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ABSTRACT Lung cancer is a major cause for cancer-related deaths. The detection of pulmonary cancer

in the early stages can highly increase survival rate. Manual delineation of lung nodules by radiologists is

a tedious task. We developed a novel computer-aided decision support system for lung nodule detection

based on a 3D Deep Convolutional Neural Network (3DDCNN) for assisting the radiologists. Our decision

support system provides a second opinion to the radiologists in lung cancer diagnostic decision making.

In order to leverage 3-dimensional information from Computed Tomography (CT) scans, we applied median

intensity projection and multi-Region Proposal Network (mRPN) for automatic selection of potential region-

of-interests. Our Computer Aided Diagnosis (CAD) system has been trained and validated using LUNA16,

ANODE09, and LIDC-IDR datasets; the experiments demonstrate the superior performance of our system,

attaining sensitivity, specificity, AUROC, accuracy, of 98.4%, 92%, 96% and 98.51% with 2.1 FPs per scan.

We integrated cloud computing, trained and validated our Cloud-Based 3DDCNN on the datasets provided by

Shanghai Sixth People’s Hospital, as well as LUNA16, ANODE09, and LIDC-IDR.Our system outperformed

the state-of-the-art systems and obtained an impressive 98.7% sensitivity at 1.97 FPs per scan. This shows

the potentials of deep learning, in combination with cloud computing, for accurate and efficient lung nodule

detection via CT imaging, which could help doctors and radiologists in treating lung cancer patients.

INDEX TERMS Computer-aided diagnosis, nodule detection, cloud computing, computed tomography, lung

cancer.

I. INTRODUCTION

Among different types of cancer, pulmonary cancer also refer

to as lung cancer is considered to be one of the most deadly

cancers. In 2018, there were approximately 2.2 million new

pulmonary cancer cases and about 1.8 million deaths in U.S.

within a year. Pulmonary cancer is an uncontrollable abnor-

mal lung cells growth, referred to as nodules, whose detection

in early stages is highly crucial to the effective control of

disease progression and thus potentially increase the survival

rate of the patient. Commonly usedmanual lung nodule delin-

eation by radiologists on high-resolution and high-quality

chest Computed Tomography (CT) is complex, time consum-

ing and extremely tedious [1]. Automation of pulmonary nod-

ule detection with effective and efficient Computer-Assisted

Diagnosis (CAD) tools facilitates radiologists in fast diag-

nosis and improves the diagnostic confidence. Among these
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FIGURE 1. Nodules and non-nodules in coronal, sagittal and axial view (nodules/non-nodules positioned at the center of the box (40 × 40 mm).
Left images set are various types of nodules: (a) Solid (b) Sub-Solid (c) Non-Solid (d) Calcified (e) Spiculated (f) Perifissural while right images set
are non-nodules.

approaches, one key challenge in CAD systems for lung

cancer is dealing with the morphological variations in the

nodules in CT images. Usually such variations are evident

in images with different image modalities such as Magnetic

Resonance Imaging (MRI), Positron Emission Tomography

(PET), X-ray or CT but in case of lung nodules numerous

morphological variations are present even if the same image

modality is used [2], [3]. Fig. 1 shows various nodules and

non-nodules examples which depict the variety of morpho-

logical features, resulting in complexity in data used for nod-

ule detection and diagnosis systems. Recently, deep learning

methods [4], [5] have merged both the hand-designed feature

extraction process and nodules classification process into a

combined automated training process. Deep learning tech-

niques have demonstrated great performance (i.e. reduced

number of False Positive (FP) results) when compared with

typical results reported by deploying traditional segmentation

techniques [6], [7]. This paper presents a novel computer-

aided decision support system for lung nodule detection. The

contributions of this paper are threefold.

• A novel automated clinical decision support system

for lung detection based on a 3D Deep Convolutional

Neural Network (3DDCNN) architecture. In order to

leverage 3-dimensional information from CT scans,

we applied novel median intensity projection and intro-

duced a novel multi-Region Proposal Network (mRPN)

in our architecture for automatic selection of potential

region-of-interest.

• To further improve the efficiency and performance of

our proposedmodel, we integrated cloud computing into

our CAD system. Proposed computer-aided decision

support system is used for nodule detection and for assis-

tance of radiologists in clinical diagnosis at Shanghai

Sixth Peoples Hospital.

• A comprehensive experimental evaluation of our CAD

system done on four different datasets with varying CT

imaging parameters with existing state-of-the-art CAD

systems for lung cancer detection demonstrated that our

system outperformed the existing systems and obtained

an impressive 98.7% sensitivity at 1.97 FPs per scan.

The rest of the paper is organized as follows. Section 2

briefly introduces the relatedwork, detailed description of our

method is presented in Section 3. In Section 4, we discussed

the experimental results on different datasets. Our paper is

concluded with relevant future work in Section 5.

II. RELATED WORK

CAD system is one of the most common means to improve

the accuracy of cancer diagnosis done by the radiologists

and decrease the time required for interpretation of the CT

images. CAD systems are further categorised as: Computer

Aided Detection (CADe) systems and Computer Aided Diag-

nosis (CADx) systems. CADe systems assist in finding the

locality of nodules in CT images acquired from different

imaging modalities while on the other hand the CADx sys-

tems characterize and classify these detected lesions asmalig-

nant or benign tumors. In general, a CAD system designed

for the detection of pulmonary lesions (nodules) has two

steps namely candidate nodule detection and FP Elimina-

tion. Firstly, the Regions Of Interest (ROIs) are selected

in the input CT image, then the lung nodule candidates

are extracted. Teramoto and Fujita [8] used Active Contour

Model (ACM) filter for enhancement of contrast then used

thresholding of the resultant images for the screening of can-

didate nodules. Supervised learning methods namely linear

discriminant analysis (LDA), gray-scale distance transform,

clustering (k-means clustering), connected component anal-

ysis, and patient-specific priori model have been used in con-

ventional approaches [9]. FP reduction step classifies the lung

nodules and non-nodules using machine learning techniques.

The main objective is to eliminate the FP results which are

considered as candidate in the previous step. Hierarchical

Vector Quantization (HVQ), Rule-based filter, LDA, Artifi-

cial Neural Networks (ANN), and Support Vector Machine

(SVM) are few supervised reduction methods which are used

for FP reduction. Random Forest (RF) is reported to surpass
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SVM in FPs reduction in lung CAD system. Regression tree-

based classifiers have shown efficient discrimination abil-

ity in reduction of FPs for improved detection results [10].

Spatial and metabolic features in combination with SVM [8]

are other approaches used for FPs elminiation.

In the past few years, researchers have presented deep

learning based CAD systems for cancer detection with

promising results [11]. Convolutional Neural Network

(CNN) framework is used for FPs reduction [12]. Nodules

were accurately classified by using the fully connected lay-

ers (Fc) of CNN integrated with SVM classifier in [13].

Shen et al. [14] proposed a Multi-Crop CNN (MC-CNN)

comprising of training by cropped convolutional featuremaps

and max-pooling layers recursively. Multi-View CNN pro-

posed by Setio et al. [15] combines three candidate detectors

each for sub-solid, solid, and large nodule category and then

utilizes a fusion method to classify the input CT image.

A 3-dimensional Fully Convolutional Network (FCN) based

on Volumes Of Interest (VOI) was employed for classifica-

tion [16]. This proposed work produces a score map with

respect to the input VOI in single pass which is used for

training of CNN used for classification. Deep learning based

models have also been proposed for the candidate nodule

detection [17], [18]. Multi-scale Laplace of Gaussian (LoG)

filters and shape priors based multi-scale 3D-CNN model is

proposed in [19]. In the past few years both CADe and CADx

systems have been researched independently. CADe’s major

shortcoming for detecting lung cancer is their lack of ability

to characterize them. CADe systems assist the radiologists in

detection of lung nodules but do not provide detailed radi-

ological characteristics of the lesion, consequently missing

the information which is crucial for radiologists, while on

the other hand CADx systems do not automatically identify

lesions thus they do not possess high automation levels,

making it not suitable for clinical use. Therefore, a new and

advanced CAD system is needed, that incorporates the bene-

fits of detection from CADe and diagnosis from CADx into a

single system for better performance. The CADx systems per-

formance evaluation is conducted in terms of computational

efficiency, accuracy, sensitivity and specificity.

III. MATERIALS AND METHODS

A. TRAINING DATASETS

For the training of our proposed method for nodule detec-

tion, we used LUng Nodule Analysis (LUNA16) dataset [20]

which comprises of 888 annotated CT scans. In these CT

scans, four radiologists marked the lesions as nodule< 3mm,

nodule ≥ 3mm, or non-nodule in a two-phase annotation

process. We used 55 CT-scans from ANODE09 dataset [21],

among which only 5 have annotations done by three radiolo-

gists containing 39 nodules and 31 non-nodules. We used the

remaining 50 as testing datasets which contained 433 non-

nodules and 207 nodules along with LIDC-IDR dataset [22]

to validate the nodule detection and classification of our

proposed method. Since we were using two heterogeneous

datasets having varied image resolution therefore we resam-

pled CT scans by the help of spline interpolation by 0.5mm

per voxel along x, y and z-axis to have constant resolution

and we further reconstructed all the images by sharp kernel

(Siemens B50 kernel).

B. DATA AUGMENTATION

CNN models have a tendency to overfit data in case of

limited labeled training dataset [12], therefore to ensure that

the training of our model does not overfit, we trained our

model with data-augmented training dataset. Since benign

nodules are more in number as compared to malignant nod-

ules, we choose to augment the malignant training samples

by cropping, duplicating, random translation within the range

of [1, 0, or −1 pixels in each dimensions (3D)] voxels,

flipping, scaling, swapping in three dimensions axes and then

rotating on the angle of [0, 90, 180, 270 degree] in training

dataset. Specifically, among input batch, random transla-

tion as well as rotation are performed for up-sampling and

down-sampling. These data-augmentation methods assisted

our model in capturing nodule attributes invariant to image-

level affine transformations.

C. PRE-PROCESSING

1) MULTI-SCALE ROI PATCHES

Multi-scale ROI patches were generated by zooming in or out

of the CT image in coronal, axial and sagittal views (see

Fig. 1). Themotivation for the multi-scale ROI patches comes

from the real life scenario when the radiologists detects

cancer patterns in a patient’s CT-scans. In this scenario,

the suspected regions were explored on pixel level in the

follow-up check-up thus making these regions more scruti-

nized than the rest. Therefore, the training dataset comprising

of nodules was used in different multi-scale patches as shown

in Fig. 2. Using multi-scale ROI patches also upsampled the

labeled dataset.

2) MULTI-ANGLE ROI PATCHES

Multi-angle ROI patches were generated by rotation of

obtained multi-scale patches by small angle θ in orthog-

onal coordinate systems to obtain labeled data. The deep

learning based methods can easily process these multi-scale

and multi-view ROI patched to their properties such as shift

invariance [23].

3) MULTI-VIEW COMBINATION

In a two dimensional lung CT scans, most of the FPs are

caused by the trachea and the blood vessels having tubu-

lar spatial structure. To reduce the noise caused by trachea

and the blood vessels, we used a three dimensional bilateral

smoothing filter S(x, y, z) for the pre-processing of CT-scans

C(x, y, z).

Si(x, y, z) = n−1
c

∑

(θ,ξ,η)∈�w

C(θ, ξ, η)wc(θ, ξ, η; x, y, z) (1)
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FIGURE 2. Our CAD system comprises of four stages: data acquisition (2D CT scan image to generate MIP projected images),
pre-processing (multi-angle, multi-scale and multi-view), candidate screening (mRPN for nodule detection), false positive
reduction using 3DDCNN.

where Si(x, y, z) is the output smoothed image, n−1
c is the

normalization coefficient and �w means the filter window

wc(θ, ξ, η; x, y, z) denotes the weight coefficient which can

be described as:

wc(θ, ξ, η; x, y, z)

= wG((θ, ξ, η), (x, y, z)) · wE (Cθ,ξ,η,Cx,y,z) (2)

where wG((θ, ξ, η), (x, y, z)) expressed geometric similarity

whereas wE (Cθ,ξ,η,Cx,y,z) expressed energy similarity. For

removal of the effect of trachea and the blood vessels mean-

while enhancing the ROIs, three dimensional isotropic Gauss

function was utilized. Thus, the weight coefficient can be

described as follows:

wc(θ, η, ξ ; x, y, z) = [−
1

n
(
θ − x

σg
)2 + (

ξ − y

σg
)2

+(
η − z

σg
)2)].[−

(Cθ,ξ,η − Cx,y,z)
2

2σ 2
E

] (3)

where [− 1
n
( θ−x

σg
)2 + (

ξ−y
σg

)2 + (
η−z
σg

)2)] represents the geo-

metric similarity, [−
(Cθ,ξ,η−Cx,y,z)

2

2σ 2
E

] represents the energy sim-

ilarity and σE and σg represents the standard deviation (σ )

of gray-level energy values and Gauss function. The terms

C(θ, ξ, η) and C(x, y, z) are related to CT scan gray-level

energy values therefore they are referred to as energy sim-

ilarity whereas ( θ−x
σg

)2, (
ξ−y
σg

)2, (
η−z
σg

)2 represent geometric

similarity since these terms are related to the spatial structure

of the anatomical structures. We used − 1
n
with the geometric

similarity where n represents the independent planes, in case

of energy similarities there is no clear gray level boundaries

therefore we used − with the energy similarity. The distance

between (θ, ξ, η) and (x, y, z) is the distance between the

spatial nodule localization and the gray level energy differ-

ence between nodule and other anatomical structure. This

similarity metric is the first decision making step to reduce

the undesirable feature redundancies which tend to cause

false positive results. This metric ensures that the nodule

class similarity is maximized on the other hand the non-

nodule to nodule class similarity is minimized. Traditionally

the Gaussian function refers to mean and co-variance matrix

but when the number of independent parameters increase as

the number of dimension increase then the multi-dimensional

isotropic Gaussian distribution is considered where the vari-

ance of each dimensional is the same. In our case, we have

three dimensional MIP projected images with multi-view

combination therefore the 3D isotropic Gauss function was

used. Afterwards an enhancement filter is used which sup-

presses the spatial tubular structure but enhances the nod-

ule structures. Although commonly the classification phase

has a problem when the input channels have multiple color

channels, yet in our CT-scans dataset we only have gray-level

images. CT input training images are 2-Dwhereas the locality

of the nodule is presented by z-axis leveraging the inter-slice

dependencies through memory units are three dimensional.

Thus, to combine the multi-views of three dimensions of

CT-scans, each voxel of the 3-D CT scans input was pro-

cessed by the dot-enhancement filter which is inspired by the

3 × 3 Hessian matrix. We define θ as the image projected

by Maximum Intensity Projection (MIP). With input image

4300113 VOLUME 8, 2020
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FIGURE 3. Overview of the Proposed mRPN architecture for Nodule Candidate Detection using modified VGG-16 baseline for
Lconvo(1,2,3,4,5)integratedwith deconvolutional layer Ldeconv , feature map Mf , multi-RPN anchor with Classification (cls) and Regression (rgs)
layers.

patch I , ϑ for three dimensions can be presented as:

ϑ(yi, zi) = med
xi

I (xi, yi, zi)

ϑ(xi, zi) = med
yi

I (xi, yi, zi)

ϑ(xi, yi) = med
zi

I (xi, yi, zi) (4)

wheremed denotes median operator.Different views can pro-

vide different plane information, while patches with combi-

nation of different dimensions can provide the space distri-

bution of tumor tissues. In order to construct input image sets

with three channels, we connect three MIP projected images

together: ϑ = [ϑ(yi, zi), ϑ(xi, zi), ϑ(xi, yi)].

D. PROPOSED MODEL ARCHITECTURE

Our proposed architecture uses the basic framework of the

Faster R-CNN [24]. Candidate detection is done by the pro-

posed mRPN while the FP reduction is done by novel 3D

DCNN.

1) CANDIDATE DETECTION BY mRPN

To use the training ability of CNN model for lung cancer,

the model should be both end-to-end and trained frequently

trainable for ROI detection and classification such as, Faster

R-CNN [24]. The challenge for Faster R-CNN [24] in case

of pulmonary lesions detection is the diversity in the nod-

ule size and limited labeled dataset. We proposed a novel

method, mRPN that has enhanced the feature extraction pro-

cess (multi-resolution) and uses variedwindow size for region

proposal selection from ROIs. For efficient ROI selection,

these ROI extracted from multiple RPNs are merged in an

additional layer as shown in Fig. 3. Our proposed novel

model mRPN, which is based on based on VGG-16 Net

model proposed by [25], takes a CT image (of any size)

as input and generates a set of rectangular region propos-

als, each outputs an objectness score. Our network Multi

Region Proposal Network (mRPN) hyper-parameters of all

layers from conv1 to conv5 are similar to the VGG16 model.

The original VGG-16 model [26] comprises of multiple max

pooling layers, which inevitably reduces the image size but

simultaneously distort the relatively small sized malignant

FIGURE 4. (a) Existing anchor in region proposal network. (b) Proposed
anchor in region proposal network.

nodule. We used a small network Ns to slide through the

activation (feature)map outputMout by the final added decon-

volutional layer deconvL . We proposed a deconvolutional

layer deconvL [27], 4 kernel size and 4 stride size, to be added

after the last feature extracting layer. The deconvolutional

layer deconvL (or more commonly known as transposed con-

volutional layer) upsampled the features learned from the

input and the feature map Mf . This deconvL upsample the

feature maps that are derived from the downsampling stack to

generate Mout , while ensuring that both the output Mout and

inputMin have the same size. Traditionally, R-CNN depends

on the skip connection linked with the deconvolution layer on

the upsampling for generating initial results but the decon-

volution layer is unable to recover the small-sized objects

such as nodules, which are lost after the downsampling.

Therefore, they cannot accurately detect small-sized nodules.

In our proposed method, we used deconvL which ensured the

recovery of any loss of small objects such as lung nodules in

the downsampling process.

The proposed anchor in RPN [24] is shown in Fig. 4.

We explored large number of nodule boundary varying
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FIGURE 5. Our 3DDCNN model for False Positive Reduction comprising of Convolutional Layer convC1 and convC2, Residual Unit R1 + BN , R2 + BN ,
Classification (cls) and Regression (rgs) layers, Scoring Layer S and Output Layer generating the malignancy score based classification as nodule
(malignant or benign) or non-nodule.

in sizes, and generated seven different sizes of reference

bounding boxes which are centered at each sliding spatial

window w, in order to contain nodules of different malignant

level, we choose anchor sizes of 4×4, 8×8, 12×12, 16×16,

20×20, 26×26, and 32×32. These 7 anchors are divided into

RPN levels targeting nodules diameter τ ranging from 3mm

to 35mm in different aspect ratios and different sizes. These

different RPN levels work in a cascade manner and overall

increase the efficiency of the proposed model performance as

shown in Fig. 4(b). Each of these have a 1 × 1 convolutional

layer with about 28 units for the Bounding Box Regression

(BBReg) and 1 × 1 convolutional layer having 14 units for

the Bounding Box Classification (BBcls). The BBReg with

28 units gives an output of (H,W,28) size. This output is

used for providing four regression coefficients for each of the

seven anchors for each point in the feature map (H × W ).

These four Regression (Rgs) coefficients are further used to

enhance the coordinates of the anchors that is comprised of

nodules. On the other hand the BBcls with 14 units provide

an output (H,W,14) which is used to obtain classification

(cls) probabilities for each of the point of feature map (H,W)

whether it contains a nodule within these seven anchors at the

given point or not.

Nodules detection carried out using the different levels of

RPN results in improvement of the nodule detection since

both diameter and volume are considered. Volumetric values

(3D input) are in correlation with the diameter values (2D

input), therefore the combination of both volume and diame-

ter provides divergence for non-nodules.

2) FALSE POSITIVE REDUCTION BY 3DDCNN

False Positive reduction is carried out using by novel

3DDCNNwhich is inspired by the ResNet-101 network [28].

The 3DDCNN replaces 2D with 3D convolution. This is used

to predict the presence of nodules or to classify if a nodule

exists on the basis of the malignancy value. VGG16 Net

model is the basic layout of the 3DDCNN [26] having

100 convo layers with stride:2 where filters of size3 × 3 × 3

used. Furthermore, this architecture network was improved

by adding connection for shortcuts converting it into its com-

parable counterpart residual network as shown in Fig. 5.

In case of 3DDCNN, the feature map is defined as:

ω =
∑

I

(xi, yi, zi) (5)

The input set was 3D CT image therefore ω corresponds to

the 3D position (e.g.xi, yi, zi).

ν =
τ + υ + κ

nRPN
(6)

where τ is the diameter of the detected nodule, υ is the

volume, κ is the malignancy score which is obtained by using

the algorithm proposed in [11] and nRPN is the total number

of RPN levels used. For our model, value of nRPN is 7.

Mf = (ω + ν + ϕ) ×WI × HI ×
DI

µ
(7)

where ϕ is the confidence score,WI ×HI ×DI gives the input

width, height and depth of 128×128×128, respectively. The

confidence score represents the probability value of an anchor

to contain a nodule. In our model we used the confidence

score as a threshold for determining whether the detected

nodule is a FP or a True Positive (TP) result. We set the

threshold for confidence score at various levels and obtained

95% confidence interval. Due to memory limitation, the DI
µ

is used where the spatial scale factor presented by µ is 3. The

3DDCNN is designed to acquire spatial scale µ = 3 between

the inputMin and the outputMout space. The first convolution

layer (size of kernel: 7×7×7, stride:2) of 3DDCNN is applied

on the input set on bidirection. In 3DDCNN, we have 3D

convolution layer (kernel size: 7 × 7 × 7, stride:2), followed

by BN layer (batch normalization) and ReLu (rectified linear

unit) activation. In order to keep low ratio among the feature

map outputMout and the feature map inputMin, we proposed

to use only two ResNet blocks having a single residual con-

nection (kernel size: 3 × 3 × 3). One of the ResNet block

has feature stride:1 while the other has stride:2. In case of

similar dimensions for both the output and input, the identity

alternatives can be directly used:

q = F(p, {Wi}) + p (8)
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where p and q denotes input and output sets respectively,

that are fed into and considered by each network layer.

Residual mapping learning function is defined as F(p, {Wi}).

The 3DDCNN architecture modification is done by using

convolutional layer for generating Mf , thus, the learnable

weights are computed using convolutional layers which are

shared on the image level.

According to radiologist annotations, we add a k×k(5+1)-

channel convolutional layer (4×4 in this paper) as the output

layer to generate position sensitive score maps . Note that 5

represents five malignant level of lung nodule, 1 represents

non-nodule, and we divided RPN levels proposed ROI into

4×4 grid cell. Specifically, for 32×32 proposed rectangular,

each divided grid has the size of 8 × 8. Therefore 4 × 4 × 7

score maps will be generated, and we use the average pooling

operation to calculate the relevance score to 7 categories for

each split bin:

ζc(w, h | φ) =
∑

(a,b)∈bin(w,h)

zw,h,c(a+ a0, b+ b0 | φ)/n (9)

where φ denotes parameters of the network, ζc(w, h | φ) is the

relevance score of (w, h)th bin to malignant category c, zw,h,c

is the scoremap generated by last convolutional layer, (a0, b0)

is the top-left corner of ROI, and n denotes the total pixel

number in the bin. With 4 × 4 × 7 relevance scores ζ being

calculated, the scoring layer S decide the malignancy level

of the ROI by simply average voting and also apply cross-

entropy evaluation for ranking ROI:

ζc(φ) =
∑

w,h

ζc(w, h | φ) (10)

Here ζc(φ) denotes the relevance score for ROI to class c, and

ξc(φ) is the softmax response for class c.

E. TRAINING PROCESS

In the training process with multiple RPNs providing the

region proposals, RPN loss function is applied for each RPN

and Fast R-CNN loss function in an iteration. Our loss func-

tion can be defined by merging box regression and the cross-

entropy loss:

Lt,ξ = − log(ξc∗ ) +
1

Nr

∑

{L}r (t, t
∗) (11)

Lr (t, t
∗) =

{

0.5(t − t∗)2, {if } |t − t∗| < 1

|t − t∗| − 0.5,&{otherwise}
(12)

where the left part of the above equation denotes classifi-

cation cross entropy loss [28], Nr is the input number of

Regression layer,Lr is similar to the bounding box regression

loss as in [24], t∗ denotes ground truth values while t denotes

predicted values. ξc∗ represent Intersection-over-Union (IoU)

between any two entities that is their overlap volume divided

by their union volume. In our model, IoU is used to select the

best anchor to acquire nodule feature with least transforma-

tion. If an anchor of RPNLx has highest IoU, i.e. IoUmax with

regards to any of the t∗ or if IoU > 0.5, then the said anchor

is considered Positive AnP, whereas those anchors having

IoU < 0.02 are considered Negative AnN and anchors which

are neither Positive nor Negative are irrelevant. A hard nega-

tive mining method was used to enhance the generalization.

The classification imbalance was adjusted by normalizing

the weights for classes (non-nodule, benign, malignant). For

negative anchors, AnN weight was the probability of nodule

class while on the other hand the positive anchorsAnP, weight

was 1. Learning rate was initially set to 0.001 while the

decay method for learning rate was done every 30 epochs,

the learning rate was halved. The CAD system was trained

for 300 epochs using the batch size (size:32). In order to

leverage the gradient information from these selected batches,

average gradient operation was performed on the B samples

and used as the input gradient estimation for Adam process

to iteratively optimize the 3DDCNN. The experiment was

conducted on Ubuntu 16.04.3 LTSwith 4 processors, Intel(R)

Xeon(R) CPU E5-2686 v4@2.3GHz and 64GB total mem-

ory space. Our model is trained on Tesla K80 with 12GB

Memory. We used Intel Extended Caffe for implementation

of 3DDCNN model.

F. CLOUD-BASED 3DDCNN CAD SYSTEM

In this paper, we have proposed a two stage computer-assisted

decision support system for lung cancer detection. To further

improve the performance of our proposed method, we inte-

grated cloud computing (Infrastructure as a Service (IaaS)

by providing Virtual Machines, and Software as a Service

(SaaS) by giving our 3DDCNNmodel) into our CAD system.

The first stage for our proposed CAD system is the train-

ing of 3DDCNN model for the nodule candidate screening.

The second stage is the reduction of false positive results

from the first stage in order to improve the overall diagnosis

decision making by our CAD system as shown in Fig. 2.

The final decision from the proposed model is provided to

the radiologists to assist their diagnosis for lung cancer. The

diagnosis decision by the proposed CAD system is sent to the

doctors in real-time who determine the cancer stage. These

physicians afterwards sent the regular check-up reports and

treatment prescription to the patient. Treatment prescription

and check-up reports are stored on the cloud storage for

further data analysis and improvement of our CAD system.

To efficiently identify the effectiveness of each of the pre-

scribed treatment for specific lung cancer stage patient.

The proposed CAD system uses body area network (BAN)

comprising of sensors attached to patients body to record

physiological information and CT-scan for chest CT which

are stored on the cloud storage and undergo pre-processing.

Furthermore gateways are used to forward that data to stor-

age cloud for further processing. We deployed 12 VMs,

and 24 processing units in our dedicated cloud back-end.

For each case the complete processing time is about 219 ±

25.47 seconds. HTCondor tool was used for real-time opti-

mization and monitoring of computing resources, thus the

radiologists and the physicians have updated responsive CAD

system. 3DDCNN CAD system SaaS model was used to
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FIGURE 6. True Positive (TP), False Positive (FP), False Negative (FN) results of our proposed CAD system (nodules positioned at the center of 40 × 40mm
Patch).

provide supportive decision support system for assistance of

the radiologists whereas IaaS provided the GPU-acceleration,

fast computation aswell as storage resources. Thismodel pro-

vides automatic support for on demand scalability of comput-

ing and storage resources. Moreover, Cloud-based 3DDCNN

CAD system is more efficient and provides cost-effective

solution since CAD results can be reviewed in real-time by

multiple radiologists while a cloud back-end is taking care

of computations. On the other hand, traditional stand-alone

CAD systems have low performance and high computational

cost with no feedback frommultiple radiologists in real-time.

IV. EXPERIMENTAL RESULTS

In this research work, we used two phase validation. The

first phase is nodule detection without classification as done

by other researchers [7], [29]. The second phase combines

the performance of independent detection with the classifi-

cation results to provide the overall performance evaluation

of the CAD system. For the nodule detection, we used Free-

Response Receiver Operating Characteristic (FROC) [30]

including average sensitivity and the number of FPs per

scan (FPs/scan) which is the official evaluation metric for

LUNA16, where detection is considered a true positive if

the location lies within the radius of a nodule centre. The

classification performance is evaluated by the area under

the ROC curve (AUROC) which shows the performance of

our proposed method on classification of nodules as nodules

(malignant or benign) or non-nodules.

A. TRAINING

Our 3DDCNN model was trained for 300 epochs during

each fold of cross-validation. After approximately training

100 epochs, the loss on the validation set becamemore stable.

The result for each fold was selected to be the one with lowest

malignancy prediction loss on the validation dataset. If nodule

malignancy is M < 3, the nodule belongs to benign class,

whereas if nodule has M ≥ 3 then it is categorized as a

FIGURE 7. Performance comparison between our CAD system versus
state-of-the-art CAD systems on LUNA16. We compared our results with
Top three CAD systems of LUNA16 Challenge namely Patech, JianpeiCAD,
FONOVACAD [20] and the two published state-of-the-art CAD systems
based on LUNA16 dataset i.e. Dou et al. [31] and Ding et al. [32].

malignant nodule. Since we obtained the results of detection

results on three malignancy levelsM , we used 10-fold cross-

validation to merge the detection results of three levels.

B. NODULE DETECTION

1) NODULE DETECTION USING LUNA16 DATASET

For evaluation of our proposed method’s nodule classifica-

tion, we compared our results with the two state-of-the-art

published methods, i.e. Dou et al. [31] and Ding et al. [32]

along with the best three LUNA16 challenge [20] by calcu-

lating the average sensitivity over 7 FPs/scan [0.125, 0.25,

0.5, 1, 2, 4, 8 FPs/scan]. Our method demonstrated best

performance for nodule detection sensitivity of 0.812, 0.901,

0.948, 0.978, 0.984, 0.9853, 0.9866 at respective FPs/scan,

obtaining an average FROC score of 0.946 shown in Fig. 7.

C. NODULE DETECTION AND CLASSIFICATION

1) LIDC-IDR AND ANODE09 DATASET

We used a holdout validation set from LIDC dataset [20] and

ANODE09 [21] to validate each model from 10-fold cross
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TABLE 1. Comparison of various classifiers’ accuracy (%) on LIDC-IDR
and ANODE09 datasets.

FIGURE 8. Performance comparison between our CAD system versus
state-of-the-art CAD systems on LIDC-IDR dataset.

validation. For final results on LIDC, we retained 100% recall

for validation sets, and reach 94.26% for nodules < 3mm at

2.9 FP/scan. Since it was not easy to process above 1000 test-

sets in single step, we acquired result by cascading two FP

elimination networks.

The effectiveness of 3DDCNN is verified by compar-

ing with CNN [12], Autoencoder [10], Massive-feat [9],

MC-CNN [14], MTANNs [33] and FCN [13]: the results are

depicted in Table 1. The performance comparison between

our proposed method for candidate nodules versus the state-

of-the-art method in terms of sensitivity, specificity, AUROC

and FP rate is shown in Fig. 8. Our proposedmethod improves

3.9% FROC on average over other state-of-the-art systems

based on LIDC-IDR. The improvement on holdout test data

validates our proposed method as an effective model to

exploit potentially large amount of datasets which would not

require further costly annotation by expert doctors and can be

easily obtained from hospitals.

2) LIDC-IDR DATASET

Performance comparison between our proposed CAD system

versus state-of-the-art CAD systems on LIDC-IDR dataset

is shown in Fig. 9 in terms of the average sensitivity and

FPs/scan. S, SP, FP, FN , and TP denotes sensitivity, speci-

ficity, false positive, false negative and true positive rate,

respectively. In our experiment, if a sample with nodule is not

predicted as disease in our CAD system, it is FN . If a sample

with nodule is predicted correctly, it represents TP.

FIGURE 9. Performance comparison between our method and other
existing classifiers for nodule detection on LIDC-IDR Dataset.

We calculate FP rate between the number of non-nodule

samples falsely predict as nodule with a certain level ofmalig-

nancy and the total amount of non-nodule samples. In the

following we give the definition of FP rate:

FP

N
=

FP

FP+ TN
(13)

Sensitivity and specificity are calculated as:

S =
TP

TP+ FN
(14)

SP =
TN

TN + FP
(15)

To convert the malignancy probability output by the clas-

sifier to a binary response, we used threshold (e.g. τ =

0.5). However, decreasing or increasing τ will cause the

classifier to produce more positive or negative predictions.

We can observe in Table 1, that our proposed CAD system

(3DDCNN) has attained the best performance with accuracy

of 98.51%. From Table 2, we can deduce that 3DDCNN’s

performance is highest in terms of sensitivity, which was

found for 98.4% with a lowest FP rate of 2.1 per CT Scan

among these CAD system. Our 3DDCNN performs better

with mRPN than the original 3DDCNN proposed model.

Fig. 8 shows the accuracy of our proposed method in com-

parison to the published classifiers for the nodule candidate

detection. The comparison between our proposed system and

the previously published CAD systems to investigate the

perspectives of our 3DDCNN system was done using the

average FPs/Scan as parameter shown in Table 3.

Fig. 6 shows true nodules (marked in green) that were

missed in the traditional CNNmethod [12], but were detected

by our proposedmethod, when the false positives per scan lies

within the range of 1 to 4 with overall sensitivity of 0.9743.

The false negatives are marked in red and are shown in the
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TABLE 2. Performance comparison of various classifiers’ sensitivity, specificity, AUROC, FPs/Scan, and classification Time.

TABLE 3. Performance comparison of our proposed CAD system with
state-of-the-art CAD systems to detect and classify lung cancer on LIDC
Dataset.

TABLE 4. Quantitative results associated with training, testing errors,
of 3DDCNN and Cloud-Based 3DDCNN CAD system on different datasets.

last two rows; these have similar appearance to nodules but

our proposed system detected them as non-nodules using the

characteristics of lung nodules obtained by our 3DDFCN,

such as the example in Fig. 6 third and fourth row marked

in yellow.

3) CLINICAL DATASET

We investigated the performance of our 3DDCNN system in

comparison to Cloud-Based 3DDCNN system on 120 cases

from Shanghai Sixth People’s Hospital using sensitivity and

average FPs/Scan as parameter shown in Table 4. Train-

ing and Testing error were obtained for both Stand-alone

and Cloud-based CAD mode. With the integration of cloud

computing, Cloud-Based 3DDCNN CAD system allowed

the cloud server to efficiently perform the nodule detection,

and enables the cloud server to reduce overall storage costs

by more than 59%, while ensuring improved lung cancer

detection.

D. QUANTITATIVE EVALUATION

As mentioned before the performance evaluation metric

include Sensitivity, Specificity, AUROC, and false positives

TABLE 5. Quantitative results for 3DDCNN in terms of Mean IoU and
Average Precision against 3DDCNN network layers. Three AP are
considered (AP50, AP75 and APm at different IoU thresholds) were
selected showing mean IoU values of 3DDCNN layers i to n.

per scan (FPs/Scan). For further quantitative evaluation of

our proposed work with the existing RCNN based methods,

we used the statistical performance evaluation based on error

calculation metrics which were used to determine the error

rate on the testing dataset i.e. Clinical Dataset (120 cases

from Shanghai Sixth People’s Hospital). To calculate the

average difference between the radiologists nodule detection

and the proposed method nodule detection we proposed the

Detection Error Rate (eD). The Detection Error Rate (eD) was

calculated as:

eD(Iφ) =
∑

i=0,k

eI (Gk (xi), h | Iφ) (16)

where eD(Iφ) is metric that was used to calculate the error

rate of detection phase, k represents the number of nodules,

φ represents nodule in Image I , h is the score derived for

each layer of proposed model, xi is the real value of the

resultant metric for each layer, and G is the mean value for

outputs delivered from previous layer. Another metric was

proposed to calculate the average error between the nodule

classification by doctors from Shanghai Sixth People’s Hos-

pital and the proposed methods classification. The metric,

Classification Error Rate (eC ) can be defined as:

eC =
1

2
log

1 − eD(Iφ)

eD(Iφ)
(17)

Since, we obtained the detection results on three malig-

nancy levels m, we used 10-fold cross-validation to merge
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TABLE 6. Comparison of proposed 3DDCNN with state-of-the-art on clinical dataset using different statistical metrics, namely, mean detection error rate
(mean eD), mean classification error rate (mean eC ), variance detection error rate (Var eD), variance classification error rate (Var eC ), standard deviation
detection error rate (Std eD), standard deviation classification error rate (Std eC ), mean average precision (m-AP)and processing-time (Time).

the detection results of three levels. The performance of nod-

ule classification was validated using the LIDC dataset and

the LUNA16’s dataset distribution criteria of 10-fold cross-

validation of patient-data. Owing to the minor differences

among the malignant and the benign nodules, 900 epochs

were used for the various learning rates [0.001,0.001,0.0001].

Detailed step-by-step performance of our proposed method

is provided in the Table 5. We used mean Average Precision

also refer to as AP for the detection phase evaluation. Table 5

represents the AP metric which averages APs across IoU

thresholds from 0.5 to 0.95 with an interval of 0.05. For our

proposed model AP, we took three different IoU thresholds

referring to three AP i.e. AP50, AP75 and APm.

To quantitatively evaluate the results for our proposed

method, we havemeasuredMeanDetection Error Rate (Mean

eD), Mean Classification Error Rate (Mean eC ), Variance

Detection Error Rate (Var eD), Variance Classification Error

Rate (Var eC ), Standard Deviation Detection Error Rate (Std

eD), Standard Deviation Classification Error Rate (Std eC ),

Mean Average Precision (m-AP)and Processing-time (Time)

of the CT images in the testing set of our clinical dataset

with Mask R-CNN [35], RetinaNet [36], Retina U-Net [37],

Fast R-CNN [38], Faster R-CNN [24] techniques. It can be

seen in Table 6 that, our proposed method achieved compar-

atively good results for Detection and Classification than the

state-of-the-art.

Table 6 presents the scoring criteria: statistical parameters

such as mean, variance, standard deviation which are used

for both types of error rates i.e. Detection error rate and

Classification error rate. Mean Average Precision m-AP as

100% indicate perfect detection, the metric eD(Iφ) repre-

sents the error rate between the radiologists from Shanghai

Sixth People’s Hospital nodule detection and the detection

done by our proposed method and the term eC represents

the nodule classification by doctors from Shanghai Sixth

People’s Hospital and our proposed methods classification.

Computed results are presented in Table 6. Usually, it is

difficult to compare the proposed study with state-of-the-

art due to diverse datasets and different evaluation metrics.

However, in our case, we compared our proposed work with

other deep learning based methods which were designed

for object detection but performed well for nodule detec-

tion. The evaluation results of Fast R-CNN [38] and Faster

R-CNN [24] are costly due to the rigorous object detection

process, they are not specifically designed for the lung nod-

ules, therefore, their detection error rate is comparatively

higher than the rest of the methods. On the other hand,

RetinaNet [36], Mask R-CNN [35] and Retina U-Net [37]

performed better than the Fast R-CNN and Faster R-CNN.

Although the assessment is conducted on the clinical dataset,

Table 6 still emphasizes 3DDCNN advantages in terms of

computational duration (of around 219±25.47 seconds) over

other methods.

E. QUALITATIVE EVALUATION

Qualitative results from Fig. 10 show that our proposedmodel

3DDCNN performed well in most of the clinical dataset cases

(total 120 cases) fromShanghai Sixth People’s Hospital while

the state-of-the-art Retina U-Net [37] method outperformed

our proposed method in some of the CT-scan from clinical

dataset. We randomly selected 3 cases for our qualitative

analysis. The step-by-step evaluation of the proposed work

with Retina U-Net in the set of four visualizations of the

central CT-scan slices for ground-truth and the classification

accuracy is shown in the form of set of images (a), (b),

(c), and (d). Images marked as (a) in each case (left-most

images in each row) represents the ground-truth of given CT

scan. Images (b) in each case depicts the box-prediction of

the Retina U-Net (red boxes) while the prediction of our

proposed method is represented with blue boxes. There are

minor deviations of the markings of our proposed model

(shown in blue) from the ground truth (shown in green)

as shown in images (c). The last images (d) in each row

shows the final results after the FP reduction, resulting in

the correct prediction with approximately 87% confidence

score. The proposed 3DDCNN performs well for nodule

detection whereas the Retina U-Net performs better in case

of nodule classification by achieving higher classification

accuracy. Qualitative validation of our proposed 3DDCNN

model against the annotations demonstrated that the detection

accuracy of our proposed 3DDCNN performed equally well
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FIGURE 10. Qualitative results from the performance comparison between our CAD system versus state-of-the-art CAD system on Clinical Dataset
having a confidence threshold of 95%. Green represents the Ground truth box. Red as predicted by Retina U-Net [37] and blue represents our
proposed model predictions. Three random cases out of 120 cases from Shanghai Sixth People’s Hospital are selected. Left-most images (a) show
the ground truth of lung CT scan, images (b) in all cases show the box-predictions of Retina U-Net (2 foreground classes) as well as the prediction of
our proposed 3DDCNN model, images (c) represent the remaining predictions after prediction of nodule along with some False Positive predictions,
images (d) After the False Positives reduction step, leaving the correct prediction with confidence scores as high as 87%.

as the radiologists while in some cases even better than the

radiologists annotations.

V. CONCLUSION

For the detection of lung cancer, CAD systems are developed

to assist the radiologist in the process of nodule detection

by providing a reference opinion. From the performance

comparisons it is evident that our proposed model 3DDCNN

attained the highest results against other state-of-the-art sys-

tems for sensitivity and FPs per scan. Although the current

tested performance metric of 3DDCNN is relatively high,

it could be further improved. The performance was relatively

less accurate in detecting micro nodules, therefore future

work will investigate the detection of micro nodules whose

diameter is less than 3 mm. To ensure our solution is scal-

able, future work will consider extending the training stage

to include data from hospitals worldwide. Integrating more

data-augmentation methods to increase the training sample in

order to achieve more robustness and reduce the overfitting

problem brought by local optimal. Another future direction

for lung cancer CAD system is to propose CAD system

that performs well on all nodule types maintaining good

performance in terms of sensitivity and FPs/Scan, even if the

dataset contains relatively less amount of such nodule types

samples.
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