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Active Bayesian perception for angle and position discrirmation
with a biomimetic fingertip

Uriel Martinez-Hernandez, Tony Dodd, Tony J. Prescott amathin F. Lepora

Abstract— In this work, we apply active Bayesian perception
to angle and position discrimination and extend the method
to perform actions in a sensorimotor task using a biomimetic
fingertip. The first part of this study tests active perception
off-line with a large dataset of edge orientations and posibns, Vo
using a Monte Carlo validation to ascertain the classifican ' : e
accuracy. We observe a significant improvement over passive b : s
methods that lack a sensorimotor loop for actively repositbning
the sensor. The second part of this study then applies these
findings about active perception to an example sensorimotor
task in real-time. Using an appropriate online sensorimoto
control architecture, the robot made decisions aboutvhat to do
next and where to move next, which was applied to a contour-
following task around several objects. The successful outne
of this simple but illustrative task demonstrates that actve
perception can be of practical benefit for tactile robotics.

. INTRODUCTION

To operate autonomously, robots must make decisions a
actions in the presence of sensory uncertainties. Ingmirat
can be taken from humans and animals, who adopt an acti
sensing strategy of directing their senses towards latsitio™ . : ;
that reduce uncertainty about perceptual decisions [1]. F§'9: 1 (A) Different shaped and sized objects used for the

. . : . ensorimotor task. (B) Tactile sensor in contact with thgeedf
instance, humans actively move their hands and flngersz ) g

: ' . A object at one angle and position. (C) Tactile sensor nedunh
improve perception using sensorimotor feedback about thgnotic platform to allow mobility in ther-, y- and z-axes.
object in relation to the task being performed [2], [3]. Give

such behaviour is widespread in biological systems, one may

infer that robotics could also benefit from these principles stimuli [5], [6]. A series of papers [4], [5], [7], [8], [9],

In this study, we show how active Bayesian perceptiohas formalised @ayesian perception approach for robotics
can enable a robot to perform a real-time sensorimotdrased on recent progress in understanding animal peroeptio
task involving decisions about botlwhat to do next and That formalism extended naturally to active perception, by
where to move next. These decisions are made by linkingmoving the sensor with a control strategy based on evidence
active perception to action in a sensorimotor loop that hagceived during decision making. Benefits of active Bayesia
two functions: first, to control the actions of the robot inperception include: (i) robust perception in unstructured
achieving the task, and second to improve sensing accurasyvironments [4]; (ii) an order-of-magnitude improvemient
through active perception. We apply these methods to acuity over passive methods [6]; and (iii)) a general frame-
biomimetic fingertip perceiving both the angle and positionwork for simultaneous object localisation and identifioati
of the edge of an object at different orientations and distan or ‘where’ and ‘what’ [6]. However, the utility of active
perpendicular to that edge. We also demonstrate how actiBayesian perception has not yet been assessed on a practical
perception can then enable a robot to achieve an examgensorimotor task, which is the purpose of this study.
sensorimotor task, specifically to accurately trace theeedg Here we develop and apply a sensorimotor architecture
of various objects (Figure 1). that controls actions by the outcome of decisions made using

Our work is based on recent progress in applying activgctive Bayesian perception, extending a previous ardhitec
Bayesian perception to robot touch for texture [4] and sHapgq represent active perception [10]. For the first part of thi

) , study, we test angle and position discrimination using &n of
This work was supported by EU Framework project EFAM (IC D290) line Monte Carlo validation of our active perception method
and the Mexican National Council of Science and Technol@®NACYT). p p

UMH and TD are with the Department of Automatic Control ang®ms The results demonstrate a successful angular and position

Engineering, University of Sheffield, UK. _ __discrimination accuracy of 3.3 degs and 0.2 mm respectively
UMH, TD, TP and NL are with the Sheffield Centre for Robotics . .
(SCentRo), University of Sheffield, UK. over 72 angular classes with resolution 5 degs each. As part

Email: {uriel.martinez, t.j.dodd, t.j.prescott, n.lepp@sheffield.ac.uk  of the analysis, we evaluate the reaction times to make a



180° .
For collecting angular classes, we turned manually the

- stimuli object with 5deg steps over a total of 72 angular
Wi H:_\ classes. Then, for each of these angular classes, the fingert
| | 135° i
- was moved perpendicularly to the edge along 18 mm at
mt _,@: 0.2mm steps, with a total of 90 taps. We built position
= ' classes in groups of 5 taps for each angle obtaining 18 classe
of 1 mm each. In total, we thus obtained 1296 perceptual

[ Stimulus — =

270° | !',»-\'- plastic object classes. The data collection was repeated two times, to give
Ml one set for testing another for training.
o - Nt The configuration of the edge stimulus during angle and

movement position data collection is shown in Figure 2. To aid visual-
s isation, we show the object rotated only every 45degs and

fingertip
tactile data only when the fingertip is positioned on the edge

B. Robot platform

. . , , We constructed a robot to provide the movement ca-

Fig. 2: Data collection for an edge stimulus over a range of ;i for the biomimetic fingertip. The overall robot is

orientations and positions. The object was turned at evelggsS ! e .

steps. For visualisation, we show only five examples fromtal to itself formed of two |nd|V|duaI.robots: a Cartesian robot

of 72 angle and 18 position classes. (Yamaha XY-x series) and a Mindstorms NXT Lego robot.
The Cartesian robot allows precise positioning movements

decision with small classification errors. In the second pal” the z- andy-axes with an accuracy e¢20um. The NXT

of this study, we apply this architecture to an online task jfy©90 robot was built to allow controlled movements in the

real-time, with a simple but illustrative problem of contou z-aXIS t(,) tap fagalnst the object.

following the edges of various shapes. For each contactThe fmggrup_sensor was mounted on the robot p'a‘fofm
location, the fingertip sensor actively perceives the ang S showr(; in F|gure_ 1 Mo;]/ementsb_zla_r_e we]cll-ﬁonc'[:rolled_ in

and position class by repositioning itself relative to tlige t E‘E' an yk-]axeshowi?g fjo the capabiliies o bt e arteasln

while integrating evidence up to decision threshold. AftefoPoL. On t e other and, the NXT Lego robot is not able

reaching the threshold, the robot then makes a movem tperformmg very precise movements, but can nevertheless

parallel to the perceived edge direction to trace the oetsi?® controlled by the tactile feedback from the fingertip
§nSor. This highlights two important aspects of our work:

edge of the object. For demonstration, we present trac(i1 : . . X
contours from three differently shaped and sized object ) the system reacts in real-time to ta_ct|le detgctlon and
validating the method. 2) '.che system works under uncertainty in the height of the
tactile contact. The degrees of freedom provided by thetrobo
II. METHODS platform do not allow rotations of the fingertip sensor with
respect to the object, and therefore the fingertip kept theesa
orientation during all experiments.

This study considers tactile sensing using a biomimetic The procedure for data collection is as follows. First, the
fingertip sensor designed for the iCub humanoid robot. The@bot is moved to a start position. Next, a tap is performed
dimensions and shape of the fingertip sensor are similay the NXT Lego robot, which stops and then quickly
to the human fingertip and are intended to allow the iCuketurns when the fingertip sensor detects a contact (with
humanoid to manipulate and interact with objects with ita fixed pressure threshold). Then, the tactile data is saved
hands [11]. The sensor is built with a capacitive technologsind the fingertip sensor is prepared for the next tap. To
composed of 12 taxels (tactile elements) that react to conteachieve independent measurements, we set a time between
pressure. The capacitive pressure values are digitisedljjoc taps that allows the pressure contact values to approxiynate
with a capacitive to digital converter (CDC) and sampledeturn to zero. Finally, the Cartesian robot moves to the nex
at 50Hz. The conversion output is sent to a main comput@osition on the perpendicular trajectory to the curreni@ng
through a CAN (Controller Area Network) bus. of the edge. The complete system works in real-time, is

We are interested in demonstrating angle and position pegacoded in C/C++ with the YARP library and is used for
ception with this fingertip. Therefore, we initially coled communication and control [12]. Additionally, we develdpe
tactile data from the edge of a plastic square oriented abme subroutines using the NXTPP library to control the
different angles and positions with respect to the fingertilNXT Lego robot.

For data collection, we chose brief tapping motions, for ) ) )

two main reasons. First, to minimize damage to the sensdr; Active Bayesian perception

in contrast with sliding motions that would wear away the Our study is based on previous work on active Bayesian
rubber coating. Second, to give a reliably repeatable motigerception that was applied to robot touch perception of
for tactile perception, analogous to palpation and whigkintexture [4] and shape [7]. Here we explore tactile perceptio
performed by humans and rodents respectively. for a large number of angle and position classes and use

A. Tactile data acquisition
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Fig. 4: Sensorimotor architecture developed for applying active
Bayesian perception to an online task. The tactile sensmriges
the feedback from the world, whilst the mobility in, y- andz axes

is provided by the robotic platform. Thehat to do next andwhere

YES to move next decisions are implemented by the ‘active’ perception
} and ‘control actions’ modules, respectively.
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Fig. 3: Flowchart for active angle and position perception. Inwacti Bayesian update: For updayng .the posterlo.r prObabI|ItIES'
Bayesian perception, the posteriors are updated by acetinml P(cnlzt), we use a recursive Impler_’nentatlo_n Qf Bayes
evidence represented as likelihoods of each tap while asgmgu rule over all N perceptual classes, with the likelihoods
these posteriors to determine how to move the sensor. Oreefon P(z;|c,) of the measured tap;. The prior takes the value
the angle classes crosses a preset threshold, a decisiadés m  of the posterior at time step— 1 resulting in an update,

. . . o P _ P(at|en)Plen|2e-1) 3
active perception to improve the classification resultse Th (cnl2t) = Pealoy) (3)
method is based on an implementation of Bayes’ rule via . , .
the method of sequential analysis, which recursively usp}datm orde_r_ _to give prop_e_rly normalised va_lues, the marginal
the posteriors with the likelihoods found from a measuremelfoPabilities are conditioned on the previous tap and ealcu
model of the tactile data. lated from the sum

Priors. We assume uniformly distributed priors for all N
perceptual classeB(c,) = P(c,|2) = 1/N. These define P(z|z1) = D Plztlen) Plenlzi-1) )
the posteriors at time = 0, and will be recursively updated ) n=t )
with the likelihoods obtained from each tap of the fingertip. Marginal angle and position posteriors: Each classc,

Likelihood estimation: From each tap performed by the €Orresponds to dwy,,x;) pair wherew,, andz; are the
tactile sensor we obtain a time series of digitised pressufédle and position for each perceptual class respectively.
values from theK taxels (12 taxels). The measurement! e posteriors are the joint distributions over these joint
model is constructed off-line using a nonparametric estflasses, then the beliefs over individual angular and josit
mation based on the histograms of the sensor values frd¥grceptual classes are given by the marginal posteriors

training data sets. The likelihood of a perceptual ctass C L
of a test tapz; is then evaluated with these histograms. The P(wm|zt) = Z Pz, wim|2t) (5)
measurement model is obtained from the probabilities =1

M
PLlslen) = i, & Plafz) = 3 Pl =) ©
where hy(s) is the number of observed valuesin the Wwith the angle beliefs summed over all position classes and
histogram for taxek. The histograms were uniformly con- the position beliefs summed over all angle classes.
structed over 100 bins. The value from equation (1) then Stop decision for angle posteriors: A threshold crossing
gives the likelihood of a tap evaluated over all samplgs rule is used to stop accumulating evidence and make a final
decision about the angle and position classes. Mdgémum
P(zi]en) = X/ T Py(s5]Ch), (2) a posteriori (MAP) estimate is used to decide the angle
and position perceptual class when the angle belief passes
where J = 100 and K = 12 are the number of data and a threshold
taxels sampled for each tap respectively. The model trdlats a.
samples as independent and identically distributed foh eac if any P(wm|zt) > 0w thenwyap = aii?V%XP(WM)
tap and taxel. (7
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Fig. 5: (A) Tactile data collection at 0 degs along 18 mm perpen
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where the pressure is concentrated is a small number ofstaxel
(D) Tap on air, the sensor is not in contact with the stimulus.
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Acuity averaged over angles

In previous work with this fingertip sensor, we have s

found that the best perception is obtained for contactssat i
centre [5], [10]. This assumption is supported with result:
here in section 11I-B. Thus, for active perception we assum
there is a preset target positian....; at the centre of the
sensor (position class at 9 mm). The movement represent
by A is then determined from the position decisiofap

of the current sensor location,

mean absolute error in angle (deg)

0 1 I 1 1 1 I 1 1 I I 1
9 10 11

1 I I
12 13 14 15

0 1 2 3 4 5 6 7 8 16 17 18
xr— T+ A(mMAp), (8) fingertip position (mm)
A(ZMAP) = Ttarget — TMAP- (9) Fig. 6: Angle acuity using passive Bayesian perception. The top

_ ) ~'ring’ plot shows the perceptual accuracy over all 72 angalad
The algorithm tries to move the sensor to a good locations position classes, with large errors shown in red and senaits

(its centre) relative to the object, thereby improving thén white. The bottom plot shows these results averaged dwer t
tactile perception. The sequence of the different stepgef t2ndles, so that only the positional dependence is visib&suRs
resulting algorithm are visualised as a flowchart in Figure Jvere evaluated with a Monte Carlo method over 10000 itematio
Online active control: Online active control was achieved
with a sensorimotor control architecture that applied the
decisions from active perception to move the robot accgrdin
to the task (Figure 4). Briefly, the tactile sensor module, [nitial inspection of data
provides the feedback from contacting an object. To protect
the sensor against dangerous pressures, the contactiatetect Figure 5 shows an example of the normalised tactile
module sends a signal to stop the movements whenever ttigta for the fingertip sensor tapping at 0degs along an
contact pressure crosses a preset threshold. At the same tidB mm trajectory in 0.2mm steps. Tap movements follow
the tactile data are prepared and sent to be processed by ghperpendicular trajectory with respect to the edge of the
active perception module for classification about the aurretest object. Example taps at the flat surface, edge and air
angle and position perceptions. Here the system decidage shown. For the flat surface, the fingertip is in contact
what to do next: either accumulating more evidence or dwith most of the taxels and then obtains an even pressure
a movement. Once a decision is made, the classificatimontact. The pressure contact gradually starts to coratentr
result is updated in the short-term memory module. Thim a small number of taxels whilst the fingertip approaches
control actions module defines where to move next, cothe edge of the object, thus having high pressure. Finally,
responding to the current active perception outcome amwhen the fingertip leaves the object, there is no contact and
prior position information stored in the short-term memoryjust a small signal due to background noise is received by
These movements are to trace the contour of the object. Ale sensor, such as due to the motion of the fingertip. The
movements are managed by the motor commands moddégout colour shows the taxel activations and pressurddeve
which is directly connected to the robotic platform. Theat each tap during the data collection. The pattern of these
controller is responsible for synchronizing and contrgli pressures and activations enables perception of both tiie an
all the processes involved in the experimental task. and position of the fingertip relative to the edge.

IIl. RESULTS
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perception applied to sensorimotor control.
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Fig. 7: Angle and position acuity for active and passive Bayesia®fient to. By the results in Figure 7, we selected a target
perception. Results for passive perception are shown inaed position class 9mm, since this location has the smallest
those for active perception in green. Angle errors are @lb#igainst  classification error and is thus optimal for perception. For
belief threshold (A) and reaction time (C), while positiamaes are 16 yjidation we used the range of belief thresholds [0.05,
also plotted against belief threshold (B) and reaction t{Dg 0.10, ..., 0.999]. Mean angle and position errors for passiv
perception (red curve) and active perception (green camne)
shown in Figures 7A,B. We observe the smallest mean error
For our first robot experiment, we investigated-ifie how  of 12.2 deg and 0.8 mm for passive perception. On the other
successive taps lead to successful perception via evideriegnd, for active perception, the best angle and positiarerr
accumulation. The tapping process was repeated until theée 3.3 degs and 0.2 mm respectively, showing considerable
belief for one of the angle classes crossed a threshold hwhignprovement over passive perception. Finally, plots 7C,D
then triggered a decision about the angle and position whesaow the mean absolute angular error and mean absolute
the fingertip is located. This approach is known as passiygsition error against reaction times. From these reswis,
Bayesian perception, meaning that the fingertip sensor palso observe that after decision threshold leading to itetss
sition is fixed until a threshold is crossed. In other wordsat around 4-6 taps give the minimum classification error for
the fingertip is not allowed to move to another location thoth angle and position perception.
improve perception. The validation was based on a Monte
Carlo method of drawing random angle and position dat®- Application of active perception to sensorimotor task
from the test dataset. We generally used 10000 iterationsFor our final demonstration, we apply our sensorimotor
for each data point in the following figures. To implementarchitecture (Figure 4) based on active perception to the si
passive perception, an algorithm based on the flowchart jile but illustrative problem of contour following of varisu
Figure 3 was used but with the movement rule disabled. shapes in real time. We chose this task to illustrate how
Figure 6 shows the results for passive angle perceptigur method solves a problem where the robot has to decide
over 72 angle classes with the smallest classification @fror both what to do next and where to move next. In particular,
3.7degs. This result was obtained for a belief threshold @br each contact location, the fingertip actively perceitres
0.45, corresponding to a mean reaction time of about 5 tapsagle and position class by repositioning itself relativérte
We observe that for the position class at 9mm (its centre)dge. After reaching decision threshold, the robot thenamak
the fingertip has the best perception. a movement parallel to the perceived edge direction to trace
the outside edge of the object. Thus, by implementing a real-
time interaction between the control of the fingertip sensor
For our next experiment, we examined active perceptioand objects in its environment, we can demonstrate how
with a sensorimotor control loop that moves the fingerti@ctive perception enables the robot to successfully cample
to attain improved perception based on the tactile feedbathe sensorimotor task.
(Figure 3). For this validation study, we use the trainind an In the online test, we used two circles of diameter 2cm
testing datasets collected above (see section II-A). and 4 cm, and an asymmetric object (Figure 1A - a sellotape
Our active perception method requires a target position twolder). These objects cover a wide range of angles and radii

B. Passive angle and position perception

C. Active angle and position perception



of curvature for discrimination, which provides a good testvhere then in the absence of active perception, the robot

scenario for our methods. For this test, we used a beli&iled to follow the contour of the object [10].

threshold of 0.8 for each decision. The fingertip was able to It is interesting to compare these results with previous

move 2 mm along the angle perceived at each location. Alsetudies of active perception for angle classification comce

a mean of 6 taps per location were needed to cross the belie§f humans using their index finger [13], [14]. For these

threshold and make a decision. experiments, people were asked to touch the edge of an
The first traced contour (Figure 8B, green line) is fronpbject with their index finger to perceive the angle. During

tracking the edge of the 2cm circular object. Evidently, thexploration, the subjects moved their hand and fingers in

robot successfully traced the contour without losing contaorder to improve the perception in a manner analogous to

with the edge. Some parts of the contour seem less accurtlte behaviour of the robot in the present experiments.

(i.e. right and top sides), which are apparently at angles Overall, we observed that active perception can help

where the base of the fingertip was in contact with théevelop autonomous robots able to make accurate decisions

edge. However, the final contour is good enough to descrig#d consequently good actions under the presence of sensory

a circle. For the second traced contour (Figure 8B, bluencertainty. We believe that the methods presented here can

line), which is around the 4 cm circle, the tracking was morée extended and applied to tactile perception and sensori-

accurate. In this case, the active perception was able to@nsmotor control with more than one fingertip. For future work,

that the centre of the tactile sensor was almost always imMe therefore expect to explore the methods developed here

contact with the edge of object. Finally, for the traced oot with a robotic hand to have a complete, tactile robot able to

around the asymmetric object (Figure 8B, purple line), wactively perceive, explore and manipulate its environment

observe the trace correspon_ds well to the original objeene REFERENCES
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