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ABSTRACT: The problem of Fluid-solid interaction (FSI) with free convection inside a 

periodically-heated quadrilateral regular enclosure is investigated numerically in this paper. 

The cavity is equally divided vertically by a thin flexible wall. The cavity is differentially 

heated by a sinusoidal time varying temperature on the left vertical wall while the right 

vertical wall is cooled isothermally. There is no thermal diffusion from the upper and lower 

boundaries. The finite element Galerkin technique with the aid of an arbitrary Lagrangian-

Eulerian procedure is followed in the numerical procedure. The effects of four pertinent 
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parameters are investigated, i.e., Rayleigh number (104 ≤ Ra ≤ 107), elasticity modulus 

(5×1012 ≤ EĲ ≤ 1016), Prandtl number (0.7 ≤ Pr ≤ 200) and temperature oscillation frequency 

(2ʌ ≤ f ≤ 240ʌ).  The results have shown that there is not significant effect of the 

temperature frequency on the mean values of the Nusselt number and the deformation of 

the flexible divider. The convective heat transfer and the stretching of the thin flexible 

divider become higher with a fluid of a higher Prandtl number or with a partition of lower 

elasticity modulus.  

Keywords: Fluid-structure interaction (FSI); flexible partition; sinusoidal temperature; 

square cavity.   

 

Nomenclature 

ds vector of displacement  

E Young’s modulus in dimensional form 

EĲ elasticity modulus in non-dimensional form 

F frequency 

Fv vector of body force 

g vector of gravitational acceleration 

L size of cavity 

P fluid pressure 

Pr Prandtl number 

Ra thermal Rayleigh number 

t time 

T temperature 

Tp period of oscillation 

x, y Cartesian coordinates 

u vector of velocity 
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w velocity vector of the moving grid 

Greek symbols  

Į thermal diffusivity 

ȕ volumetric thermal expansion coefficient 

ı Tensor of stress 

Ĳ non-dimensional time 

ȝ dynamic viscosity 

Ȟ Poisson’s ratio 

ȡ density 

ȡR density ratio of fluid to solid structure 

Subscripts  

av average 

c cold temperature 

f fluid 

h hot temperature 

p partition 

s solid 

Superscripts  

* indicates the dimensional parameters 

1. Introduction 

Many  engineering applications have promoted the problem of natural convection 

inside enclosures, which has attracted intensive research interest.  For example, Emery [1] 

presented experimental and numerical results for natural convection amongst vertical 

sheets for very wide range of Prandtl numbers (1 to 20000). de Vahl Davis [2] performed 

a benchmark numerical solution of the equations governing 2D free convection in a square 

enclosure filled with air. Patterson and Armfield [3] presented numerical analysis and 

https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=John%20C.%20Patterson&eventCode=SE-AU
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experimental data for 2D unsteady free convection induced by an instantly differentially-

heated square cavity. They focused on the instability of travelling wave and its effect on 

the thermal boundary layer close to the vertical wall(s). Kelkar and Patankar [4] illustrated 

that existence of the partition located in cavities were almost unimportant when such 

partition did not cover more than the enclosure mid-height. Ciofalo and Karayiannis [5] 

studied, numerically, the efficiency of partitions extending from the vertical/horizontal 

bounds on the rate of heat exchange in a rectangular cavity. They reported that the effect 

of the partition was completely dependent on Rayleigh number and the cavity aspect ratio. 

Fusegi et al. [6] conducted a study on three-dimensional steady-state free convection in a 

cubical cavity. They demonstrated a small (in magnitude) transverse z- velocity component. 

Markatos and Pericleous [7] presented a numerical solution for buoyancy-driven laminar 

and turbulent convection (Rayleigh = 103 to 1016) in a square cavity. Kuyper et al. [8] 

carried out a numerical simulation dealing with laminar and turbulent (Rayleigh = 104 to 

1010) free convection in an inclined square. They found a solution hysteresis at a transition 

of flow pattern. Barakos et al. [9] utilized the control volume method to simulate the 

laminar and turbulent free convection in a square enclosure. They demonstrated that the 

standard k-׫ model was constrained to logarithmic wall functions. Baïri et al. [10] reviewed 

the applications of free convection in enclosures with explaining the different solutions to 

treat natural convection phenomena. They also explained the effects of inclination, 

geometry, aspect ratio, working fluid and the flow regimes on the features of flow and 

temperature fields. However, the classical and review works of [1-10] demonstrated the 

importance of natural convection in enclosures.  

Moreover, the natural convection in buildings and the insulation of heat storage 

systems can be simulated by cavities divided by impermeable dividers [11-13], which has 

extensively studied. Different characteristics of free convection heat transfer were studied 

to improve or control the heat transfer process in homogeneous cavities [14], [15]; and in 

partitioned cavities such as a diagonally-divided square cavity [16]; a cavity with an off-

center partition [17]; a cavity with multiple vertical partitions [18]; a vertically-divided 

cavity [19]; and divided cavities with various thermal boundary conditions [19]; a 

partitioned cavity subject to a uniform heat flux [20] and partitioned cavities with various 

thermal boundary conditions [21-23].  
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 Flow through devices incorporated with diaphragm like pump and sensors, flow 

through flexible conduits, and reciprocating pistons or fluid splashing in containers of 

flexible wall [24] are deformable-domain problems. The most efficient and robust 

numerical method developed in such problems is  the Arbitrary Lagrangian-Eulerian 

method (ALE) [25]. Fu and Huang [26] straddled this numerical approach to study the free 

convection in a vertical channel containing a vibrated surface. They found lesser 

convection effect compared with stationary surface. Lee et al. [27] investigated the impact 

of elasticity property of flapping wings on the thrust generation. They indicated a major 

role of the modulus of elasticity on the drag exerted by flow. Kalmbach and Breuer [28] 

have provided reference experimental data regarding FSI benchmark case under turbulent 

flow conditions. Their structure consisted of a rigid cylinder tailed with a para-rubber sheet 

acting as a splitter. At the end of the para-rubber sheet, a mass was  attached to reduce 

flutter effect. They found the flexible splitter reduced the drag of flow compared with rigid 

splitter. De Nayer and Breuer [29]  utilized the FSI experiments of [28] along with the 

large-eddy simulation to show that the modulus of elasticity of rubber had essential effect 

on the FSI phenomenon. Ghalambaz et al. [30] employed the ALE approach to study the 

effect of a horizontal oscillating fin on the convective heat exchange in a differentially 

heated cavity. The oscillating fashion of the fin did not overcome its drag action. Therefore, 

they recognized the deterioration of the heat exchange despite the mixing effect introduced 

by the fin.  

 Very recently, Jamesahar et al. [31] and Mehryan et al. [32] considered the free 

convection in cavities subdivide by flexible membrane by studying the fluid-solid 

interaction between the free convection and the membrane. Jamesahar et al. [31] showed 

that the reformable cavities affected the rate of heat exchange compared with a rigid 

partition. The results of Mehryan et al. [32] confirmed that the shape of a very thin flexible 

partition (membrane) was significantly influenced by the fluid interaction with the solid. 

Both studies of Jamesahar et al. [31] and Mehryan et al. [32] concluded that the deformable 

membrane could influence the flow and heat patterns in the cavity. Therefore, both of the 

fluid and structure were coupled and should be solved simultaneously. In both studies ([31] 

and [32]) the main cavities were differentially heated. However, in many real applications, 

imposing the perfectly constant wall temperature is hard to be attained. Practically, the wall 
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temperature fluctuates about a range of temperature with a periodic fluctuation frequency. 

By careful study of the physics of a cavity containing a flexible partition, it can be inferred 

that the transient effect of heat exchange could be very important because the free 

convective flow is the result of the temperature difference (buoyancy forces). The 

membrane also affects the flow due to its interaction with the fluid. In a cavity with a 

membrane, imposing a transient thermal boundary condition to the cavity walls produces 

a transient flow and heat exchange together with a transient shape of the membrane. For 

low frequencies of temperature fluctuations, the variation in the shape of the membrane 

may follow the induced thermal patterns [29]. However, for moderate frequencies of the 

temperature fluctuations, the response time of the membrane could not be fast as the 

induced changes in the flow and heat patterns, and hence, the membrane could also act as 

a filter medium for temperature and flow fluctuations in the cavity. 

This paper is a sequel of the author’s work [32] on a cavity subdivided by a flexible 

membrane. The main novelty of the current paper is that we imposed two intrinsic matters; 

the first is that the cavity is heated by a cyclic thermal boundary condition and the second 

is the effect of wide range of Prandtl number. It is thought that the results of this paper are 

fundamental to reveal the incorporation of the transient aspect and the effect of thermal 

diffusion in the FSI field, which is of interest to many potential applications of flexible 

walls in the solar collectors industry and fuel cell field. 

 

2. Mathematical modeling 

A view of the geometry of the considered problem is shown schematically in Fig. 

1 along with the coordinate system and imposed boundary conditions. The dimensions of 

the enclosure in x* , y*  coordinates are so much higher than that in z* one. Accordingly, a 

two-dimensional scope of the geometry can correctly model the problem. The heat source 

associated to the hot bound imposes a time-periodic temperature so that T*= T*
c+ (T*

h -T*
c) 

(A + B sin (Ȧt)) while the opposite cold one has the uniform temperature of T*
c. The lower 

and upper bounds of the enclosure are thermally impervious. A thin flexible divider is 
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utilized to partition the enclosure into two smaller ones. The thickness of the divider is t*p. 

The fluid filling the enclosures behaves as an incompressible and Newtonian one. The 

boundary condition of time-periodic temperature on the left bound necessitates that the 

flow is unsteady. The present buoyancy-driven flow applies the Boussinesq approximation. 

This approximation neglects the variations of density except where they are in terms 

containing the gravity acceleration. Since the flexible divider is thin and with low thermal 

resistance, the gradient of temperature in it is zero.  

Two eyelets of L/100 height are located on the top of the vertical bounds, while the 

others bounds and the flexible divider are impervious against the mass flow. The goal of 

the eyelets is to control the fluid flow. The eyelets are considered very small, and hence, 

the only effect of these eyelets is to balance the pressure in the two sides of the cavity. The 

densities of the fluid and the flexible divider are the same. The flexible divider behaves as 

a hyper-elastic material reacting nonlinearly against the imposed forces by the fluid. 

 

2.1 Fluid-Structure Interaction (FSI) model 

Description of the reciprocal effects of the fluid and deformable solid material is 

performed by the known technique of the Arbitrary Lagrangian-Eulerian (ALE). The fluid 

flow within the enclosure is portrayed by the incompressible mass conservation and the 

linear momentums equations for the pressure and velocity fields:  

* * 0 = u           (1) 

( ) ( )
*

* * * * * * *2 * * *1
f c

f

P v T T
t


+ −  = − + + −


   


u

u w u u g    (2) 
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Also, the energy equation which describes the temperature field can be represented as 

follows: 

( )
*

* * * * *2 *. f

T
T T

t


+ − =


  u w        (3) 

The structural deformations of the flexible divider can be achieved by the following 

nonlinear geometric and elastic formulation: 

2 *
* * *

2
s

s v

d

dt
− = d

F         (4) 

Fv
* of the above-written equation is the applied volume forces on the deformable divider, 

ı* is the solid stress tensor, ds
* the displacement vector of moving coordinate system so 

that dds
*/dt=w* and ȡs is the density of the divider. 

In this study, the Neo-Hookean solid model has been utilized for assigning the 

stress tensor ı* [33]. This model is applied to characterize the stress-strain nonlinear 

behavior of a hyper-elastic material with large deformations [33]. The hyper-elastic theory 

is used more for modeling of rubbery behavior of a polymeric material and polymeric 

foams that can have large deformations. The model can be written as follows: 

* 1 TJ FSF−=           (5a) 

where  

( )* *
sF I= + d ,  J = det(F) and  S=∂Ws/∂İ     (5b) 

are the deformation gradient, determinant of the matrix F and the partial differential of the 

density function of strain energy, respectively. Also, the density function of the strain 

energy Ws and strain İ is defined through the equations below: 

( ) ( ) ( )( )21
1

1 1
3 ln ln

2 2s l lW J I J J  −= − − +      (6) 
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( )* * * * * * * *1

2
T T

s s s s= + +    d d d d        (7) 

Ȝ and ȝl of the above equations, known as Lame’s first and second constants, respectively, 

is related to passion coefficient and elasticity module using  , and

. I1 is called the first constant of the deformation tensor. 

 

2.2 Boundary conditions 

All the bounds of the enclosure are motionless ( ). The lower and topper 

bounds of the both sub-cavities are thermally insulated ( ). The right hand wall 

is at the constant temperature T*= T*
c, while a time-sinusoidal function of temperature is 

imposed on the left hand wall such that the period-averaged of it is A(T*
h -T*

c) +T*
c. This 

function is written in the term of T*= T*
c+ (T*

h -T*
c) (A + Bsin (Ȧt)) where Ȧ shows the 

oscillation frequency and values of A and B are 1 and 0.1, respectively. 

Along the fluid-solid interface, continuity of the dynamic motion and kinematic 

forces are the boundary conditions utilized to model the fluid and deformable divider 

interaction. These conditions can be represented as 

*
*s

t


=


d

u  and * * * *. fn P= − +  u        (8) 

Applying the conservation of energy on the flexible divider along with the previously 

assumptions results in the equation below: 

          (9) 

In this equation, the plus and minus marks denote the right and left sides of the deformable 

divider, respectively. Also, the boundary condition for both eyelets can be represented as 

follows: 

( )/ 2 1l⽂= +

( )( )/ 1 1 2E= + −   

* * 0u v= =
* * 0T y  =

* *T T

n n

+ − 
=

 
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* * * . 0fP n − + =   u         (10) 

 

2.3 Dimensionalizing the governing equations and boundary conditions 

To provide with dimensions, non-dimensional parameters are introduced below;  

*

s

s L
=

d
d

, 

*

E
=


, , ,   (11a) 

*

f

L
=

u

u
, 

*

f

L
=


w
w

, ,     (11b) 

*

1 L
=


, 

*2
2

21 L
=


, 

*

p

p

t
t

L
=

      (11c) 

To dimensionalize the equations, the above parameters are substituted for the Eqs. (1)-(4). 

Therefore, we then have, 

2

2

1 s
v

R

d
E E

d
− = 

 
d

F         (12) 

. = 0 u           (13) 

( ) 2P Pr Pr T


+ −  = − + +


  

u

u w u u Ra       (14) 

( ) 2.
T

T T


+ − =


 


u w         (15) 

where  

( ) ( )* * 3 2

2
, , , ,

h c f sf f
v R

f f f f f s

T T L LEL
Pr E

E

− −
= = = = =

g g


   
     

Ra F
  

(16) 

 

2

ft

L


 = ( ) ( )* *,

,
x y

x y
L

=

2
*

2
f f

L
P P

 
=

* *

* *
c

h c

T T
T

T T

−
=

−
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The vectors of Ra and Fv act in the direction of the y-axis, upwards and downwards, 

respectively. Since the Rayleigh number includes the vector of gravitation acceleration, it 

has been represented as a vector. Indeed, the Rayleigh numbers in the x and y directions 

are, respectively, zero and Ra =|Ra|. 

 

Finally, the non-dimensional forms of the velocities and temperatures on the 

bounds are  

 

x=0 ( )0 and sinu v T A B f = = = +        (17a) 
x=1           (17b) 

y=0         (17c) 

y=1         (17d) 

 
For the membrane      (17e) 
 
For the fluid-solid interface s  = ud

 
and .E n P Pr= − + u                (17f) 

 
For both of the eyelets  . 0P Pr n− + =u       (17g) 

where the dimensionless frequency of the periodic temperature is defined as f = ȦL2/Įf 

Here, two definitions are expressed in order to evaluate the rate if heat transfer rate: 

first, the average Nusselt number along the left or the right side walls at a specified time is 

1

0

av

T
Nu dy

x


= −

          (18) 

Secondary, the average Nusselt number in one period of time is defined as 

( ) 11

,

0

p

p

p

n T

T

nT

av

T
Nu dyd

x


+


= −
          (19) 

where n and Tp are the number of periods and the period, respectively. Also, the 

dimensionless mean temperature in the whole enclosure is calculated as follows:  

0 and 0u v T= = =
0 and 0 0u v T y= =   = =
0 and 0 0u v T y= =   = =

 and =T n T n T T+ − + −  =  
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local

A
av

A

T dA

T
dA

=



         (20) 

Here, A denotes the domain of the enclosure. To describe the fluid flow inside the sub-

cavities the concept of the stream function can be used as FOLLOWS: 

= ,   =u v -
y x

 
 
           (21) 

 

3. Numerical approach, grid independence test and validation 

The interdependent, complex and non-linear Eqs. (12)-(15) are solved by 

employing the Galerkin finite element approach with the aid of ALE technique. The 

numerical approach of finite element are expressed in [34, 35] in details. A mesh of non-

uniform triangular elements is employed to discretize the domain.  

For as much as the results of the numerical solutions depend on the number of grid 

cells, firstly; it must be proven that the results are independent of the grid size. In the 

present investigation, a grid independence test has been done. A grid independence study 

has been done for the mean Nusselt number in a period of oscillation and the dimensionless 

temperature at point A with the position of x = 0.025 and y = 0 next to the flexible bound 

when Ra = 107, EĲ = 1013, Pr = 6.2 and f = 20ʌ. The increase of the Rayleigh number 

enhances the strength of the convection regime and reduces the thickness of the boundary 

layer which, as a result, boosts the gradients of the temperature and velocity in the vicinity 

of the enclosure walls. The increase of the stiffness of the membrane also increases the 

tension gradients in the membrane. The Prandtl number of 6.2 is common in the literature, 

and it is close to the Prandtl number of water. The set of Ra = 107, EĲ = 1013 indicates the 

most sensitive case in the present study. Thus, the grid check has been performed for this 

set of non-dimensional variables.  

Fig. 2 shows the general and zoom views of the selected grid. Fig. 3 shows the 

temperature at the coordinate of A (x = 0.025, y = 0) for several meshes of different sizes. 
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The results presented in Table 1 as well as the temperature time series of point A defined 

in Fig. 3 clearly shows that the grid of size 11406 elements is appropriate to be used for 

the process of numerical simulation.  

For more confirmation of the accuracy of the current modeling and simulation, the 

used solution method has been employed to resolve several problems investigated by 

previous researchers. In the first validation, the results obtained in this study and the those 

by Xu et al. [21] have been compared. Xu et al. [21] have studied the heat transfer of a 

transient free convection in an enclosure divided into two parts using a rigid partition. It is 

worth mentioning that in the work of Xu et al. [21], the variables Ra, Pr and Ĳ are defined 

as ( )* * 3
h c f fT T L= −g  Ra

, 

f fPr =  and 2 2
ft Ra L=  , respectively. As can be 

seen from Fig. 4, there is an excellent agreement between the outcomes of this work and 

those reported in [21]. This validation verifies the sufficiency of the present formulation 

and solution to simulate the transient natural convection in the fluid domain and the 

partition. 

Another validation is the comparison of the deformation of the lower bound of a 

lid-driven enclosure computed by the present study and that computed by Küttler and Wall 

[23]. The schematic view of the study of Küttler and Wall [23] along with the utilized 

physical values have been depicted inside Fig. 5. In the work of them [23], the bottom 

bound was flexible and the induced flow due to the lid movements would change the 

configuration of the bound. From Fig. 5, it can be observed that the current solution method 

is highly acceptable. This comparison confirms the capability of the present formulation 

and the solution for dealing with the FSI physics in an ALE system of meshing.  
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The last validation compares the experimental outcomes reported by Tatsuo et al. 

[17] and the numerical results calculated of this investigation. Also, the validation 

compares our results and Churchill’s relation [36]. As previously mentioned, Tatsuo et al. 

[17] did an experimental research on free convection in a regular quadrilateral divided 

vertically by N multiplex rigid plates. In the case of N=1 and Ar=4 (height/length), the 

study of Tatsuo et al. [17] is very similar to the present study. From Fig. 6, obviously, it is 

established a great accordance between the experimental outcomes and Churchill’s relation. 

This comparison confirms the correctness of the results from the natural convection heat 

transfer point of view for the large values of Ĳ where the convective heat transfer reaches 

to its steady-state form. 

 

4. Results and discussion 

Here, the impacts of the dimensionless parameters of Rayleigh number (104 ≤ Ra ≤ 

107), elasticity modulus (5×1012 ≤ EĲ ≤ 1016) and the frequency (2ʌ ≤ f ≤ 40ʌ) on the rate 

of heat transfer, stress in the solid flexible partition and the patterns of the flow and 

temperature domains are investigated. The values considered for Pr are 0.71, 6.2 and 200. 

In fact, these values correspond to the working fluids of air, water and engine oil, 

respectively. As discussed by Markatos and Pericleous [7], for a regular square cavity, the 

critical Rayleigh number starts from 106, and for a Rayleigh number higher than this value, 

the transient phenomenon can be expected. However, it should be noticed that the presence 

of the membrane, acting as a partition, suspends the commencing of the transient 

phenomenon to much higher Rayleigh numbers. For instance, Xu et al. [21] addressed the 

heat transfer of laminar free convection in a square enclosure partitioned into two equal 

parts by a rigid partition for a Rayleigh number up to 9.2×108. 
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4.1 Effects of Rayleigh number  

In the current category, the dimensionless parameters EĲ, f, and Pr are fixed at 1013, 

10ʌ, and 6.2, respectively while the Rayleigh number Ra varies from 104 to 107. Figure 5 

shows the streamlines for the mentioned range of Ra in different periods of oscillation. As 

envisaged, the maximum value of stream function |ȥ|max, introduced as the intensity of the 

flow, increases as Ra increases. In fact, this result is referred to the fact that an increase of 

Ra enhances the buoyancy force in the momentum equation. This effect can be seen in the 

four considered periods of oscillation. In addition, a single clockwise (CW) circulation 

(negative stream function) is formed in the cases of low Ra values (Ra =104 and 105) in 

both sub-cavities. However, at high Ra numbers (Ra =106 and 107), the CW vortex created 

in the right part of enclosure becomes stronger and as a result, it breaks up into two vortices. 

Hence, the fluid-solid interaction forces increase slowly e until deforming the impermeable 

flexible membrane to the left as shown in Fig. 7. It is worth mentioning that the streamlines 

get crowded close to the flexible membrane, which indicates an intensified flow there. 

Besides, at lower Ra, the intensity of the flowing fluid is relatively weak and the pressure 

is approximately identical in both sub-cavities, and therefore, the deformation of the 

flexible membrane is marginal. 

The corresponding isotherms contours are presented in Fig. 8. These contours 

demonstrate the variation of the heat transfer mechanism as Ra is varying. The isotherms 

tend to possess a stratification pattern as Ra increases. This outcome is attributed to the 

augmentation of the strengthening of the convective currents as result of the augmentation 

of the buoyancy forces. Additionally, Fig. 8 states that at Ra = 104 the isotherms look 

mostly vertical, which is an indication to the dominance of the conduction mode against 

the convection one. As Ra increases, the impact of the conduction mechanism diminishes 

while the effect of the convection mode increases. In general, the onset of the buoyancy 

force dominance can be characterized when the isotherms are mostly horizontal and the 

membrane is deformed noticeably, this can be seen at Ra = 106.   

Figures 9 (a)-(b) and 10 present, respectively, the evolution of the average Nusselt 

number Nuav, average temperature Tav, and the maximum stress ımax in the flexible 

membrane for Pr = 6.2, f = 10ʌ and EĲ =1013. They are monitored after one cycle of the 
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temperature oscillation (ɒ = 0.2). From Fig. 9 (a) and (b), Nuav (as a representation of the 

convective heat flux) and Tav vary in a sinusoidal fashion. The average Nusselt number 

doubles for each one order of magnitude of the Rayleigh number. In addition, these figures 

show that an increase of Ra leads to an enhancement of the oscillation range of both Nuav 

and Tav functions. Also, it is clear that with increasing Ra, the increased heat transfer rate 

(Nuav) reduces Tav. Figure 10 illustrates that ımax extremely enhances with an increase of 

Ra. In the case of Ra =104, ımax is almost constant. In this case, the maximum stress in the 

flexible membrane is in order of 1010, while it is clear that the oscillation function of ımax 

is amplified as Ra increased. This can be attributed to the increasing deflection of the 

flexible membrane with Ra. 

4.2 Effects of Prandtl number (Pr) 

The effects of Pr on the streamlines and isotherms contours in five periods of 

oscillation are displayed in Figs. 11 and 12, respectively, for Ra = 107, EĲ =1014, and f = 

10ʌ. Increasing the Prandtl number means increasing the momentum diffusion over the 

heat diffusion, and as a result, it is clear from Fig. 11, that in all periods of oscillation, the 

intensity of the flowing fluid increases with increasing values of Pr which in turn, 

significantly stretches the flexible membrane to the right. Also, it can be seen that the 

stretching of the flexible membrane grows slightly as time increases.  

Figure 12 (whose parameters are the same as those labeled in Fig. 11) shows that 

the isotherms follow the variations of the streamlines completely for all Prandtl numbers 

and times. In other words, the volumes of the warm (left) and cold (right) regions shrink 

and expand, respectively as Pr increases.  

The variations of Nuav and Tav inside the whole cavity are shown in Figs. 13 (a) and 

(b). For better presentation of the results, the variations of Nuav and Tav have been depicted 

in several periods of oscillation. As portrayed in Fig. 13 (a), the increase of Pr enhances 

the momentum exchange between the fluid molecules which in turn enhances the average 

Nusselt number Nuav. In comparison with Pr = 0.71 (air), the amplitude of graphs with Pr 

= 6.2 (water) and Pr = 200 (engine oil) enhances 8.2 % and 22.5 %, respectively. According 

to these observations of Nuav, Fig. 13 (b) shows clearly that the Tav inside the whole 
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enclosure decreases as Pr increases. Here, unlike the trend of the Nuav, the sinusoidal 

graphs of the average temperature shift downwards and also, their amplitudes decrease 

with increasing values of Pr. This reduction of the amplitude based on the amplitude of the 

sinusoidal function results for Pr = 0.71 equals to 1.15 (with water) and 23.3 % (with 

engine oil).  

The variations of the maximum stress ımax in the flexible membrane versus the 

dimensionless time for several values of the Prandtl number are represented in Fig. 14. The 

results state that the value of ımax increases extremely when the Pr grows. The reason for 

this is that strengthening of the fluid recirculation within the two sub-cavities. It is 

interesting to know that the enhancement of the amplitude of the sinusoidal variations of 

ımax is 447.8 % and 15453 % for water and engine oil, respectively compared with air. 

 

4.3 Effects of temperature oscillation frequency 

Figures 15 and 16 illustrates the efficacies of the oscillating temperature frequency 

on the flow and temperature fields, respectively while the other parameters are fixed at Ra 

=107, EĲ = 1014 and Pr = 6.2. As can be observed from the streamlines patterns, the 

frequency influences the strength of the fluid flow while the patterns of the streamlines are 

indiscernible. Also, there are no noticeable variations in the streamlines trend with the 

different times. At a specific time, the frequency increases the strength of flow (Ĳ = Tp) 

while at another time, there is no certain trend (for example Ĳ = Tp+3Tp/4). According to 

the corresponding isotherms (Fig. 16), we conclude that in the left sub-cavity, the isotherms 

move up with the frequency when Ĳ =Tp and Tp+Tp/4; while if Ĳ is nTp+Tp/2 or nTp+3Tp/4, 

the isotherms shift downward as the frequency augments. 

From Figs. 17 (a) and (b), obviously, the frequency increment decreases both the 

amplitude of the Nuav and Tav for Ra = 107, Pr = 6.2 and EĲ = 1014. The Nusselt number and 

the average temperature time functions for all frequency values oscillate around certain 

values which are 8.1 and 0.435, respectively. Therefore, it can be concluded that the 

frequency influences only the amplitude of the Nuav and Tav as time functions and has no 

effect on the period-averaged Nuav and Tav. The graph of the maximum stress in the flexible 

membrane shown in Fig. 18 also follows the trend of Nuav and Tav with the frequency. 
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Accordingly, it seems that when f tends to infinity, the amplitude of the oscillatory 

functions mentioned approaches constant values. Physically, when f tends to infinity, the 

left wall temperature oscillates very quickly so that the fluid does not have enough time to 

receive the temperature oscillation effects. 

4.4 Effects of elasticity modulus 

The thermal and dynamical behaviors of the fluid under the influence of the 

variation of the elasticity modulus are presented in Figs. 19 and 20. In these figures, each 

of the vertical columns illustrates the flow and temperature fields at a specific time. For all 

elasticity modulus values, the intensified fluid flow occurs in the second column, at a 

period of oscillation equals to nTp+Tp/4. For a low value of the elasticity modulus, the 

flexible wall experiences substantial deformation when faster circulated fluid exerts larger 

forces, as such, the highest flexible membrane stretching is noticed for the lower values of 

the elasticity modulus. The stretched membrane results in a substantial space available for 

the right sub-cavity, thus, the highest fluid flow intensity is recorded for the lower elasticity 

modulus. The vortex created in the left part of the enclosure for the lowest elasticity 

modulus (EĲ = 5×1012) case breaks into two vortices when EĲ changes from EĲ = 5×1012 to 

EĲ = 1013. After that, the general patterns of the streamlines are the same for all values of 

the elasticity modulus. Figure 20 shows that the isotherms contours are formed in 

accordance with the streamline patterns. Among the times defined for displaying the 

streamlines and the isotherms, the maximum temperature is observed at nTp+Tp/4. 

Figures 21 (a) and (b) display the variations of Nuav and Tav versus several periods 

of oscillation for different values of EĲ. In general, it can be stated that the Nuav decreases 

and Tav augments with the increase of the elasticity modulus. But it should be noted that 

the reduction and augmentation rate of Nuav and Tav decay when the value of EĲ is higher 

than EĲ = 1014. In order to justify these behaviors, it can be said that when the elasticity 

modulus of the membrane is low, an interaction between the solid material and the fluid 

takes place, the movement of the membrane is easier and more in a period of oscillation; 

hence, some fluid exit from the embedded eyelets. This quantity of fluid is substituted by 

some cold and fresh fluid. But when the elasticity modulus is high, the deflection of the 
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flexible partition is restricted; consequently, the fluid entry and exit cannot be seen 

significantly. This claim is proven by the representation of the discharge or charge of the 

enclosure through the eyelets in Fig. 22. In Fig. 22, Q is the dimensionless flow rate through 

the left eyelet. The negative and positive values of Q depict the intake and the discharge of 

the fluid through the eyelets. 

Finally, Fig. 23 provides information about the variations of ımax versus the 

oscillation period for different values of EĲ when Ra = 107, f = 10ʌ and Pr = 6.2. The 

obtained results show a noticeable increase of the maximum stress in the membrane ımax 

with the increase of EĲ. This is because the increase of the elasticity modulus gives rise to 

the stiffness of the membrane wall, which in turn leads to much high resistance against the 

force exerted by the fluid circulation. In addition, the oscillation amplitude of ımax 

increases as EĲ is increased.  

 

5. Conclusions 

The investigated problem in this work is a fluid-structure interaction (FSI) 

representing a periodically-heated square cavity equally divided vertically by a flexible 

membrane. The left vertical wall is exposed to a sinusoidal time-varying temperature, while 

the right surface is kept isothermal at a cold temperature. There is no thermal diffusion 

from the upper and lower horizontal boundaries. The interdependent, complex and non-

linear governing equations are solved by employing the Galerkin finite element approach 

with the aid of ALE technique. Four pertinent parameters are altered in this study. 

According to these studied parameters, the following concluding remarks are drawn: 

1- Due to the applied boundary conditions, the general behavior of the flexible partition is 

stretched to the left, resulting in shrinking the left sub-cavity and expanding the right one. 

2- A fluid with a high Prandtl number enhances the convective heat transfer, robustly 

stretches the flexible membrane, and as a result, increases the associated maximum stress. 

3- The lower elasticity modulus of the flexible membrane is, the higher are the flexible 

partition deflection, mean Nusselt number and the maximum stress of the partition.   
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4- The frequency of the oscillating left wall temperature does not affect the deformation 

and the stress of the flexible membrane, the Nuav and Tav. Nevertheless, the amplitudes of 

Nuav, Tav, and ɐmax are decreasing functions of the wall temperature frequency.   

5- The periodic state values of both the Nuav and ɐmax of the flexible partition increase 

significantly with the increase of Ra. 
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Table 1. Grid independency test for Ra = 107, EĲ = 1013, f = 20ʌ and Pr = 6.2

 
cases The number of elements 

, pTavNu  The average of error (%) * 

1 3064 84.06  
2 5644 82.15 1.91 
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3 8575 81.45 0.70 
4 11406 81.10 0.35 
5 16302 80.74 0.36 
6 20158 80.75 0.10 

* 
, , 1 , , , ,Error =

p p pav i av i av iT T TNu Nu Nu+ −  

 

 
 

                                 

Fig. 1. Physical problem and coordinate system  
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Fig. 2 General and zoom views of the grid selected 

 

 
Fig. 3 Time series of the dimensionless temperature at point A (x = 0.025, y = 0) obtained in different grids 
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Fig. 4. Comparison of the dimensionless temperature reported by Xu et al. [21] and this study at the certain 

point (0.0083, 0.375) 

 

Fig. 5. The deformation of the flexible bottom wall of the lid-driven cavity perused by Küttler and Wall  

[23] and the present study at t =7.5s 

 



T

10-1 100 101 102-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Xu et al. [21]

Present study



 

26 

 

 

Fig. 6. The comparison of average Nusselt between the results of present study and experimental results 

reported by Tatsuo et al. [17] and Churchill’s relation [36] at Pr = 6 and Ar  = 4 
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C     

D     

Fig. 7. Streamlines patterns for the cavities with Rayleigh numbers a: Ra =104, b: Ra =105, c: Ra =106, and 

d: Ra=107 in a period of oscillation (A: nTp, B: nTp+Tp/4, C: nTp+Tp /2, D: nTp+3Tp /4) for f = 10ʌ, EĲ = 1013 

and Pr = 6.2 
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B     

C     

D     

Fig. 8. Isotherms patterns for the cavities with Rayleigh numbers a: Ra =104, b: Ra =105, c: Ra =106, and d: 

Ra=107 in a period of oscillation (A: nTp, B: nTp+Tp/4, C: nTp+Tp /2, D: nTp+3Tp /4) for f = 10ʌ, EĲ = 1013 

and Pr = 6.2 

 

   
                                            (a)                                                                                   (b) 
Fig. 9. Average Nusselt number (a) and the average temperature (b) versus dimensionless time for different 

values of Ra in f =10ʌ, EĲ = 1013, and Pr = 6.2 



N
u av

0.2 0.4 0.6 0.8

1

2

3

4

5

6

7

8

9

Ra=104, 105, 106, 107



T
av

2 2.1 2.2 2.3

0.4

0.42

0.44

0.46

0.48

0.5

Ra=104, 105, 106, 107



 

29 

 

 

 

Fig. 10. The maximum stress in the flexible membrane versus dimensionless time for different values of Ra 

in f =10ʌ, EĲ = 1013, and Pr = 6.2 
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C    

D    

E    

Fig. 11. Streamlines contours for Prandtl number a: Pr = 0.71 b: Pr = 6.2 and c: Pr = 200 in a period of 

oscillation (A: nTp, B: nTp+Tp/5, C: nTp+2Tp/5, D: nTp+3Tp/5, and E: nTp+4Tp/5) for Ra = 107, f = 10 ʌ and 

EĲ = 1014 
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B    

C    

D    

E    
Fig. 12. Isotherm contours for Prandtl number a: Pr = 0.71, b: Pr = 6.2 and c: Pr = 200 in a period of 

oscillation (A: nTp, B: nTp+Tp/5, C: nTp+2Tp/5, D: nTp+3Tp/5, E: nTp+4Tp/5) for Ra = 107, f = 10ʌ and EĲ = 

1014 
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(a) (b)                    

Fig. 13. The average Nusselt number on the right wall (a) and the average temperature inside whole cavity 

(b) for different periods of oscillation with Prandtl number Pr = 0.71, 6.2 and 200 for Ra = 107, f = 10ʌ and 

EĲ = 1014 

 

 
Fig. 14. Maximum stress ımax according to dimensionless time for the different values of Pr in Ra = 107, f = 

10ʌ and EĲ =1014 
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                                     f = 2ʌ                                   f = 10ʌ                                     f = 40ʌ 

A    

B    

C     

D    
Fig. 15. Streamline contours for the different values of frequency in different periods of oscillation (A: nTp, 

B: nTp+Tp/4, C: nTp+Tp /2, D: nTp+3Tp /4) for Ra = 107, Pr = 6.2 and EĲ = 1014 
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                                f = 2ʌ                                        f = 10ʌ                                          f = 40ʌ 

A    

B    

C    

 D    

Fig. 16. Isotherms contours for different frequency values and different periods of oscillation (A: nTp, B: 

nTp+Tp/4, C: nTp+Tp /2, D: nTp+3Tp /4) for Ra = 107, Pr =  6.2 and EĲ = 1014 
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                                            (a)                                                                                      (b) 

Fig. 17. Variations of (a): average Nusselt number Nuav and (b) average temperature Tav versus 

dimensionless time for the different values of frequency in Ra=107, Pr = 6.2, and EĲ=1014 

 

 

Fig. 18. Variations ımax according to dimensionless time for the different values of frequency in Ra=107, Pr 

= 6.2, and EĲ=1014 
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                       A                                       B                                       C                                       D 

a     

b     

c     

Fig. 19. Streamlines for the cavities with modulus elasticity a: EĲ=5×1012, b: EĲ=1014 and c: EĲ=1016 in 

different periods of oscillation (A: nTp, B: nTp+Tp/4, C: nTp+Tp /2, D: nTp+3Tp /4) for Ra = 107, f = 20ʌ and 

Pr = 6.2 
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                       A                                      B                                        C                                       D 

a     

b     

c     

Fig. 20. Isotherms contours for the cavities with modulus elasticity a: EĲ=5×1012, b: EĲ=1014 and c: EĲ=1016 

in different periods of oscillation (A: nTp, B: nTp+Tp/4, C: nTp+Tp /2, D: nTp+3Tp /4) for Ra = 107, f = 20ʌ 

and Pr = 6.2 

 

 



 

38 

 

   
                                             (a)                                                                                  (b) 

Fig. 21. Variations of Nuav (a) and Tav (b) versus oscillation period for different values of EĲ at Ra = 107, f = 

20ʌ and Pr = 6.2 

 

 
Fig. 22. The dimensionless flow rate through the left embedded eyelet versus oscillation period for 

different values of EĲ at Ra = 107, f = 20ʌ and Pr = 6.2  
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Fig. 23. Variations of ımax versus oscillation period for different values of EĲ at Ra = 107, f = 20ʌ and Pr = 

6.2 
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