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Abstract 

Antiseizure drugs (ASDs) prevent the occurrence of seizures; there is no evidence that they have 

disease-modifying properties. In the more than 160 years that orally administered ASDs have been 

available for epilepsy therapy, most agents entering clinical practice were either discovered 

serendipitously or with the use of animal seizure models. The ASDs originating from these 

approaches act on brain excitability mechanisms to interfere with the generation and spread of 

epileptic hyperexcitability, but they do not address the specific defects that are pathogenic in the 

epilepsies for which they are prescribed, which in most cases are not well understood. There are 

four broad classes of such ASD mechanisms: (1) modulation of voltage-gated sodium channels (e.g. 

phenytoin, carbamazepine, lamotrigine), voltage-gated calcium channels (e.g. ethosuximide), and 

voltage-gated potassium channels [e.g. retigabine (ezogabine)]; (2) enhancement of GABA-mediated 

inhibitory neurotransmission (e.g. benzodiazepines, tiagabine, vigabatrin); (3) attenuation of 

glutamate-mediated excitatory neurotransmission (e.g. perampanel); and (4) modulation of 

neurotransmitter release via a presynaptic action (e.g. levetiracetam, brivaracetam, gabapentin, 

pregabalin). In the past two decades there has been great progress in identifying the 

pathophysiological mechanisms of many genetic epilepsies. Given this new understanding, attempts 

are being made to engineer specific small molecule, antisense and gene therapies that functionally 

reverse or structurally correct pathogenic defects in epilepsy syndromes. In the near future, these 

new therapies will begin a paradigm shift in the treatment of some rare genetic epilepsy syndromes, 

but targeted therapies will remain elusive for the vast majority of epilepsies until their causes are 

identified. 
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1. Introduction 

 Drugs used in the treatment of epilepsy are taken chronically to prevent the occurrence of 

seizures. In broad terms, they influence fundamental brain excitability mechanisms to suppress 

abnormal hyperexcitability and hypersynchronous activity in brain circuits. Antiseizure drugs (ASDs) 

do not necessarily have specific actions related to the underlying pathogenic mechanisms in epilepsy, 

which in most cases are not understood. In the past two decades, the molecular defects in many 

genetic epilepsies have been characterized and there is an intense interest in the development of 

disease-specific targeted therapies. Early examples of this effort include everolimus, an inhibitor of 

mTOR signalling used in tuberous sclerosis, and cerliponase alfa, used in the treatment of the CLN2 

form of Batten disease. Focus is also being directed toward antisense approaches and gene 

therapies with viral vectors, but small molecules that interact with diseased proteins, such as ion 

channels with gain or loss of function mutations, are also being investigated. A theoretical advantage 

of such mechanism-based therapies is that they have the potential to not only reduce the 

occurrence of seizures but also to prevent or reverse comorbidities, such as neurological 

impairments that are common in such syndromes. 

 Early ASDs were identified serendipitously when they were administered to people with 

epilepsy (bromide was introduced in 1857 and phenobarbital in 1912). Testing in animal models led 

to the discovery of phenytoin in 1936 and has been notably successful ever since, with more than 30 

distinct molecular entities entering clinical practice as a result of this approach. Several other ASDs 

were rationally developed based on mechanism (e.g., tiagabine, vigabatrin, perampanel) and others 

represent minor chemical modifications of existing drugs (e.g., fosphenytoin, various benzodiazepine 

forms, oxcarbazepine, eslicarbazepine acetate, brivaracetam). None of these drugs have been 

demonstrated to have disease modifying properties; they simply treat symptoms (reduce the 

occurrence of seizures). As such, the term “antiepileptic drug” has fallen out of favour, having been 

replaced by the designation “antiseizure drug” as used in this article. 
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  Recurrent seizure activity is the manifestation of intermittent and excessive hyperexcitability 

in localized cortical or limbic circuits in focal-onset epilepsies or more diffuse networks in 

generalized epilepsies. Four broad classes of ASD mechanism have recently been recognised: (1) 

modulation of voltage-gated ion channels; (2) enhancement of GABA-mediated inhibitory 

neurotransmission; (3) attenuation of glutamate-mediated excitatory neurotransmission; and (4) 

modulation of neurotransmitter release via a presynaptic action (Table 1; Rogawski and Cavazos, 

2020). A fifth class represents the mechanism-targeted agents, exemplified by everolimus. There is 

obvious overlap in these mechanistic classes, particularly for those drugs in class 1 and class 4, 

where alteration in ionic currents that underlie neuronal excitability has downstream effects on 

neurotransmitter release at synapses, with glutamate release seemingly diminished to a greater 

extent than that of GABA (Prakriya and Mennerick, 2000). Some ASDs are likely to prevent seizures 

via actions on multiple cellular targets; the combination of effects may contribute to efficacy while 

limiting adverse effects mediated by any individual mechanism. The mechanism of action of several 

ASDs, including the important agents valproate and levetiracetam, remain elusive even after several 

decades of clinical use (Löscher, 2002). Nevertheless, the primary mechanisms of action of the 

majority of currently used drugs is now reasonably well delineated; these are discussed in detail 

below. 

 

2. Modulation of voltage-gated ion channels 

2.1 Blockade of voltage-gated sodium channels 

 Voltage-gated sodium channels are responsible for depolarisation of the nerve cell 

membrane during the upstroke of action potentials and are critical to the propagation of action 

potentials across the surface of neuronal cells. They are expressed throughout the neuronal 

membrane, on dendrites, soma, axons, and nerve terminals (Catterall, 2017). Density of expression 

is highest in the axon initial segment where action potentials are generated. Voltage-gated sodium 

channels comprise a single 260 kDa -subunit protein that is arranged into four homologous 
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domains (I-IV) each consisting of six transmembrane segments (S1-S6) (Catterall and Swanson, 2015). 

The S4 segment of each domain has a high proportion of charged amino acids and acts as the 

voltage sensor, while the S5 and S6 segments contain hydrophobic residues that line the intrinsic 

channel pore. In the central nervous system, the -subunit is commonly associated with two 

accessory -subunit proteins (-1 and -2) that can influence channel kinetics and the voltage-

dependence of gating, but which are not essential for the sodium conducting properties of the 

channel (Hull and Isom, 2018). 

 Of the nine mammalian sodium channel -subunit genes, five are expressed in the brain: 

SCN1A, SCN2A, SCN3A, SCN5A and SCN8A, encoding the channels NaV1.1, NaV1.2, NaV1.3, NaV1.5 and 

NaV1.6, respectively (Catterall, 2017). NaV1.3 expression is largely restricted to the early stages of 

development; NaV1.5, the main cardiac sodium-channel isoform, is also expressed throughout the 

brain but its role is not well understood, and NaV1.1 is the major voltage-gated sodium channel in 

inhibitory interneurons (Whitaker et al., 2000; Wang et al., 2017). In contrast, the NaV1.2 and NaV1.6 

channels are expressed in the axon initial segment of principal excitatory neurons, the former 

predominating in the immature brain and the latter becoming increasingly prevalent during 

development (Whitaker et al., 2000). The NaV1.6 channel also carries a significant proportion of the 

persistent sodium current that has been implicated in burst firing and ictogenesis (Stafstrom, 2007). 

Under normal physiological conditions, depolarisation of the neuronal membrane leads to a 

transient inward sodium current which rapidly inactivates. However, a small proportion of sodium 

channels appear to undergo rare, late openings in response to depolarisation and give rise to a 

sodium current that fails to inactivate, and is thereby termed “persistent” (Crill, 1996). The existence 

of this non-inactivating sodium current is relevant to the pharmacology of some ASDs (see below). 

 Voltage-gated sodium channels exist in one of three basic conformational states; (i) at 

hyperpolarised potentials the channel is typically found in a resting, closed state, (ii) when 

depolarised the channel transitions to an open state that is permeable to sodium ions, and (iii) 

following depolarisation the channel enters a closed, non-conducting inactivated state (Catterall, 
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1992; Catterall, 2017). During a single round of depolarisation, channels cycle through these states in 

turn – resting to open, open to inactivated, inactivated to resting – and the ability of individual 

channels to contribute to subsequent membrane depolarisations is governed by the rate at which 

they revert from the inactivated to resting state. Two distinct inactivation states of the voltage-gated 

sodium channel are now recognised; a fast inactivated state that is conferred by a “hinged lid” 

formed from the intracellular loop between domains III and IV that transiently (milliseconds duration) 

blocks the ion pore following short depolarisations, and a slow inactivated state that is conferred by 

a longer lasting (seconds duration) conformational change in the -subunit protein which is 

observed following prolonged depolarisations (Silva, 2014). Modification of slow inactivation has 

been proposed as a mechanism for certain ASDs, but recent work calls this notion into question (Jo 

and Bean, 2017). 

 Blockade of voltage-gated sodium channels is the most common mechanism of action 

among currently available ASDs. The established agents phenytoin and carbamazepine are 

archetypal sodium channel blockers, an effect they share with the newer drugs lamotrigine, 

oxcarbazepine, lacosamide, and S-licarbazepine, which is the active metabolite of the prodrug 

eslicarbazepine acetate (Ragsdale et al., 1991; Mantegazza et al., 2010). Rufinamide also acts at least 

in part via voltage-gated sodium channels, possibly with modest preferential activity on NaV1.1 and 

NaV1.6 (Gilchrist et al., 2014), but other mechanisms are likely given its distinctive clinical profile. 

Topiramate, felbamate and zonisamide have also been reported to block sodium channels, as one of 

several possible mechanisms. Despite their structural dissimilarities, there is believed to be a 

common binding site for ASDs on the -subunit of the voltage-gated sodium channel, which is found 

on the inner pore region of domain IV, transmembrane segment S6 (Kuo, 1998). Differences in 

efficacy and adverse effects of selective sodium channel blocking ASDs are explained by differences 

in their rates of binding (i.e., their affinities) and also in their mechanisms of unbinding or 

dissociation (Kuo et al., 1997). Much of the work in this area has focused on differences between 

phenytoin and carbamazepine, with the former appearing to possess a slower onset of binding and a 
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similarly slow dissociation that is driven by deactivation of the channel (Kuo and Bean, 1994). As 

such, phenytoin appears to have a more pronounced and longer lasting effect than carbamazepine 

on high frequency action potential firing. 

 Another common feature of ASDs with sodium channel blocking properties is their 

preferential affinity for the channel protein when it exists in the inactivated state (Schwarz and 

Grigat, 1989). Binding slows the conformational recycling process, producing a shift of sodium 

channels into the inactivated state from which recovery is delayed. Thus, ASDs effectively extend the 

‘refractory’ period of the channel. As a result, these drugs produce a characteristic use- and 

frequency-dependent reduction in channel conductance, resulting in a limitation of repetitive 

neuronal firing, with little effect on the generation of single action potentials or on low frequency 

(<1 Hz) firing (Macdonald and Kelly, 1995). This is exemplified in experimental studies in which 

sustained repetitive action potential firing can be used as a bioassay for sodium channel blocking 

activity (Macdonald and McLean, 1986). 

 An extreme example of slow binding to the inactivated state is presented by lacosamide. 

Phenytoin and carbamazepine inhibit repetitive firing of cultured neurons in vitro within 100 

milliseconds, whereas lacosamide, which also inhibits repetitive action potential firing, does so on a 

time scale of 1 second or more (Errington et al., 2008). This divergence was initially thought to be 

due to a preferential effect of lacosamide on slow inactivation of the sodium channel (Rogawski et 

al., 2015), an action that is also proposed for S-licarbazepine (Hebeisen et al., 2015). However, a 

more recent analysis suggests that the effects of lacosamide in this regard actually reflect very slow 

binding to the fast inactivated state of the channel (Jo and Bean, 2017). Since seizure discharges 

occur on the timescale of seconds, it is possible that the slow action of lacosamide might confer an 

even greater selectivity for seizure-related action potential firing than non-seizure-related firing, 

such that efficacy or tolerability might be improved. However, there is scant evidence that 

lacosamide has improved clinical effectiveness (Baulac et al., 2017).  
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In addition to effects on transient sodium currents, some ASDs can also block the persistent 

sodium current, which arises as a result of rare, late openings of NaV1.6 channels in particular 

(Chatelier et al., 2010). Although the persistent current comprises only a small percentage of total 

sodium conductance in any single round of depolarisation, prolonged late openings can contribute 

significantly to a persistent depolarisation that is reminiscent of the paroxysmal depolarising shift 

which characterises epileptiform activity (Walker and Surges, 2016). There is evidence that 

phenytoin blocks the persistent sodium current and to a potentially greater degree than the 

transient current that underlies normal action potential generation (Segal and Douglas, 1997). 

Likewise, cenobamate, which, at the time of writing, has become the latest ASD to be approved by 

the FDA for use in focal-onset seizures, inhibits the persistent sodium current more potently than 

the transient sodium current (Nakamura et al., 2019), although it appears to have additional effects 

on GABAA receptors at marginally higher concentrations (discussed below). Other sodium channel 

blocking ASDs, including carbamazepine and topiramate, may also block the persistent sodium 

current, with a potency that can approximate or even exceed their effect on the transient sodium 

current (Sun et al., 2007). As such, inhibition of the persistent sodium current could contribute to the 

ability of these various agents to suppress sustained depolarisations while sparing single action 

potentials and low frequency firing. 

 

2.2 Blockade of voltage-gated calcium channels 

 Voltage-gated calcium channels are involved in neuronal burst firing and are responsible for 

the control of neurotransmitter release at presynaptic nerve terminals. Like sodium channels, 

voltage-gated calcium channels comprise a single 1-subunit protein, typically 170-240 kDa, which 

again comprises four homologous domains each with six transmembrane segments (Catterall, 2000). 

Molecular studies have identified ten different 1-subunits (CaV1.1-1.4, CaV2.1-2.3, CaV3.1-3.3), at 

least seven of which are known to be expressed in mammalian brain (Trimmer and Rhodes, 2004). In 

addition, there are a number of accessory proteins, including - and 2-subunits, that modulate 
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the function and cell-surface expression of the 1-subunit but which are not essential for basic 

channel functionality (Dolphin, 2012). 

 There are four main types of voltage-gated calcium channel in mammalian brain, commonly 

grouped into two classes on the basis of their biophysical properties and patterns of cellular 

expression (Catterall, 2000). L-type, P/Q-type and N-type belong to the class of high-voltage-

activated calcium channels that respond to strong depolarisations and are involved in the processing 

of synaptic inputs at the somatodendritic level (L-type) and in presynaptic neurotransmitter release 

(P/Q- and N-type). The L-type channel comprises 1-subunits from the CaV1 family, while P/Q-type 

and N-type channels are formed from CaV2.1 and CaV2.2 1-subunits, respectively (Trimmer and 

Rhodes, 2004). In contrast, the low-voltage-activated T-type calcium channel (comprising 1-

subunits from the CaV3 family) opens in response to modest depolarisations at or below resting 

membrane potential, rapidly inactivates, and gives rise to transient (hence T-type) currents that 

participate in intrinsic oscillatory activity (Suzuki and Rogawski, 1989). The T-type channel is highly 

expressed on the soma and dendrites of thalamic relay and reticular neurons where it has been 

shown to underpin the rhythmic 3 Hz spike-wave discharges that are characteristic of absence 

seizures (McCormick and Contreras, 2001). 

 Voltage-gated calcium channels represent an important target for several ASDs. The efficacy 

of ethosuximide in absence epilepsy is believed to be mediated predominantly by blockade of T-type 

calcium channels in thalamocortical neurons, with preferential affinity for channels in the inactivated 

state (Coulter et al., 1989; Gomora et al., 2001), but there is also evidence that this drug can block 

the persistent sodium current and/or calcium-dependent potassium currents (Leresche et al., 1998). 

Zonisamide is also believed to block T-type calcium channels as one of several proposed mechanisms 

of action (Suzuki et al., 1992) and there is anecdotal evidence that valproate, another effective 

antiabsence agent, can also block this channel type (Broicher et al., 2007). 

 Gabapentin and pregabalin also interact with voltage-activated calcium channels but the 

role of calcium channels in the antiseizure mechanism of these drugs is uncertain. Although 
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gabapentin was originally designed as a GABAmimetic that could freely cross the blood-brain barrier, 

it is now accepted that it and the related gabapentinoid pregabalin are devoid of GABAergic activity 

and instead bind with high affinity to 2-1 subunits of the voltage-gated calcium channel (Thorpe 

and Offord, 2010). This binding interaction is believed to account for the therapeutic activities of the 

drugs. The binding site on 2-1 for gabapentinoids has been modelled based on a recent cryo-

electron microscopy structure (Kotev et al., 2018). It is presumed that binding of the gabapentinoids 

causes a conformational change in 2-1 that alters its association with other proteins. It has long 

been assumed that the primary role of 2-1 is as a partner of calcium channel 1-subunits, and 

there is extensive evidence that 2-1 promotes insertion and retention of 1-subunits in the 

plasma membrane (Hendrich et al., 2008; Dolphin, 2013). However, the binding interaction between 

2-1 and 1 is weak, and calcium currents in brain neurons are unaffected by knockout of 2-1. 

Moreover, it has not been possible to reliably show a robust effect of gabapentin and pregabalin on 

calcium channel currents, raising the question of the role of calcium channels in the mechanism of 

action of these drugs. Although inhibition of presynaptic calcium channels with a consequent 

reduction in release of excitatory neurotransmitter is an appealing mechanism to explain the 

antiseizure activity of gabapentinoids, the experimental evidence is not supportive. Nevertheless, 

there are studies that demonstrate an inhibition of excitatory synaptic potentials at brain synapses, 

but the mechanism is obscure (Cunningham et al., 2004; Dooley et al., 2007). Recent studies indicate 

that 2-1 associates with other proteins, including NMDA receptors (Chen et al., 2018b). While 

inhibition of NMDA receptors could contribute to the antiseizure activity of gabapentinoids, this is 

unlikely to be the sole activity of the drugs as their profile in animal seizure models and clinical 

activity does not correspond with that of NMDA receptor antagonists. Interactions of 2-1 with 

other as yet unidentified targets could conceivably play a role. 

 Other ASDs have less selective but perhaps more conventional inhibitory effects on specific 

types of high-voltage-activated calcium channel. Lamotrigine blocks N- and P/Q-type calcium 

channels on presynaptic nerve terminals (Wang et al., 1996), an effect which likely explains early 
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evidence that the drug is able to reduce synaptic release of glutamate, and levetiracetam appears to 

exert a partial blockade of N-type calcium currents (Lukyanetz et al., 2002), suggesting an effect on 

an as yet unidentified sub-class of this channel type. Likewise, phenobarbital and topiramate can 

block L- and N-type calcium currents (ffrench-Mullen et al., 1993; Zhang et al., 2000), although their 

effects on calcium channels at therapeutic concentrations are modest compared to effects on other 

likely antiseizure mechanisms (Löscher and Rogawski, 2012), and other ASDs, including 

oxcarbazepine and felbamate, also have actions, albeit less well characterised, on high-voltage 

activated calcium channels (Stefani et al., 1995; Stefani et al., 1996). 

 

2.3. Potentiation of voltage-gated potassium channels 

 Voltage-gated potassium channels are critical determinants of neuronal excitability, 

responsible for repolarising the cell membrane in the aftermath of action potential firing and 

regulating the balance between input and output in individual neurons. As a group, they are highly 

heterogeneous. More than 40 voltage-gated potassium channel -subunits are recognised, most of 

which are structurally similar to a single domain of the -subunit of voltage-gated sodium and 

calcium channels (Gutman et al., 2005). They are classified into 12 subfamilies (KV1 to KV12), with 

individual channels comprising four -subunits from the same subfamily arranged around a central 

potassium ion pore, typically in a ‘two plus two’ configuration (Kuang et al., 2015). Two major 

functional classes of voltage-gated potassium channel are extensively described in the literature; A-

type (mostly KV4) channels that rapidly activate and inactivate, and delayed rectifier channels that 

open (after a short delay) in response to depolarisation and which do not fully inactivate (Christie, 

1995). This latter class comprises KV1 to KV3 channels that are expressed on dendrites, axons and 

nerve terminals and which repolarise the neuronal cell membrane after action potential firing. This 

class also includes KV7 channels that are expressed in the soma and axon initial segment and are 

responsible for the M-current, which determines the threshold and rate of neuronal firing and 

modulates the somatic response to dendritic inputs (Robbins, 2001). Mutations in the KCNQ genes, 
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which encode KV7 channels, are associated with a spectrum of seizure disorders ranging from benign 

familial neonatal convulsions to severe epileptic encephalopathies (Maljevic and Lerche, 2014). 

 Retigabine (known as ezogabine in the USA) is an ASD that exerts its effects by activation of 

the KV7 class of voltage-gated potassium channels, is specific for channels containing KV7.2 to KV7.5 

subunits, and has particular affinity for channel assemblies containing dimers of KV7.2/KV7.3 and 

KV7.3/KV7.5 subunits (Tatulian et al., 2001). These channels underlie the M-current in seizure-prone 

regions of the brain, such as cerebral cortex and hippocampus. Retigabine enhances the M-current, 

increasing the rate at which it is activated by depolarisation and decreasing the rate at which it is 

subsequently deactivated (Gunthorpe et al., 2012). It also enhances the M-current at resting 

membrane potential, hyperpolarising the cell membrane and reducing overall excitability of neurons. 

This effect of retigabine is mediated by binding of the drug within the pore of the channel. A single 

amino acid (Trp236) located in the activation gate of the KV7 -subunit protein is essential and all 

four subunits in the channel assembly must contain a tryptophan residue at position 236 for 

retigabine sensitivity (Schenzer et al., 2005). Retigabine was originally licensed in the USA and 

Europe in 2011 for the treatment of focal seizures in adults (Porter et al., 2012). Its use was later 

restricted due to the emergence of idiosyncratic adverse effects and although subsequently 

withdrawn by the manufacturer, there remains interest in the use of retigabine as a precision 

therapy in severe epileptic encephalopathies due to mutations in the KCNQ genes (Ihara et al., 2016). 

 

3. Potentiation of inhibitory neurotransmission 

 GABA is the predominant inhibitory neurotransmitter in the mammalian central nervous 

system and is released at up to 40% of all synapses in the brain. GABA is synthesised from glutamate 

by the action of the enzyme glutamic acid decarboxylase (GAD) and, following release from nerve 

terminals, acts on both GABAA and GABAB receptors, with a net inhibitory effect. 

 The GABAA receptor is a ligand-gated ion channel and a member of the classical “Cys-loop” 

receptor family that comprise five independent protein subunits arranged around a central ion pore 
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that is, in this case, permeable to chloride and bicarbonate ions (Olsen and Sieghart, 2009). Nineteen 

GABAA receptor subunits have been identified to date, sixteen in brain (1-6, 1-3, 1-3, , , , ) 

and three additional subunits in retina (1-3), which come together as heteromeric pentamers to 

form functional channels (Sieghart, 1995). Heterogeneity in subunit composition suggests that 

countless thousands of GABAA receptors might potentially exist but, in reality, only a handful of 

channels appear to be expressed in mammalian brain, the most common configuration containing 

two 1-subunits, two 2-subunits, and one 2-subunit (Baumann et al., 2002). GABAA receptors 

mediating transient, rapidly desensitising currents at the synapse (phasic inhibition) typically 

comprise two -, two -, and one 2-subunit, whereas those at extrasynaptic sites and mediating 

long-lasting, slowly desensitising currents (tonic inhibition) preferentially contain 4- and 6-

subunits and a -subunit in place of the 2-subunit (Belelli et al., 2009). In contrast to the GABAA 

receptor, GABAB receptors are coupled, via a G-protein, to potassium channels that mediate slow 

hyperpolarisation of the postsynaptic membrane (Bowery, 1993). This receptor is also expressed on 

presynaptic nerve terminals where it acts as an autoreceptor, with activation limiting further GABA 

release. 

 GABA is removed from the synaptic cleft into nerve terminals and glial cells by a family of 

transporter proteins, encoded by members of the SLC6 gene family and denoted GAT-1, GAT-2, GAT-

3, and BGT-1, that transport GABA down an electrochemical gradient driven by sodium and chloride 

ions (Borden, 1996). GAT-1 is the major GABA transporter expressed on both presynaptic nerve 

terminals and glial cells in cerebral cortex and hippocampus, with GAT-3 expression predominantly 

restricted to glia (Ribak et al., 1996; Lee et al., 2006). Following carrier-mediated re-uptake, GABA is 

either recycled into the readily releasable neurotransmitter pool or inactivated by conversion to 

succinic acid semialdehyde in a reaction catalysed by the mitochondrial enzyme GABA-transaminase. 

 

3.1 Allosteric modulation of GABAA receptors 
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 Binding of neurotransmitter GABA to GABAA receptors induces opening of the chloride ion 

channel that is intrinsic to the receptor. By contrast, ASDs that act on the GABAA receptor are largely 

positive allosteric modulators. They do not open the receptor in the absence of GABA, although 

barbiturates can do this at high concentrations (Rho et al., 1996), but rather increase the response to 

synaptically released GABA, thereby enhancing inhibitory neurotransmission (Czuczwar and Patsalos, 

2001). While barbiturates (i.e., phenobarbital, primidone) and benzodiazepines (i.e., diazepam, 

lorazepam, clonazepam and clobazam) share this effect, they bind to distinct sites on the receptor 

complex, possess different subunit specificities, and differentially influence the opening of the 

chloride channel. 

  The five subunits of GABAA receptors are organised in a barrel-like fashion with subunits 

arranged like staves in a specific configuration, forming the central chloride ion pore. For example, 

the most abundant synaptic GABAA receptor isoform consisting of (1)2(2)2(2)1 has subunits 

arranged –1+-–2+-–2+-–1+-–2+ counter-clockwise when viewed from the extracellular space. Each 

subunit has two surfaces that contact neighbouring subunits; the interface surfaces are designated 

principal (+) and complementary (–). The last 2 subunit (+)-interface contacts the initial 1 subunit 

(–)-interface to close the circle. Each GABAA receptor binds two molecules of GABA at sites that are 

situated at the two +-– subunit interfaces (Baumann et al., 2003). Benzodiazepine drugs also have 

a well-characterised binding site: one per receptor complex, at the +-2– subunit interface (Sigel 

and Buhr, 1997). Identification of the binding site for barbiturate drugs has been challenging, and to 

date all studies addressing this issue have investigated anaesthetic barbiturates (or analogs) and not 

phenobarbital, which is used in epilepsy therapy because it is less sedating at doses that confer 

antiseizure activity (Löscher and Rogawski, 2012). Recent studies indicate that barbiturates also bind 

at intramembrane subunit interfaces, which for these agents are +-– and +-–  (Chiara et al., 2013; 

Olsen, 2018) and at least one additional interface (Maldifassi et al., 2016). All GABAA receptors 

containing at least one - and one -subunit appear susceptible to allosteric activation by 

barbiturates, with only minor differences in relative sensitivity based on individual subunit 
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composition (Hevers and Lüddens, 1998). Importantly, barbiturates act on -subunit containing 

extrasynaptic GABAA receptors that mediate tonic inhibition (Feng and Macdonald, 2010). 

Neurotransmitter GABA acts as a “partial agonist” on  GABAA receptors (low efficacy activation 

even at saturating concentrations) and GABA currents generated by these receptors are markedly 

enhanced by barbiturates. However, it remains to be proven that positive allosteric modulation of 

extrasynaptic GABAA receptors is a relevant antiseizure mechanism. 

  In contrast to barbiturates, benzodiazepines display a high degree of subunit selectivity, 

they do not activate GABAA receptors in the absence of GABA even at high concentrations, and they 

exclusively act on synaptic GABAA receptors. Benzodiazepine-sensitive GABAA receptors are typically 

comprised of two -subunits (chosen from 1, 2, 3 or 5), two -subunits (either 2 or 3), and a 

2 subunit, whereas the -subunit-containing GABAA receptors that mediate tonic inhibition at 

extrasynaptic sites, are insensitive to benzodiazepines, as are those containing 4- and 6-subunits 

(Farrant and Nusser, 2005; Sigel and Ernst, 2018). There are also functional distinctions between 

barbiturates and benzodiazepines, with the former increasing the duration of chloride channel 

opening in response to a given amount of GABA and the latter increasing the frequency of channel 

opening (Twyman et al., 1989). 

 Several other ASDs exert their effects, at least in part, by an allosteric action at the GABAA 

receptor. These include stiripentol, an orphan drug that is licensed for Dravet syndrome, which is 

able to positively modulate all GABAA receptor isoforms including those containing -subunits (Fisher, 

2011), and which extends the duration of chloride channel opening in response to synaptically-

released GABA in manner similar to that observed with barbiturates (Quilichini et al., 2006). Indeed, 

a recent study indicated that stiripentol binds with high affinity to the +-– and +-– interfaces as 

do barbiturates (Jayakar et al., 2019).  Felbamate and topiramate also promote GABA responses at 

the GABAA receptor (Rho et al., 1997; Simeone et al., 2006a; Simeone et al., 2006b; Simeone et al., 

2011), as one of several mechanisms of action, but these effects do not appear to occur by binding 

at barbiturate interaction sites (Jayakar et al., 2019). Cenobamate, which contains the alkyl 
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carbamate moiety as does felbamate and retigabine, has also been shown to be a weak positive 

allosteric modulator of GABAA receptors in hippocampal neurons, with effects on both phasic and 

tonic inhibitory currents and on recombinant synaptic and extrasynaptic GABAA receptor isoforms 

that do not appear to occur via an interaction with the benzodiazepine binding site (Sharma et al., 

2019). Finally, levetiracetam also has effects at the GABAA receptor, indirectly influencing receptor 

function by blocking its negative allosteric modulation by -carbolines and zinc (Rigo et al., 2002). 

The relevance of this action to the clinical activity of the drug is uncertain. 

 

3.2 Modulation of GABA disposition 

 Vigabatrin and tiagabine are products of a rational drug discovery approach which was, in 

their cases, aimed at boosting inhibitory neurotransmission mediated by GABA (Löscher and Schmidt, 

1994). Both drugs act by altering the disposition of GABA after it is released in the process of 

synaptic inhibition, albeit by different mechanisms. 

 Vigabatrin is an irreversible inhibitor of the mitochondrial enzyme GABA-transaminase, 

which is responsible for the catabolism of GABA (Jung et al., 1977). It causes a marked increase in 

whole brain GABA concentrations that outlast the presence of the drug and that are only restored to 

normal levels following the synthesis of new enzyme protein (Schechter et al., 1977). Interestingly, 

inhibition of GABA-transaminase appears to cause a paradoxical reduction in vesicular GABA content 

and a corresponding reduction in inhibitory postsynaptic potentials that are carried by phasic GABAA 

receptors (Overstreet and Westbrook, 2001). The anticonvulsant action of the drug is instead 

believed to be mediated by an increase in cytosolic GABA concentrations in presynaptic nerve 

terminals that leads to a reversal of the GABA transporter, spill-over of GABA into the extrasynaptic 

space, and activation of the tonic GABAA receptor current (Wu et al., 2003). 

 Unlike vigabatrin, tiagabine exerts its effects at synapses where it acts as a potent, selective 

and competitive inhibitor of GABA re-uptake (Krogsgaard-Larsen et al., 1987). The tiagabine 

molecule is based on nipecotic acid, a well-known experimental GABA transport inhibitor, coupled to 
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a lipophilic side chain that facilitates blood-brain barrier penetration. It is selective for the GAT-1 

GABA transporter, blocking both neuronal and glial GABA re-uptake, and its pharmacological effects 

mirror the regional distribution of this protein, with a more pronounced action in hippocampus and 

neocortex (Borden et al., 1994; Meldrum and Chapman, 1999). While vigabatrin results in a 

wholesale elevation in brain GABA concentration, tiagabine causes a transient prolongation in the 

presence of synaptically-released GABA within synapses. Functionally, this leads to an increase in 

inhibitory postsynaptic potentials mediated by phasic GABAA receptors but the potential for spill-

over into extrasynaptic regions and activation of tonic GABAA receptor currents exists, particularly 

following sustained exposure to high concentrations of the drug (Schousboe et al., 2011). 

 Several other ASDs have also been reported to influence GABA disposition by either 

increasing synthesis or release of this neurotransmitter or by inhibiting its breakdown. This remains 

the single most convincing mechanism by which valproate exerts its anticonvulsant effects (Löscher, 

2002). It has been reported to enhance the expression of glutamic acid decarboxylase, to promote 

the release of GABA from presynaptic terminals, and to prevent the catabolism of GABA by inhibition 

of GABA-transaminase (Löscher, 1999). There is also anecdotal evidence that valproate can act as a 

positive allosteric modulator at the GABAA receptor (Ticku and Davis, 1981). Other drugs with a 

proposed action on GABA disposition include topiramate and gabapentin, with much of the evidence 

in this regard derived from 1H-magnetic resonance spectroscopy studies in human epilepsies 

(Kuzniecky et al., 2002). Efforts to replicate these findings experimentally have been largely 

unsuccessful however, questioning their validity and whether they represent true mechanisms of 

action of these drugs or simply epiphenomena of other CNS effects (Leach et al., 1997; Sills et al., 

2000). 

 

3.3 Inhibition of carbonic anhydrase 

 The acid-base balance and maintenance of local pH is critical to normal functioning of the 

nervous system. Various isoenzymes of carbonic anhydrase play an important role in this regard, 
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eleven of which are expressed in brain (Ruusuvuori and Kaila, 2014). These enzymes are responsible 

for catalysing the bi-directional conversion of carbon dioxide and water to bicarbonate and 

hydrogen ions (CO2 + H2O ↔ HCO3
- + H+). The forward reaction is rapid, whereas the rate of the 

reverse reaction is more modest. As a result, inhibition of carbonic anhydrase influences the latter 

more significantly, producing a localised acidosis and elevated bicarbonate ion concentrations 

(Heuser et al., 1975). 

 The bicarbonate gradient has an important influence on the function of GABAA receptors, 

which are permeable to both chloride and bicarbonate ions. The efflux of negatively charged 

bicarbonate ions via the GABAA receptor has a depolarising effect on the postsynaptic membrane 

which, under normal physiological conditions, is out-weighed by inward chloride ion currents that 

cause hyperpolarisation (Staley et al., 1995). However, during high-frequency activation of 

GABAergic synapses, the chloride gradient collapses, leading to depolarisations mediated by GABA 

that are dependent on bicarbonate ion flux and which have additionally been suggested to 

contribute to removal of the magnesium ion block of localised NMDA receptors (Staley et al., 1995). 

Inhibition of carbonic anhydrase diminishes the bicarbonate gradient and provides a degree of 

protection against this paradoxical GABAA receptor-mediated excitation and its downstream 

consequences (Hamidi and Avoli, 2015).  

 Acetazolamide is a classic carbonic anhydrase inhibitor that has been employed as an 

antiseizure agent with some success, particularly in paediatric epilepsies and in the treatment of 

catamenial epilepsy, but whose use is limited by the development of tolerance (Reiss and Oles, 

1996). Topiramate and zonisamide share this mechanism of action but are significantly less potent 

than acetazolamide and have reportedly greater selectivity for individual isoenzymes; acetazolamide 

is a non-selective inhibitor whereas topiramate appears to inhibit CA-II and CA-IV alone (Dodgson et 

al., 2000). There is also evidence to suggest that lacosamide may inhibit carbonic anhydrase, but this 

finding requires further verification (Temperini et al., 2010). Inhibition of carbonic anhydrase can be 
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considered as a supplementary rather than primary mechanism of action for these ASDs and the 

extent to which it contributes to the clinical activity of these compounds remains unclear. 

 

4. Blockade of excitatory neurotransmission 

 Glutamate is the principal excitatory neurotransmitter in the mammalian brain. Following 

release from glutamatergic nerve terminals, it exerts its effects on three specific subtypes of 

ionotropic receptor in the postsynaptic membrane, designated according to their agonist 

specificities; α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-

D-aspartate (NMDA) (Hollmann and Heinemann, 1994). Ionotropic glutamate receptors (iGluRs) are 

heteromeric tetramers constructed from four individual protein subunits in a dimer-of-dimers 

configuration (Tichelaar et al., 2004). In the mammalian brain there are four AMPA receptor subunits 

(GluA1-GluA4), five kainate receptor subunits (GluK1-GluK5) and seven NMDA receptor subunits 

(GluN1, GluN2A-GluN2D, GluN3A, GluN3B), although splice variants of several subunits add to the 

complexity (Traynelis et al., 2010). In addition to acting on iGluRs that mediate fast excitatory 

responses, synaptically-released glutamate also activates metabotropic glutamate receptors 

(mGluRs), which are G-protein-coupled receptors that control cellular excitability and other cellular 

processes via second messenger signalling on a longer time scale (Reiner and Levitz, 2018). Some 

mGluRs function similarly to GABAB receptors in that they act predominantly as autoreceptors on 

glutamatergic terminals, limiting glutamate release (Schoepp, 2001). 

 All iGluRs respond to glutamate binding by increasing cation conductance resulting in 

neuronal depolarisation. Most AMPA and kainate receptors are permeable only to sodium ions, 

although AMPA receptors that lack a GluA2 subunit also conduct calcium (Dingledine et al., 1999). In 

addition to serving as the main mediators of fast excitatory synaptic transmission in brain, AMPA 

receptors are also critical to seizure generation (Rogawski, 2013). In contrast, while activation of 

kainate receptors can induce seizures, these receptors do not appear to play a pivotal role as kainate 

receptor knockout does not impair seizure generation (Fritsch et al., 2014). NMDA receptors are 
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freely permeable to both sodium and calcium ions and, owing to a voltage-dependent blockade by 

magnesium ions at resting membrane potential, are only activated during periods of prolonged 

depolarisation, as occurs during epileptiform discharges (Dingledine et al., 1999). Glutamate is 

removed from the synapse into nerve terminals and glial cells by a family of specific sodium-

dependent transport proteins (EAAT1–EAAT5) and is inactivated by the enzymes glutamine 

synthetase (glial cells only) and glutamate dehydrogenase. 

 Despite many decades of intense effort across many CNS disease areas, there are only a 

handful of currently licensed drugs that possess a selective action at glutamate receptors. One of 

those is perampanel, an ASD that exerts its effects by non-competitive block of AMPA receptors 

(Rogawski and Hanada, 2013). It has no known effect on other receptor types, glutamate or 

otherwise. Perampanel binds to the AMPA receptor at a site on the extracellular domain of the 

channel protein, close to the interface with the phospholipid membrane, and distinct from the 

glutamate recognition site (Yelshanskaya et al., 2016). Binding of perampanel induces a 

conformational change in AMPA receptor subunits that limits their ability to translate agonist (i.e. 

glutamate) binding into channel opening (Yelshanskaya et al., 2016). The net result is to reduce fast 

excitatory neurotransmission and thereby limit seizure generation and the ability of seizure 

discharges to spread. Blocking the receptor that has primary responsibility for fast excitatory 

neurotransmission might be expected to have negative consequences in terms of tolerability. 

However, at therapeutic doses, perampanel is believed to block only a small proportion of the AMPA 

receptor current, sufficient to retard epileptiform discharges while sparing most normal synaptic 

transmission (Rogawski and Cavazos, 2020). Because of the critical role of AMPA receptors in brain 

function, perampanel has a low therapeutic window: increasing the dose even slightly can result in 

adverse neurological effects. 

 In addition to perampanel, several other ASDs exert their effects, in part, by an action on 

glutamatergic neurotransmission. Blockade of the NMDA subtype of glutamate receptor is believed 

to contribute to the pharmacological profile of felbamate (Rho et al., 1994) and topiramate has been 
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shown to block the effects of kainate application in primary hippocampal neuron cultures, indicating 

inhibitory effects at either AMPA or kainate receptors (Gibbs et al., 2000). Levetiracetam inhibits 

AMPA-mediated currents in cortical neurons at therapeutic concentrations (Carunchio et al., 2007), 

and phenobarbital has also been reported to block AMPA receptors in a competitive manner, albeit 

at concentrations towards the upper end of its clinical range (Jin et al., 2010). 

 

5. Modulation of neurotransmitter release  

 Several ASDs, most notably lamotrigine, have been reported to selectively reduce the 

release of glutamate from presynaptic nerve terminals (Leach et al., 1991). Although this 

phenomenon has been observed experimentally, it likely reflects an inhibitory action on presynaptic 

sodium and/or calcium channels rather than any specific effect on the synaptic vesicle release 

machinery in glutamatergic terminals. A more direct effect on neurotransmitter release may be 

produced by the ASD levetiracetam and its recently licensed analogue brivaracetam. 

 Levetiracetam was developed and licensed for the treatment of epilepsy with no clear 

indication of how it acts at the cellular level. A specific binding site for the drug in mammalian brain 

was later identified and determined to be synaptic vesicle protein 2A (SV2A) (Lynch et al., 2004). This 

protein is now considered to be the primary target of both levetiracetam and brivaracetam. Both 

drugs bind to SV2A, with brivaracetam being more potent and selective in this respect, and have 

little or no affinity for SV2B or SV2C, the other members of the SV2 protein family (Gillard et al., 

2011). There is an striking correlation between SV2A binding affinity and the anticonvulsant efficacy 

of a series of levetiracetam analogues in audiogenic seizure sensitive mice, which strongly suggests 

that this is the site via which they exert their antiseizure effects (Kaminski et al., 2008). The 

anticonvulsant efficacy of levetiracetam is also diminished in heterozygous SV2A+/- mice (expression 

of SV2A protein reduced by 50%), which lends further support to the notion that SV2A is the primary 

target for seizure protection (Kaminski et al., 2009). However, despite intense investigation, the 
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precise physiological role of SV2A is still unclear and it remains to be determined how drug binding 

influences SV2A. 

 SV2A belongs to the major facilitator superfamily of 12-transmembrane domain transporters, 

although no transport function has thus far been identified (Mendoza-Torreblanca et al., 2013). 

SV2A protein is highly expressed in presynaptic nerve terminals where it contributes to the complex 

protein interactions involved in synaptic vesicle release and recycling. It appears to interact with 

synaptotagmin, which acts as the calcium sensor in presynaptic terminals, and has been proposed to 

regulate the probability of vesicle fusion with the presynaptic membrane by altering sensitivity to 

calcium (Janz et al., 1999; Custer et al., 2006). Levetiracetam appears to enter nerve terminals via 

recycled synaptic vesicles, where it then binds to selected amino acids (Phe658, Gly659 and Val661) 

that lie within the 10th transmembrane domain of the SV2A molecule but it does not appear to 

cause a major conformational change in protein structure, suggesting a modest effect on protein 

function (Lynch et al., 2008). Exposure to levetiracetam limits release of both glutamate and GABA 

from rat brain slices in an activity-dependent manner, with greatest effect on rapidly-discharging 

neurons which would be consistent with selective suppression of epileptiform activity (Meehan et al., 

2012). Homozygous SV2A knockout in mice leads to a lethal seizure phenotype, suggesting that the 

presence of the protein acts to retard seizure generation (Crowder et al., 1999). As such, it is 

assumed that levetiracetam and brivaracetam facilitate the action of SV2A but there is no data that 

unequivocally support this conclusion. Likewise, it remains unclear whether binding of the drugs to  

SV2A leads to altered packaging, trafficking, membrane fusion or recycling of vesicles within the 

nerve terminal. 

 

6. Cannabinoids 

 Cannabidiol (CBD), a non-psychoactive plant-derived cannabinoid, was found empirically to 

be effective in the treatment of certain epileptic encephalopathies, including Dravet syndrome and 

Lennox-Gastaut syndrome as well tuberous sclerosis complex (TSC) (Hess et al., 2016; Chen et al., 
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2019). CBD exhibits broad-spectrum antiseizure activity in animal seizure models, although relatively 

high doses are required (Consroe et al., 1982; Jones et al., 2010; Klein et al., 2017). Unlike the 

structurally related cannabinoid Δ9-tetrahydrocannabinol (THC), which acts as an agonist of CB1 

(central nervous system) and CB2 (immune system) cannabinoid receptors, CBD is not a CB1 or CB2 

receptor agonist. Moreover, whereas the CB1 receptor antagonist rimonabant blocks the antiseizure 

activity of THC, it does not block the antiseizure activity of CBD, confirming that the effect of CBD on 

seizures is not due to an action on brain CB1 receptors (Wallace et al., 2001). The basis of the 

antiseizure activity of CBD is unknown. Among the targets that have been proposed are G-protein 

coupled receptor GPR55, transient receptor potential cation channel TRPV1, voltage-gated sodium 

channels, and equilibrative nucleoside transporter ENT1. CBD is an antagonist of GPR55 (IC50, 0.4 

mM), which is an orphan G-protein coupled receptor activated by endocannabinoids and some 

plant-derived and synthetic cannabinoid ligands (Ryberg et al., 2007; Marichal-Cancino et al., 2017). 

Deletion of GPR55 in mice produces no conspicuous gross phenotypic, behavioural or pathological 

changes and there have been no mention of changes in seizure susceptibility, which would be 

expected if inhibition of GPR55 is an antiseizure mechanism (Wu et al., 2013; Bjursell et al., 2016). 

Nevertheless, GPR55 is expressed in brain regions relevant to epilepsy, including the dentate gyrus 

and other regions of the hippocampus where it is present in both interneurons and excitatory 

neurons (Balenga et al., 2011; Kaplan et al., 2017). CBD has demonstrated clinical efficacy in the 

treatment of seizures associated with Dravet syndrome, which is often caused by mutations in 

NaV1.1 voltage-gated sodium channels that are predominantly expressed in inhibitory interneurons. 

Reduced sodium current in interneurons and impaired inhibitory function is believed to be the 

pathogenic mechanism in Dravet syndrome cases associated with haploinsufficiency of the SCN1A 

gene that encodes NaV1.1 (Parihar and Ganesh, 2013). CBD (albeit at high doses) protects against 

thermally-induced seizures (modelling febrile seizures) in a Scn1a+/– mouse model of Dravet 

syndrome (Kaplan et al., 2017). Moreover, CBD was found to increase action potential generation in 

hippocampal GABAergic interneurons in Scn1a+/– mice, which in turn increased the frequency of 
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inhibitory events in dentate granule cells. An antagonist of GPR55 occluded the action of CBD, raising 

the possibility that CBD may exert an antiseizure action in Dravet syndrome through effects on 

GPR55. 

 CBD has also been reported to be an agonist of TRPV1, a non-selective cation channel, which 

is predominantly expressed in nociceptive neurons of the peripheral nervous system but may also be 

expressed in brain regions relevant to epilepsy including the dentate gyrus of the hippocampus 

(Iannotti et al., 2014). CBD was found to activate and rapidly desensitize TRPV1 and to reduce 

epileptiform activity in hippocampal brain slices. A link between the agonist effect on TRPV1 and 

antiseizure activity was not established. Indeed, TRPV1 activation with capsaicin enhanced excitatory 

transmission in the dentate gyrus of mice with experimental temporal lobe epilepsy, suggesting that 

TRPV1 activation could be pro-epileptic (Bhaskaran and Smith, 2010). Moreover, knockout of TRPV1 

did not markedly impact chemoconvulsant seizures in neonatal mice (Kong et al., 2014). 

 CBD has also been found in patch clamp recordings to be a nonselective inhibitor of 

recombinant voltage-gated sodium channels at concentrations that could be relevant therapeutically 

(Ghovanloo et al., 2018). Moreover, CBD appeared to stabilize the sodium channel inactivated state 

as is the case for conventional sodium channel blocking ASDs. Nonselective sodium channel blockers 

are well recognized to aggravate seizures in Dravet syndrome (Brunklaus et al., 2012) and are 

contraindicated in the condition (Wirrell et al., 2017). Therefore, it is noteworthy that in large-scale 

clinical trials conducted to support approval of CBD in the United States for the treatment of Lennox-

Gastaut syndrome and Dravet syndrome there was a greater prevalence of seizure worsening when 

CBD was used in patients with Lennox-Gastaut syndrome who were not taking clobazam and in 

patients with Dravet syndrome who were not taking clobazam and stiripentol (Rogawski, 2019). The 

sodium channel blocking action of CBD could possibly account for the worsening, which seems to be 

masked by concomitant administration of a positive modulator of GABAA receptors. In clinical trials, 

CBD had reduced therapeutic efficacy when used in the absence of clobazam. While 

pharmacodynamic factors could contribute to the favourable interaction between CBD and 
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clobazam, a pharmacokinetic drug-drug interaction almost certainly plays a role. CBD is an inhibitor 

of CYP2C19 and causes a marked (2.5 to 3-fold) increase in plasma concentrations of norclobazam, 

an active metabolite of clobazam (Geffrey et al., 2015; Rogawski, 2019). 

 An effect on adenosine dynamics is among the most plausible mechanisms proposed to 

explain the antiseizure activity of CBD. In studies of cannabinoid actions on immune function, it was 

found that CBD potently inhibits (IC50, 0.12 mM) ENT1, one isoform of the most abundant family of 

mammalian plasma membrane transporters of nucleosides including adenosine (Carrier et al., 2006). 

ENT1, which acts as an equilibrative bidirectional transporter, is widely distributed throughout the 

body and is present in the brain. Block of ENT1 by CBD could theoretically enhance extracellular 

adenosine. Inasmuch as adenosine is well recognized to inhibit seizure mechanisms, this is a 

reasonable hypothesis to explain the antiseizure activity of CBD but no supporting evidence has as 

yet been presented. 

 

7. Disease-specific mechanisms 

7.1 mTORC1 signalling 

 In epilepsies caused by a specific genetically defined abnormality, a therapy that functionally 

reverses the molecular defect should prevent the occurrence of seizures and possibly also treat 

associated comorbidities. Everolimus, which is approved for the treatment of focal seizures 

associated with TSC, is such a disease-specific therapy. 

 Malformations of cortical development are a common cause of epileptic encephalopathies 

and pharmacoresistant seizures. Many of these epileptic encephalopathies are believed to be due to 

dysfunction in the mTOR (mechanistic target of rapamycin) signalling cascade (Jeong and Wong, 

2018). mTOR is a protein kinase that is a central cell growth regulator (Kim and Guan, 2019). mTOR 

forms the catalytic subunit of mTORC1, which is a cytosolic protein complex that in addition to 

mTOR includes the core components Raptor (regulatory-associated protein of mTOR) and mLST8 

(mammalian lethal with Sec13 protein 8) as well as certain inhibitory proteins. Drugs that inhibit 
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mTORC1, such as rapamycin (sirolimus) and the rapalog everolimus, have various clinical roles 

including prevention of organ transplant rejection and slowing cancer growth and spread. 

Rapamycin and everolimus bind to the cyclophilin protein FKBP12, a peptidyl-prolyl isomerase 

(Houghton, 2010). The rapamycin-FKBP12 complex then allosterically inhibits mTORC1 by binding to 

mTOR (when it is associated with Raptor and MLST8). 

 Tuberous sclerosis is caused by loss-of-function mutations in the TSC1 gene encoding the 

protein hamartin or in the TSC2 gene encoding tuberin (Hasbani and Crino, 2018). The mutations 

lead to constitutive mTOR activation, resulting in abnormal cerebral cortical development with 

multiple focal structural malformations (Lasarge and Danzer, 2014). The substrate for the 

development of epilepsy is believed to be cortical tubers and peri-tuberal cortical tissue with 

dysmorphic neurons, giant cells, reactive astrocytes and disturbed cortical layering (Jeong and Wong, 

2018). The precise basis for epileptogenesis in the presence of these diverse cellular abnormalities is 

not understood. However, the recognition that mTOR signalling pathway hyperactivity is the basis 

for the seizure disorder in TSC led to the investigation of mTOR inhibitors everolimus and sirolimus in 

clinical trials with favourable results (Curatolo et al., 2018). Apart from TSC, mTOR dysregulation has 

been implicated in a large spectrum of genetic and acquired epilepsies, particularly those associated 

with malformations of cortical development (Jeong and Wong, 2018). However, to date, there is no 

evidence that everolimus is effective in epilepsies other than those associated with TSC. 

 

7.2 Lysosomal enzyme replacement 

 Neuronal ceroid lipofuscinoses (Batten disease) are a group of inherited disorders caused by 

deficiencies in lysosomal enzymes in which there is progressive intellectual and motor function 

deterioration with refractory seizures (Johnson et al., 2019). One of these conditions, neuronal 

ceroid lipofuscinosis type 2 (CLN2), is caused by lack of a functional tripeptidyl peptidase 1 (TPP-1) 

enzyme, which serves as a lysosomal exopeptidase that acts on a broad range of protein substrates. 

Individuals with CLN2 disease exhibit refractory myoclonic seizures, ataxia, developmental arrest and 
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regression, central hypotonia with appendicular spasticity, and rapidly progressing motor decline. 

Symptomatic treatment is provided by cerliponase alfa, a recombinantly engineered human TPP-1 

proenzyme delivered by intraventricular infusion that replaces the enzyme in the brain (Schulz et al., 

2018). Cerliponase alfa is taken up by target cells in the brain and is translocated to the lysosomes 

through the cation independent mannose-6-phosphate receptor (M6P/IGF2 receptor). The 

proenzyme is activated in lysosomes and the activated proteolytic form cleaves tripeptides from the 

N-terminus of lysosomal proteins. 

 Cerliponase alfa treatment has been demonstrated to slow the progressive motor 

deterioration in CLN2 disease and improve survival (Schulz et al., 2018). There also appears to be 

improvement in seizures but one-half of children studied did exhibit seizures during treatment. In 

clinical trials, children remained on antiseizure medications and the long-term effect of the 

treatment on seizures is uncertain. EEG examinations showed new epileptiform activity suggesting 

continued disease progression. 

 

8. Mechanisms in Nonepileptic Conditions 

ASD are commonly used for the symptomatic treatment of diverse nonepileptic conditions, 

notably pain conditions, migraine, and many psychiatric disorders (Kaufman, 2011). In some cases, 

the mechanisms accounting for the antiseizure activity of these drugs are also relevant to their 

activity in nonepileptic conditions. For example, benzodiazepines are used in the treatment of 

anxiety and panic disorders, alcohol withdrawal, insomnia, and spasticity, and are also frequently 

used for sedation. All of these effects are due to the actions of benzodiazepines as positive allosteric 

modulators of synaptic GABAA receptors. Sodium channel blockade can explain the activity of 

carbamazepine and oxcarbazepine in trigeminal neuralgia (Di Stefano and Truini, 2017) and the 

antiarrhythmic activity (and cardiotoxicity) of phenytoin (Vaughan Williams, 1984).  

The analgesic activity of gabapentinoids in the treatment of neuropathic pain likely results 

from an interaction with 2-1 as has been proposed for their antiseizure effect (Chincholkar, 2018). 
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At the system level, the efficacy of these drugs in chronic pain is thought to relate to the depression 

of presynaptic excitatory input onto dorsal horn neurons through interactions with 2-1, which is 

upregulated after injury (Rogawski and Löscher, 2004). In addition, gabapentinoids may influence 

descending facilitation and inhibition, may induce anti-inflammatory effects, and may influence 

cortical mechanisms mediating the affective components of pain. The interaction partners of 2-1 

that account for these diverse effects may be similar or different from those mediating the 

antiseizure actions. 

In other instances, it is less clear that the antiseizure mechanism relates to the therapeutic 

actions in nonepileptic conditions. For example, there is no firm evidence that sodium channel 

blockade underlies the efficacy of sodium channel blocking ASDs, notably carbamazepine and 

lamotrigine, in the treatment of bipolar mania (Johannessen Landmark, 2008). Similarly, the cellular 

effects that account for the efficacy of valproate in bipolar disorder and in migraine (Rogawski and 

Löscher, 2004; Rosenberg, 2007) are as equally obscure, if not more so, as those that are responsible 

for its antiseizure activity. The mechanism of action of topiramate in migraine prophylaxis is also not 

understood.  

 

9. Polytherapy and polypharmacology 

An ever-improving understanding of the primary mechanisms by which ASDs exert their 

effects reignites interest in the concept of rational polytherapy in epilepsy. Although 50% of people 

with epilepsy can expect to achieve good seizure control with ASD monotherapy, a small but 

significant proportion of individuals require treatment with two or more drugs (Kwan and Brodie, 

2006). There has long been an interest in how to deploy ASDs in combination therapy so as to 

optimise efficacy and tolerability (Ferrendelli, 1995; Brodie and Sills, 2011). There is extensive 

evidence of synergism between drugs from studies in experimental animals (Czuczwar et al., 2009) 

but results in such studies have not translated into clinical practice. Combinations have therefore 

been selected based on clinical experience. Indeed, prior to the 1980s, the combination of phenytoin 
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and phenobarbital was routinely used without much scientific justification. Today, the best accepted 

combination is that of valproate and lamotrigine, which appears to possess a mutually beneficial 

pharmacokinetic and pharmacodynamic interaction (Brodie and Yuen, 1997; Pisani et al., 1999). 

However, a fundamental understanding of the mechanistic basis of ASD synergy has been elusive 

(Jonker et al., 2007). There has been a longstanding belief that combining drugs with distinct 

mechanisms is preferable to combining drugs that act on the same target (Giussani and Beghi, 2013) 

but the evidence for this is mostly lacking (Deckers et al., 2000). There has, however, been some 

support from post-hoc subgroup analyses of clinical trial data in which subjects are categorized 

according to the mechanistic classification of their baseline ASDs. Analysis of the pivotal clinical trial 

data obtained in support of registration of the sodium channel blocking ASD lacosamide found that 

adjunctive use of lacosamide when one or more sodium channel blocking ASDs was a background 

medication resulted in less robust efficacy and greater adverse effects than when used in patients 

whose baseline regimen did not include a sodium channel blocker (Sake et al., 2010). 

While much has been written about rational polypharmacy in epilepsy, it has also been 

recognized that a single drug molecule may exert more than one antiseizure action at therapeutic 

concentrations, thus exhibiting “polypharmacology” (Reddy and Zhang, 2013). The combined effects 

on persistent sodium currents and GABAA receptors that are observed with cenobamate (Nakamura 

et al., 2018; Sharma et al., 2019) may be an example of this phenomenon. There is some evidence 

that cenobamate offers a greater opportunity for seizure freedom in the treatment of focal-onset 

epilepsies than other ASDs (Krauss et al., 2020). Whether this will be confirmed with widespread use 

remains to be determined. If it is, the polypharmacology of cenobamate could be the key to its 

ability to overcome pharmacoresistance. A range of drugs including valproate, felbamate, 

topiramate, zonisamide, rufinamide, adrenocorticotrophin, and cannabidiol are listed in Table 1 as 

potentially having multiple mechanisms; in some cases, inclusion in the list is based on lack of 

understanding of the mechanism, whereas in others (e.g., felbamate, topiramate and zonisamide) 

there is credible evidence of polypharmacology. 
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10. Summary and conclusions 

 For much of the history of the drug treatment of epilepsy, only a limited group of agents 

(bromide, phenobarbital, phenytoin, primidone, ethosuximide, carbamazepine and valproate) were 

available to clinicians. A turning point occurred in 1989 with the licensing of vigabatrin in the United 

Kingdom and Ireland. The subsequent 30 years has seen an explosion in the number of small 

molecule ASDs approved by regulatory authorities throughout the world. Virtually all of these agents 

were identified by screening in animal models that are unbiased as to mechanism. While the new 

ASDs are chemically extremely diverse and while their mechanisms of action, to the extent known, 

are also relatively diverse, the overall outcome in terms of seizure freedom has not improved (Chen 

et al., 2018a). During this period, there have also been remarkable advances in our understanding of 

how ASDs affect excitability mechanisms at the cellular level. Unfortunately, this knowledge has not 

been successfully applied to the development of agents with better efficacy. 

Even with the advances that have been made, our understanding of ASD mechanisms 

remains incomplete. Nowhere is this more evident than in the case of valproate, where more than 

50 years after its first use in the treatment of epilepsy there is still debate as to which if any of the 

drug’s diverse and often subtle cellular effects relate to clinical efficacy (Löscher, 2002). In this article, 

we have focused on the primary mechanism(s) of action of ASDs, where these are known. Many 

drugs used currently in the treatment of epilepsy have additional, less well-characterised 

pharmacological effects that manifest at therapeutic concentrations and that might contribute to 

the drug’s overall clinical profile. It is also possible that these actions are pharmacologically 

demonstrable but not of clinical relevance. There is no sure fire way to determine whether a specific 

drug action is or is not contributory to clinical activity. Some such effects of uncertain relevance 

include enhancement of GABAA-receptor conductance by carbamazepine and phenytoin (Granger et 

al., 1995), modulation of serotonergic (Dailey et al., 1997) and purinergic transmission (Marangos et 
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al., 1987) by carbamazepine, and alterations in the brain concentrations and turnover of a range of 

amino acid neurotransmitters by valproate (Löscher, 1993). 

While substantial attention has been directed to elucidating antiseizure mechanisms, the 

cellular actions that underlie the adverse effects of ASDs remain relatively unexplored. There is a 

tendency to assume that the mechanisms accounting for seizure protection are the same as those 

that are responsible for side effects. This may be true in some cases, i.e., dizziness, nystagmus and 

diplopia observed with sodium channel blocking ASDs are likely caused by inhibition of high-

frequency action potential firing in vestibular and oculomotor circuits (Gittis et al., 2010). Likewise, 

the tendency of GABAergic ASDs to cause somnolence is likely due to the same actions that confer 

antiseizure effects: enhanced availability of GABA or positive allosteric modulation of GABAA 

receptors (Brohan and Goudra, 2017). However, there are many specific CNS-related adverse effects 

of individual ASDs, such as cognitive impairment caused by topiramate and aggressivity caused by 

levetiracetam and perampanel, that may or may not be attributable to the same mechanisms that 

are responsible for their antiseizure effects (Hansen et al., 2018). Moreover, it is noteworthy that 

systemic toxicities, including blood dyscrasias, hepatotoxicities, and hypersensitivity reactions occur 

with many ASDs as a result of drug actions unrelated to the therapeutic mechanisms of action 

(Leeder, 1998). 

 In recent decades, the science of epilepsy has seen dramatic progress as advances in 

genetics have led to an explosion in the understanding of the pathophysiological bases of certain 

rare epilepsy syndromes and epileptic encephalopathies. We are just now beginning to see the 

emergence of therapies that target the underlying disease mechanisms in these syndromes, 

exemplified by everolimus in the treatment of tuberous sclerosis-associated focal seizures. There is 

now cause for optimism that we are entering a new paradigm where it will be possible to engineer 

specific treatments for some genetically-defined epilepsies using disease-mechanism targeted small 

molecules, antisense, gene therapy with viral vectors, and other biological approaches. In fact, there 

is good reason to believe that in certain genetic syndromes, therapies personalized to an individual 
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patient’s specific mutation(s) will be possible. These therapies, or derivatives thereof, may ultimately 

prove to have utility in more common polygenic epilepsies, where the underlying pathophysiology is 

a result of complex genetic variation at multiple loci, but where a specific genetic variant 

nonetheless plays a contributory role. However, until the causes of the common epilepsies are 

better understood, most patients suffering from epilepsy are unlikely to reap the benefits of this 

technological revolution.
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Table 1. Molecular targets of clinically used antiseizure drugs 
 

Molecular Target Antiseizure Drugs That Act on Target 

Voltage-gated ion channels  

 Voltage-gated sodium channels phenytoin, fosphenytoin1, carbamazepine, 
oxcarbazepine2, eslicarbazepine acetate3, 
lamotrigine, lacosamide, cenobamate; possibly, 
rufinamide, topiramate, zonisamide  

 Voltage-gated calcium channels ethosuximide 

 Voltage-gated potassium channels retigabine (ezogabine) 

GABA inhibition  

 GABAA receptors phenobarbital, primidone, benzodiazepines 
including diazepam, lorazepam, clonazepam, 
midazolam, clobazam; stiripentol; possibly, 
topiramate, felbamate, cenobamate, retigabine 
(ezogabine) 

 GAT-1 GABA transporter tiagabine 

 GABA transaminase vigabatrin 

 Carbonic anhydrase inhibition acetazolamide, topiramate, zonisamide; possibly 
lacosamide 

Synaptic release machinery  

 SV2A levetiracetam, brivaracetam 

 2 gabapentin, gabapentin enacarbil4, pregabalin 

Ionotropic glutamate receptors  

 AMPA receptor perampanel 

Disease specific  

 mTORC1 signaling everolimus 

 Lysosomal enzyme replacement cerliponase alfa (recombinant tripeptidyl 
peptidase 1) 

Mixed/unknown valproate, felbamate, cenobamate, topiramate, 
zonisamide, rufinamide, adrenocorticotrophin, 
cannabidiol 
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1Fosphenytoin is a prodrug for phenytoin, 2Oxcarbazepine serves largely as a prodrug for 
licarbazepine, mainly S-licarbazepine; 3Eslicarbarbazepine acetate is a prodrug for S-licarbazepine; 
4Gabapentin enacarbil is a prodrug for gabapentin  

Table adapted from Rogawski and Cavazos (2020). 
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