, in particular, be highly

relevant to analysing the performance of recently proposed

continuous-variable quantum repeater systems in [30], which

rely on a similar building block as we studied in this work.

In their proposal, dual homodyne detection modules are used

to connect different blocks in the system. Considering the

sensitivity to the excess noise in each leg of the system, it

would be interesting to find out the regimes of operation in

which a multi-hop CV repeater can be used for QKD purposes.

One can compare the obtained key rates in this case with the

already known benchmarks for the repeaterless links, i.e., the

PLOB bound [50], as well as multi-node repeater setups [54].

Another possible avenue for future work is to find better NLA

schemes than QSs that better match the discrete modulation

scheme used in this work. In fact, an alternative to QSs is

a quantum comparison amplifier, which works on the basis

of comparing the input coherent state with a known coherent

state [55, 56]. Such an amplifier is still non-deterministic, but,

it does not need single-photon sources. Because a comparison

amplifier can only amplify states that are chosen from a pre-

known finite set of coherent states, it can possibly be a good

fit to the QPSK-modulation protocol, where the number of

transmitted coherent states is finite. Finally, one can also

explore the use of numerical techniques [43, 44] for key rate

analysis, which can possibly better address the case of non-

Gaussian attacks, and/or when analytical solutions become too

cumbersome.

APPENDIX

In this section we calculate the triplet that quantifies the

CM of our QS system, given in Eq. (21).

A. Variance at Alice’s side (Vx)

By definition, and using the bipartite state in Eq. (16), we

have:

Vx = tr(ρ̂03x̂
2
0) =

1

4PPS

3∑

k=0

3∑

l=0

GklHkl, (22)

where x̂0 = â0 + â†0 in Fig. 3, Gkl := tr(|ψk〉0〈ψl|x̂20) and

Hkl := tr(Ω̂kl
3 ) = ζklA (0). We then find that:

Hkl = ζklA (0) = akle
−Tαkα∗

l
2F+1 − 1− µ

2F
e−

Tαkα∗
l

2F

akl =
2

(2F + 1)3

(
(2F + 1)2 − µ(2F + 1) + µTαkα

∗
l

)
.

(23)

One can then use the set of identities in Eq. (31) to work out

the following expression:

Vx =1 +
α2

ζ00A (0)

(

δ1
[
−A sinh(

Tα2

2F + 1
) +B cosh(

Tα2

2F + 1
) + C sinh(

Tα2

2F
)
]

+δ2
[
A cosh(

Tα2

2F + 1
)−B sinh(

Tα2

2F + 1
)− C cosh(

Tα2

2F
)
]

+δ3
[
−A sin(

Tα2

2F + 1
) +B cos(

Tα2

2F + 1
) + C sin(

Tα2

2F
)
]
/2

−δ4
[
A cos(

Tα2

2F + 1
) +B sin(

Tα2

2F + 1
)− C cos(

Tα2

2F
)
]
/2
)
,

(24)

where A = 2
(2F+1)3

(
(2F +1)2 − µ(2F +1)

)
, B = 2µTα2

(2F+1)3 ,

C = 1−µ
2F , δ1 = λ0

λ1
+ λ2

λ3
, δ2 = λ1

λ2
+ λ3

λ0
, δ3 = λ0

λ1
− λ2

λ3
, and

δ4 = λ1

λ2
− λ3

λ0
. Note that for α = 0, Vx = 1 is obtained.

B. Variance at Bob’s side (Vy)

The variance at the receiver’s side can be computed as

follows:

Vy = tr(ρ̂03x̂
2
3) =

1

4PPS

3∑

k=0

Lkk, (25)

where, assuming ξ3 = z + it,

Lkk =tr(Ω̂kk
3 x̂23)

=− ζkkA (0, 0)− d2

dt2
ζkkA (0, t)

∣∣∣
t=0

d2

dt2
ζkkA (0, t)

∣∣∣
t=0

=− bke
−T |αk|2

2F+1 +
2(1− µ)

F
e−

T |αk|2

2F ,

(26)

with x̂3 = b̂3 + b̂†3 in Fig. 3 and bk = 8
(2F+1)3

(
(2F + 1)2 −

µ(2F 2 + 3F + 1) + µT |αk|2
)
; hence,

Vy =
L00

ζ00A (0)

=
1

ζ00A (0)

(
bke

−T |αk|2

2F+1 − 2(1− µ)

F
e−

T |αk|2

2F

)
− 1. (27)

Note that for α = 0, Vy = 1 is obtained.

C. Co-variance between Alice and Bob (Vxy)

By definition, the co-variance between Alice and Bob is

given by:

Vxy = tr(ρ̂03x̂0x̂3) =
1

4PPS

3∑

k=0

3∑

l=0

NklSkl, (28)
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where Nkl := tr(|ψk〉0〈ψl|x̂0) is given in Eq. (31) and

Skl =tr(Ω̂kl
3 x̂3)

=− i
d

dt
ζklA (0, t)

∣∣∣
t=0

=
2
√
µ(1− µ)T (αk + α∗

l )

(2F + 1)2
e−

Tαkα∗
l

2F+1 (29)

One can then conclude that:

Vxy =
2
√
µ(1− µ)T α2

PPS(2F + 1)2
(
ω1 cosh(

Tα2

2F + 1
)

− ω2 sinh(
Tα2

2F + 1
) + ω3 cos(

Tα2

2F + 1
)

− ω4 sin(
Tα2

2F + 1
)
)
, (30)

where ω1 =
√

λ0

λ1
+
√

λ2

λ3
, ω2 =

√
λ1

λ2
+
√

λ3

λ0
, ω3 =

√
λ0

λ1
−√

λ2

λ3
, and ω4 =

√
λ1

λ2
−

√
λ3

λ0
. It is seen that for α = 0,

Vxy = 0 is obtained.

In the calculations of Gkl and Nkl we made use of the

following identities:

|ψ0〉 =
1

2

[
|φ0〉+ eiπ/4|φ1〉+ eiπ/2|φ2〉+ e3iπ/4|φ3〉

]
,

â|ψ0〉 =
α

2

[
eiπ/4

√
λ0
λ1

|φ0〉+ eiπ/2
√
λ1
λ2

|φ1〉

+ ei3π/4
√
λ2
λ3

|φ2〉 −
√
λ3
λ0

|φ3〉
]
,

â2|ψ0〉 =
α2

2

[
eiπ/2

√
λ0
λ2

|φ0〉+ ei3π/4
√
λ1
λ3

|φ1〉

−
√
λ2
λ0

|φ2〉 − eiπ/4
√
λ3
λ1

|φ3〉
]
,

|ψ1〉 =
1

2

[
|φ0〉+ ei3π/4|φ1〉+ ei3π/2|φ2〉+ eiπ/4|φ3〉

]
,

â|ψ1〉 =
α

2

[
ei3π/4

√
λ0
λ1

|φ0〉+ ei3π/2
√
λ1
λ2

|φ1〉

+ eiπ/4
√
λ2
λ3

|φ2〉 −
√
λ3
λ0

|φ3〉
]
,

â2|ψ1〉 =
α2

2

[
ei3π/2

√
λ0
λ2

|φ0〉+ eiπ/4
√
λ1
λ3

|φ1〉

−
√
λ2
λ0

|φ2〉 − ei3π/4
√
λ3
λ1

|φ3〉
]
,

|ψ2〉 =
1

2

[
|φ0〉+ e−i3π/4|φ1〉+ eiπ/2|φ2〉+ e−iπ/4|φ3〉

]
,

â|ψ2〉 =
α

2

[
e−i3π/4

√
λ0
λ1

|φ0〉+ eiπ/2
√
λ1
λ2

|φ1〉

+ eiπ/4
√
λ2
λ3

|φ2〉 −
√
λ3
λ0

|φ3〉
]
,

â2|ψ2〉 =
α2

2

[
eiπ/2

√
λ0
λ2

|φ0〉+ e−iπ/4

√
λ1
λ3

|φ1〉

−
√
λ2
λ0

|φ2〉 − e−i3π/4

√
λ3
λ1

|φ3〉
]
,

|ψ3〉 =
1

2

[
|φ0〉+ e−iπ/4|φ1〉+ ei3π/2|φ2〉+ e−3iπ/4|φ3〉

]
,

â|ψ3〉 =
α

2

[
e−iπ/4

√
λ0
λ1

|φ0〉+ ei3π/2
√
λ1
λ2

|φ1〉

+ e−i3π/4

√
λ2
λ3

|φ2〉 −
√
λ3
λ0

|φ3〉
]
,

â2|ψ3〉 =
α2

2

[
ei3π/2

√
λ0
λ2

|φ0〉+ e−i3π/4

√
λ1
λ3

|φ1〉

−
√
λ2
λ0

|φ2〉 − e−iπ/4

√
λ3
λ1

|φ3〉
]
. (31)

For a CM in the following standard symplectic form

VAB =

(
Vx✶ Vxyσz
Vxyσz Vy✶

)
, (32)

the Holevo information is upper bounded by:

χEB = g(Λ1) + g(Λ2)− g(Λ3), (33)

where g(x) = (x+1
2 ) log2(

x+1
2 ) − x−1

2 log2
x−1
2 and Λ1/2 =√(

W ±
√
W 2 − 4D2

)
/2 and Λ3 =

√
VxD/Vy , with W =

V 2
x +V 2

y −2V 2
xy and D = VxVy−V 2

xy . Note that one can also

take into account imperfect effects of the homodyne receiver.

We however assume an ideal homodyne detection in this work.
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