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Active touch for robust perception under position uncertainty

Nathan F. Lepora, Member, IEEE, Uriel Martinez-Hernandez, Student Member, IEEE, Tony J. Prescott

Abstract— In this paper, we propose that active perception
will help attain autonomous robotics in unstructured environ-
ments by giving robust perception. We test this claim with a
biomimetic fingertip that senses surface texture under a range
of contact depths. We compare the performance of passive
Bayesian perception with a novel approach for active perception
that includes a sensorimotor loop for controlling sensor position.
Passive perception at a single depth gave poor results, with just
0.2 mm uncertainty impairing performance. Extending passive
perception over a range of depths gave non-robust performance.
Only active perception could give robust, accurate performance,
with the sensorimotor feedback compensating the position
uncertainty. We expect that these results will extend to other
stimuli, so that active perception will offer a general approach
to robust perception in unstructured environments.

I. INTRODUCTION

The dream of robots that can work alongside or re-

place people in unstructured environments has long evaded

researchers in artificial intelligence [1]. While robots are

successful at tasks where they can be rigidly controlled for

predictable structured environments like factory assembly

lines, they have failed to make significant impact in unpre-

dictable unstructured environments like our homes, hospitals

and workplaces. Solving this problem will revolutionize the

use of robotics in society, with radical implications for

automatization in the home and industry.

The main proposal in this paper is that active perception

is a key ingredient for attaining autonomous robotics in

unstructured environments. We need only look to humans

and animals to see the effectiveness of active perception,

with our extensive use of feedback between perception and

movement of the sensory organs. Stated succinctly: ‘we do

not just see, we look’ and ‘we do not only touch, we feel’ [2].

In active touch [3], we use our fingertips to stroke or tap to

perceive texture, trace edges to judge shape, and press to

determine compliance. Furthermore, as shown in this study,

in unstructured environments there needs to be continual

feedback between the perceptual process and the control of

movement, as too light/strong a tap, stroke or press will

impair recognition of the desired tactile property.

To implement active perception in an unstructured envi-

ronment, we extend a recent bio-inspired approach for robot

perception based on Bayesian sequential analysis [4], [5],

[6], [7]. Previous versions of this framework have focussed

on a feed-forward process for passive perception in which

the robot position is independent of the sensed data. Here we
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Fig. 1. (A) The iCub fingertip sensor is mounted as an end-effector to
a cartesian robot, which can move the finger accurately in a plane to tap
the sensor against textured stimuli (robot not shown, only the mounting
for the fingertip). (B) Schematic of experimental setup. Although this
setup constitutes a structured environment, we can use it to simulate an
unstructured environment by introducing uncertainty into the contact depth.

introduce a sensorimotor feedback loop that attempts to place

the sensor in a preset ‘good’ target position relative to the

perceived object, analogously to heuristics for active touch

that regulate contact force [8]. In consequence, we find the

active perception compensates the object-sensor positioning

uncertainty while improving the perceptual decision making.

The aim of this study is to uncover some general principles

that are useful for achieving robust perception in unstructured

environments. To do so, we choose a simple but illustrative

task of perceiving texture with tapping movements of a

biomimetic fingertip [9] when its initial depth relative to the

surface is random and unknown. As far as we know, all previ-

ous robot studies of texture classification have structured the

environment to allow the training and test regimes to have the

same contact depth [4], [10], [11], [12], [13], [14], [15], [16],

as is also common for other percepts such as shape, location

and compliance. However, we find that a depth change of

just 0.2 mm between the sensor and object seriously impairs

tactile perception of the texture class. Moreover, merely

extending the training to classify over these changes in sensor

depth is not sufficient to give robust perception, because

some depths are worse than others for texture classification.

Thus, we demonstrate that only for active perception, with

the sensory data feeding back to move the sensor, can the

position uncertainty inherent in an unstructured environment

be compensated to attain robust perception.



Fig. 2. Example fingertip pressure data for brief (0.1 sec) taps against 10 abrasive papers. The textures and their ISO grade designation are described in
Table I. The pressure readings are colored by taxel, with geometry shown in the diagram below. The taps were to a constant depth above the base of the
texture (2 mm depth in the scale of Fig. 3, where zero depth represents no contact). This is an example of data taken from a structured environment.

Fig. 3. (A) Example fingertip pressure data for brief (0.1 sec) taps against a single (p60) texture, with varying contact depth. A depth range of 3 mm was
used across 150 taps at a rate of one per second, ranging from no contact at zero depth to a strong contact at 3 mm depth. (B-E) Examples of fingertip
pressure data for individual taps in panel (A) at 0.6 mm, 1.2 mm, 1.8 mm and 2.4 mm depth (tap number 30, 60, 90 and 120). Although this data was taken
in a structured environment, it can be used to simulate an unstructured environment by drawing taps at an unknown depth.

II. METHODS

A. Data collection

The present experiments use a fingertip sensor designed

for the iCub robot [17], mounted instead on a cartesian robot

(Fig. 1A) [5]. The cartesian robot (2-axis PXYx, Yamaha

Robotics) can move the fingertip in a plane with highly

accurate and reproducible positioning (accuracy ∼50µm

under open-loop current control). We mounted the sensor at

a fixed angle relative to the planar test surfaces (Fig 1), with

tapping movements along the surface normal. The fingertip

has an inner support wrapped in a flexible printed circuit

board (PCB) having 12 conductive patches for the sensor

‘taxels’ [9], [18], with geometry shown in Fig. 3. This PCB

is covered first with a ∼2 mm layer of non-conductive soft

silicone foam and then with a thin layer of conductive sili-

cone rubber. The PCB and silicone layers together comprise a

capacitive touch sensor that detects pressure via compressing

the non-conductive foam between the two conductive layers.

The touch data were collected while having the fingertip

tap briefly (0.1 sec) and periodically against a planar surface,

upon which were attached 10 different 25 mm by 30 mm

textured patches from a range of grades of silicon carbide

abrasive papers (Table I). By positioning the fingertip along

the plane, the robot could tap against each texture in turn,

with sufficient pause between each to allow transients to

decay (examples in Fig. 2). By positioning the fingertip

perpendicular to the plane, a range of contact depths (or

equivalently contact pressures) could be sampled, for which

we used 150 taps for each texture over a 3 mm range of

contact depths from no to strong contact (examples in Fig. 3).

One training and one test set was collected for each of the 10

textures. Each set was then separated into 15 distinct position

classes at 0.2 mm intervals (tick-marks on Fig. 3A).



Fig. 4. Algorithm for active Bayesian perception. After each tap, the
likelihoods of the ‘what’ (texture) and ‘where’ (depth) perceptual classes
are used to sequentially update the posteriors. The marginal ‘where’ and
‘what’ beliefs are then used to make two decisions: (i) if a ‘what’ belief
crosses its threshold, ‘what is the texture?’ is decided, and the process stops;
(ii) if a ‘where’ belief crosses its threshold, ‘where is the sensor?’ is decided,
to determine a sensor move and compensatory shift of the posteriors.

B. Active Bayesian Perception

We use a statistical method based on Bayesian sequential

analysis that is related to leading models of perceptual

decision making in neuroscience and psychology, and has

been applied successfully to robot perception [4], [5], [6].

Previous implementations have concentrated on passive per-

ception with no feedback between the sensory data and

sensor position. Here we present an algorithm for active

perception based on the sensorimotor feedback loop shown

in Fig. 4. The details of this algorithm are explained below.

Measurement model and likelihood estimation: Each tap

against a test object gives a multi-dimensional time series

of sensor values across the K = 12 taxels (Figs 2, 3). The

likelihood of a perceptual class cn ∈ C for a test tap zt is

evaluated with a measurement model estimated off-line from

the histogram of sensor values over the training data for that

class [19]. For a sample s,

Pk(s|cn) =
hk(b(s))
∑

b hk(b)
, (1)

with hk(b) the occupation number of bin b (where b(s) ∋ s)

from the kth dimension of the training data, with 100 bins.

Applied to a test tap, this measurement model gives the

likelihoods evaluated over all samples sj in that tap

P (zt|cn) =
JK

√

∏J

j=1

∏K

k=1 Pk(sj |cn), (2)

where J = 50 and K = 12 are the time samples per tap

and the number of taxels respectively. This model assumes

a bag of measurements in which all samples are treated as

independent and identically distributed for each taxel. The

geometric mean prevents the product (2) from producing van-

ishingly small likelihoods by ensuring that the probabilities

remain almost invariant to sample number (and approximates

a combinatoric factor for reordering the samples [4]).

Bayesian update: Bayes’ rule is used to update the pos-

terior probabilities (beliefs) P (cn|zt) for the N perceptual

classes cn with the likelihoods P (zt|cn) of the present tap zt.
The prior is from the posterior probability at the previous tap,

giving a sequential update

P (cn|zt) =
P (zt|cn)P (cn|zt−1)

P (zt|zt−1)
. (3)

The likelihoods P (zt|cn) are assumed identically distributed

and independent over time t (so z1:t−1 drops from the

posteriors). The marginal probabilities are conditioned on the

preceding tap and calculated by summing

P (zt|zt−1) =

N
∑

n=1

P (zt|cn)P (cn|zt−1), (4)

to give properly normalized posteriors
∑N

n=1 P (cn|zt) = 1.

Taking a sequence of measurements z1, · · · , zt gives a se-

quence of posteriors P (cn|z1), · · · , P (cn|zt) for each class,

which are calculated by iterating over the relations (3,4)

starting from uniform priors P (cn) = P (cn|z0) = 1/N .

Marginal ‘where’ and ‘what’ posteriors: For active per-

ception, we suppose the perceptual classes have L ‘where’

(i.e. depth) and M ‘what’ (i.e. texture) components, such that

each class cn corresponds to one (xl, wm) ’where-what’ pair.

Then the posteriors are joint distributions over these joint

classes, such that the beliefs over the individual ‘where’ and

‘what’ perceptual classes are given by the marginal posteriors

P (xl|zt) =

M
∑

m=1

P (xl, wm|zt), (5)

P (wm|zt) =

L
∑

l=1

P (xl, wm|zt). (6)

with the ‘where’ beliefs summed over all ‘what’ classes and

the ‘what’ beliefs over all ‘where’ perceptual classes.

Stop decision on the ‘what’ posteriors: Following the

methods for sequential analysis [4], a threshold crossing rule

Texture: silicon carbide abrasive paper

ISO grit designation p60 p80 p100 p150 p180 p240 p320 p400 p600 p800
Description medium fine very fine extra fine super fine

Mean particle size 269µm 201µm 162µm 100µm 82µm 58µm 46µm 35µm 26µm 22µm

TABLE I

TEXTURES USED IN EXPERIMENT: 10 GRADES OF SILICON CARBIDE ABRASIVE PAPER (WETORDRY, 3M-TRIMITE).



Fig. 5. The effect of an unstructured environment on texture classification.
The plot shows the mean classification error (for 0.5 belief) across the 10
textures for test data offset in depth relative to the training data (with mean
depth 2.1 mm). This offset represents a lack of structure in the environment
by causing the sensor depth to differ between training and testing.

on the marginal ‘what’ posterior is used to decide when to

stop gathering sensory data and make a final decision about

the ‘what’ (texture) class. The maximal a posteriori (MAP)

estimate is then used to give the ‘what’ decision

if any P (wm|zt) > θW then wMAP = argmax
wm∈W

P (W |zt).

(7)

As emphasized in previous robot studies [4], [5], [6], this

decision rule can optimize the tradeoff between reaction

speed and error rates (here texture classes), by minimizing

the costs of delaying decisions and making mistakes.

Move decision on the ‘where’ posteriors: Analogously to

the stop decision, a sensor move requires a marginal ‘where’

posterior to cross its decision threshold. Then the MAP

estimate is used for the ‘where’ (depth) decision

if any P (xl|zt) > θX then xMAP = argmax
xl∈X

P (X|zt). (8)

We suppose there is a preset target position xtarget that the

sensor attempts to move to, with the move ∆ determined

from the ‘where’ decision xMAP of sensor location

x → x+∆(xMAP) , ∆(xMAP) = xtarget − xMAP. (9)

To keep the ‘where’ posteriors aligned with the sensor, it is

necessary to shift these probabilities with each move

P (xl, wm|zt) = P (xl −∆(xMAP), wm|zt). (10)

For simplicity, we recalculate the posteriors lying outside the

original range by assuming they are uniformly distributed.

Overall, this active perception strategy tries to reposition

the sensor to a previously determined ‘good’ location for

perception relative to the object being sensed.

III. RESULTS

A. Passive tactile perception in a structured environment

We begin by considering passive Bayesian perception

when the fingertip sensor remains in a narrow depth range

while tapping the textures. A 0.2 mm depth range of testing

and training data is considered at a mean depth of 2.1 mm,

comprising data similar to the examples in Fig. 2. Because

the depth of the fingertip relative to the test object is finely

tuned in advance, we consider robot perception on this data

to be within a structured environment.

Performance of passive Bayesian perception in this struc-

tured environment is assessed with testing data within the

same narrow depth range as the training data. For statistical

robustness, a Monte Carlo method is used to draw random

sequences of test taps from the test data for each texture

class (with 2000 Monte Carlo iterations). For classification,

we use the algorithm in Fig. 4, but disregard the move

rule because there is only one depth class. This procedure

sequentially updates the posteriors for the texture classes

until crossing a decision threshold (here 0.5 belief), as in past

implementations of passive Bayesian perception [4], [5], [6].

The result of this assessment of Bayesian perception is that

individual textures can be discriminated to a mean absolute

error of 0.4 over the 10 class range (Fig. 5; central dot).

This performance is with a belief threshold of 0.5, giving

a mean reaction time of 5 taps. Referring to Fig. 2, one

obvious discriminant of texture is the peak pressure of a tap.

Physically, this peak pressure has two origins: the texture

thickness increases with mean particle size (Table I), to give

greater contact forces; and larger particle sizes also reduce

the surface area of contact, increasing pressure.

B. An unstructured environment degrades tactile perception

The effect of an unstructured environment on tactile per-

ception is now assessed by modifying the above experiment

(Sec. III-A). We suppose that the testing data have a different

depth range from the training data, due to uncertainties

in the relative sensor-object position in an unstructured

environment. Other decision parameters are kept constant.

Under this systematic change of sensor depth, the passive

tactile perception of texture degrades as the depth offset

between training and testing increases (Fig. 5). As the offset

increases from 0 mm to 0.2 mm, the mean absolute error

increases from 0.4 to ∼1 class. Further increases in offset up

to ±0.6 mm result in greater errors, after which the errors are

close to a chance level of 3.2 texture classes. Physically, this

impairment in performance is not unexpected, because the

most obvious discriminant of texture is peak taxel pressure,

which depends strongly on contact depth (Fig. 3).

C. Using position classes can improve passive perception

but not robustly

We now attempt to solve the above performance issue

for tactile perception in an unstructured environment by

introducing classes for the unknown position between the

sensor and object. The robot is trained over several depth

classes that together span a broad range of contact depths,



Fig. 6. (A) Dependence of texture classification errors on both texture
and depth (rather than the single depth of Fig. 5). (B) Mean absolute errors
averaged over texture to show the dependence on depth. Decisions are for
0.5 belief threshold. These results describe classification in an unstructured
environment, because the relative sensor-object depth is uncertain.

rather than judging texture from an incorrect assumption of

a single contact depth as in Sec. III-B.

The same protocol for passive Bayesian perception is used

as in Sec. III-A, but with training data over 10 texture and

15 depth classes of 0.2 mm range each. Example training

data over depth is shown in Fig. 3A, with the tickmarks

denoting the delineation between depth classes. Note that

successful classification over these 150 perceptual classes

requires discriminants other than the peak pressure in the

time series of taxel readings, otherwise ambiguity between

variations in texture and depth would give poor perception.

Results for passive perception of texture are shown in

Fig. 6A for the mean texture classification error over each

of the 150 test classes. The performance seems to improve

with contact depth, as is confirmed by plotting the mean

absolute error over all textures for each depth class (Fig. 6B).

Mean texture classification errors decrease from ∼3 classes

for depths 0–1 mm to ∼0.5 classes for depths 1.5–3 mm.

Thus, increasing contact depth improves perception, pre-

sumably because of a better signal-to-noise ratio. However,

in an unstructured environment, this contact depth is not

under the control of the robot, but is determined randomly

by the relative sensor-object position. Therefore, consistent

performance with passive Bayesian perception would not be

achieved in an unstructured environment.

D. Active perception can give robust performance in an

unstructured environment

Finally, we use active perception to address the tactile

classification of texture in an unstructured environment. The

Fig. 7. Texture classification for (A) passive, (B) weakly active and (C)
strongly active perception (movement belief thresholds: >1, 0.999, 0.05).
For passive perception, the depth of the fingertip is fixed relative to the test
object. For active perception, the depth can change in feedback with the
sensory data. The bar charts show average error frequencies over random
initial positions spanning the full 3 mm depth range.

active perception algorithm has a sensorimotor feedback loop

(Fig. 4) that attempts to move the tactile sensor to a good

position for perception while deciding upon the texture class.

The classification performance is assessed with same data

and texture/depth classes as in Sec. III-C.

The active perception algorithm requires a target position

for attempting a move to, which we set as 2.1 mm depth

(the 11th depth class). From Fig. 6, this position seems good

for passive texture perception without being too close to the

outer range of training data. A belief threshold of 0.5 was

used for the stop rule, and three belief thresholds compared

for the move rule: >1 (passive perception), 0.999 (weakly

active perception) and 0.05 (strongly active perception).

Movements become harder to initiate for belief thresholds

closer to unity, which we describe as the active perception

becoming weaker then passive above unit threshold.

The principal effect of active perception is that texture

classification is greatly improved over passive perception

when averaged over all starting depths (Fig. 7). In particular,

strongly active perception achieves a mean absolute error

of 0.4 classes over all textures and all starting positions,

which is substantially better than the 1.4 value for passive

perception. It is also interesting that as the active perception

becomes stronger, with the movement belief threshold closer

to zero, the texture perception improves (Figs 7B,C). This

result is not obvious in advance, and indicates that active

perception favoring quickly responsive but inaccurate reposi-

tioning is superior to an accurate but slow movement strategy.



IV. CONCLUSIONS

The goal of this study is to demonstrate that active per-

ception can help attain autonomous robotics in unstructured

environments. We propose an algorithm for active Bayesian

perception that accumulates evidence until reaching a deci-

sion threshold while a sensorimotor feedback loop moves the

sensor to a ‘good’ position relative to the perceived object.

This algorithm contrasts with standard ‘passive’ methods

for robot perception that lack this feedback. We apply

active perception to a simple but illustrative task of texture

discrimination with a biomimetic fingertip when the test

depth of the sensor is random and unknown relative to the

training depth. The main results are: (i) for a single position,

a small difference between testing and training (of just

0.2 mm) seriously degrades the passive perception of texture;

(ii) extending the training over a range of contact depths

gives non-robust passive perception, because some depths are

inherently poorer than others; (iii) active perception can give

robust, accurate performance as the sensorimotor feedback

loop compensates the uncertainty from the environment.

These results should extend to other types of robot percep-

tion; for example, the tactile perception of curvature [6], [20],

geometry [21], [22], compliance [23] and flexibility [24].

Robot experiments testing the perception of these properties

typically choose an environment in which the relative pose

of the sensor and object can be maintained between training

and testing. However, the tactile data for these perceptual

properties will depend on the relative pose, which outside

the laboratory may not be predetermined. And as described

above, even if the object pose varies and is perceived,

not all poses are good for perception. These issues could

underly anecdotal reports that artificial tactile perception can

sometimes be unreliable in demos outside the laboratory,

since even small disturbances to a robot could spoil its

training. Our expectation is that appropriate use of active

touch will give robust systems for tactile perception.

Although this study focuses on an active perception strat-

egy that seeks to move the sensor to a ‘good’ location for

perception, our proposed algorithm in Fig. 4 is actually more

general. Other active control strategies could be implemented

with alternative criteria for the move decision (Eq. 9). For

example, a recently proposed ‘Bayesian exploration’ method

for tactile perception can be considered another special case

of this general approach, with movement criterion to disam-

biguate between possible surface textures [15]. In our view,

this emphasizes the importance of considering the task to be

solved by active perception: their control strategy gives a way

of disambiguating surface texture in structured environments,

whereas our control strategy aims to best perceive texture in

unstructured enviroments. Thus we see the main question as

not whether to use active control in perception, but what is

the right active perception strategy for a particular task?
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