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Mechanical back-reaction effect of the dynamical Casimir emission

Salvatore Butera1 and Iacopo Carusotto1

1INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, I-38123 Povo, Italy

We consider an optical cavity enclosed by a freely moving mirror attached to a spring and we
study the quantum friction effect exerted by the dynamical Casimir emission on the mechanical
motion of the mirror. Observable signatures of this simplest example of back-reaction effect are
studied in both the ring-down oscillations of the mirror motion and in its steady-state motion under
a monochromatic force. Analytical expressions are found in simple yet relevant cases and compared
to complete numerical solution of the master equation. In order to overcome the experimental
difficulties posed by the weakness of the back-reaction effect in current set-ups, a promising circuit-
QED device allowing for the observation of an analog back-reaction effect with state-of-the-art
technology is proposed and theoretically characterized.

I. INTRODUCTION

The rich physics of quantum fields living on curved
spacetimes and/or subject to boundary conditions has
been an active field of research for a few decades [1], lead-
ing to fascinating predictions such as the Hawking radia-
tion from black holes [2], cosmological particle creation in
expanding universe [3, 4], and dynamical Casimir emis-
sion (DCE) in the presence of moving mirrors [5–7]. All
these works are based on the so-called semi-classical ap-
proximation, according to which the quantum field lives
on a fixed background, whose geometry and dynamics is
not affected by the one of the quantum field itself.

The formulation of a complete theory that is able to
take into account the back-reaction of the quantum field
on the background spacetime and/or on the boundary
conditions is still a challenging but very rewarding prob-
lem: the anticipated observable consequences of the back-
reaction range in fact from the damping of the expansion
of the universe by the cosmological particle creation [8–
18], to the long-time evaporation of black holes [19–24],
to the mechanical friction felt by the moving mirror in
the DCE [25]. Given the complexity of the problem, a
widespread assumption is that the background interacts
with expectation values of quantum field observables such
as the stress-energy tensor. Further investigations are
therefore needed to get a clear picture of the quantum
correlations that may appear between the field and the
background beyond such an approximation, and then of
their consequences on the back-reaction effect [26–29].

In this work we focus on the back-reaction effect of the
DCE onto the motion of a moving mirror. In order to
focus on the fundamental physical processes, we concen-
trate on the simplest formulation of the problem in terms
of a single-mode cavity enclosed by massive mechanically
moving mirrors. Their mutual optomechanical coupling
occurs via the radiation pressure effect. The DCE con-
sists of the conversion of quanta of mechanical motion
into pairs of cavity photons [30, 31], which then exert a
back-reaction effect on the mirror in the form of a me-
chanical friction [25, 32]. As we will see in the Secs.II-
IV of the present article, unambiguous signatures of the
back-reaction effect are anticipated to appear in our con-

figuration both in the relaxation dynamics of the mirror
motion and in the steady-state under a monochromatic
mechanical drive.

In spite of the clarity of the predicted signatures of
back-reaction, the road towards their experimental ob-
servation is still quite long. Whereas impressive recent
advances have been made in the field of quantum opto-
mechanics [33], the conversion of the quantum fluctua-
tions of the electromagnetic field into real photons by
the mechanically moving mirrors (and, a fortiori, the
mechanical back-reaction effect) has so far escaped ex-
perimental observation [6, 7]. One of the main difficul-
ties stems from the wide separation in frequency of the
(high-frequency) optical and (low-frequency) mechanical
modes in standard optomechanical devices, which hin-
ders fulfilment of the DCE resonance condition ωb ≈ 2ωa
between the cavity and mechanical frequencies ωa,b and
thus dramatically suppresses the intensity of the DCE
emission. While strong efforts are devoted to the devel-
opment of high frequency mechanical resonators up to
the GHz range [34–36], more sophisticated schemes to
reinforce the DCE emission are being theoretically ex-
plored. For instance, the use of higher-harmonic cou-
plings was proposed to release the resonant condition to
nbωb = 2ωa (nb being an integer) [7], but the efficiency
of the resulting DCE remains quite low. Very recently,
a dramatically reinforced efficiency in strongly nonlin-
ear ultra-strong light-matter coupling regimes was pre-
dicted in [37], where a first investigation of the back-
reaction effect of DCE onto the mirror was also re-
ported. A scheme based on an optomechanical system
with a parametrically-driven squeezed cavity mode was
proposed in [38].

A conceptually different strategy to tackle general
questions about quantum fields on curved spacetimes was
pioneered by Unruh’s proposal of analog Hawking radia-
tion from sonic horizons [39]. In the rich literature that
has followed, the general concept of analog model turned
out to be a fruitful framework where to study physical
phenomena whose experimental investigation is out of
current technological capabilities or to perform system-
atic explorations of effects that are normally observed
only in uncontrolled astrophysical environments. The
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basic idea is to look for an experimentally controllable
system, whose dynamics is governed by the same equa-
tions of motion of the system of interest, yet in a different
physical context and on completely different scales. Even
though much literature on analog models has followed the
original work [39] and focussed on the analog Hawking
radiation [40–43], a significant attention has also been de-
voted to other questions related to the quantum vacuum,
in particular to analogs of the DCE. Beyond optical cav-
ities [44–46] and atomic Bose-Einstein condensates [47–
49], circuit-QED devices turned out to be one of the most
fruitful platforms in this adventure [50–53].

One of the first experimental success of the analog
model idea was in fact the demonstration of DCE in a
circuit-QED context [54]. Following the theoretical pro-
posal in [51, 52], a superconducting quantum interference
device (SQUID) was used to impose a magnetically tun-
able boundary condition to the electromagnetic field in
a coplanar waveguide, analogous to an effective mirror
whose spatial position is controlled by the applied mag-
netic field. When the position of this (analog) mirror
is made to oscillate in space via a suitable modulation
of the magnetic field threaded through the SQUID, a
sizable DCE emission into the waveguide was observed,
spectrally centered at half the modulation frequency and
displaying peculiar quantum optical properties expected
in the DCE. Since no mechanically moving element was
present, the experiment belongs to the class of analog
models. However, its quantum evolution equations are
identical to the one of the standard DCE effect. A re-
lated DCE experiment was published shortly after in [55]:
in contrast to the analog mirror implemented in [54], here
the optical length of the cavity was modulated by flux-
biasing the embedded SQUIDs so to slightly vary the
effective refractive index.

Whereas the objective of this first generation of exper-
iments was to detect the analog DCE emission and char-
acterize its quantum statistical properties, a first theo-
retical study of back-reaction effects in all-optical analog
models of DCE was reported in [56]. A strong and ex-
perimentally observable signal of back-reaction was an-
ticipated there, still the proposed device required a quite
complex optical set-up and the connection to the general
physics of DCE remained non-trivial. It is therefore im-
portant to devise configurations that allow for a direct
insight into the basic physics of back-reaction.

The last part of this article indeed reports a theoret-
ical study in this direction. A direct extension of the
device proposed in [51, 52] and experimentally realized
in [54] is investigated: going beyond these works, the key
idea is no longer to drive the SQUID with a classical,
pre-determined external field B(t), but to magnetically
couple it to an external LC resonator that plays the role
of the harmonically moving mirror. Treating the LC res-
onator as an independent dynamical degree of freedom,
we show that the equations describing the coupled dy-
namics of the LC and the waveguide are equivalent to
the ones for a perfect, harmonically trapped mirror in-

teracting with a quantum electromagnetic field via its
radiation pressure [57]. Most remarkably, our quantita-
tive estimates for the strength of the analog optomechan-
ical coupling between the effective moving mirror and the
cavity turn out to be promising in view of the observation
of the back-reaction effect with state-of-the-art technol-
ogy.

The article is organized as follows. We start by in-
troducing in Sec. II the physical system at hand and by
revising the fundamental concepts of the opto-mechanical
interaction between the mechanical and electromagnetic
degrees of freedom. In Sec. III A we then briefly re-
view the mean-field theory of the system dynamics, which
models the evolution of the system in the classical limit.
In order to describe strictly quantum effects such as par-
ticle creation from DCE and the back-reaction effects, a
more sophisticated theory going beyond the mean-field
approximation is developed in Sec. III B. The key re-
sults of our theoretical study of the back-reaction effect
are presented in Sec. IV. The observable consequences
of the back-reaction are first investigated in Sec. IV A
for the case of an initially displaced mirror that performs
free oscillations while interacting with the cavity mode.
For relatively weak opto-mechanical coupling strength,
the back-reaction results in a reinforced damping of the
mechanical oscillation. For coupling strengths stronger
than the loss rate, the back-reaction results instead in a
periodic and reversible exchange of energy between the
mirror and the field. In Sec. IV B we then study the re-
lated but different case where the mirror is mechanically
driven by a monochromatic external force: for a weak
opto-mechanical coupling, the back-reaction effect is vis-
ible as a broadened lineshape for the resonant mechanical
response of the mirror. For stronger couplings, we antic-
ipate a splitting of the resonant response into a pair of
Rabi-split peaks as well as a number of other nonlinear
features. A promising strategy to experimentally investi-
gate this physics in an circuit-QED-based analog model
is quantitatively discussed in Sec. V. Conclusions and
future perspectives are finally given in Sec. VI.

II. THE SYSTEM

We begin our discussion from a study of the back-
reaction effect in its original formulation in terms of a
friction force acting on the mechanically moving mirror.
The system under consideration is sketched in Fig.1: it
consists of an optical cavity terminated on one side by a
mechanically moving mirror of mass mb, confined around
its equilibrium position by a harmonic potential of char-
acteristic angular frequency ωb. For the sake of simplic-
ity, we restrict the dynamics of the field to a single rele-
vant mode of the optical cavity and we indicate with ωa
the frequency of the cavity mode when the mirror is at
its equilibrium position and the cavity has length L0.

Defining by â (â†) and b̂ (b̂†) the annihilation (creation)
operators for the field and the mechanical oscillator re-
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FIG. 1. Illustrative representation of a generic optomechanical system. One of the cavity mirrors is allowed to harmonically
oscillate around the position of equilibrium and is opto-mechanically coupled to the cavity mode via the radiation pressure.

spectively, the Hamiltonian Ĥ0 for the non interacting
system takes the simple form

Ĥ0 = ~ωaâ†â+ ~ωbb̂†b̂. (1)

The mirror and the field interact with each other via the
radiation pressure, defined in terms of a pressure operator
P̂ which depends quadratically on the field [57],

P̂ =
~ωa
2L0

(
â+ â†

)2
. (2)

In terms of the displacement operator for the mirror

around its equilibrium position x̂ = xZPF(b̂ + b̂†), where

xZPF = (~/2mωb)1/2
is the amplitude of the mechani-

cal zero-point fluctuations, the opto-mechanical pressure
interaction is described by the Hamiltonian [33]

Ĥint = −x̂P̂ = −~ωc
(
â+ â†

)2 (
b̂+ b̂†

)
. (3)

where the strength of the opto-mechanical coupling be-
tween the mechanical and electromagnetic degrees of free-
dom is quantified by the effective interaction frequency

ωc =
ωaxZPF

2L0
=
ωa
L0

(
~

8mbωb

)1/2

. (4)

For the sake of simplicity, we assume from now on that
the system in a regime where the opto-mechanical cou-
pling is much weaker than the natural oscillation frequen-
cies of the both the cavity and the mechanical mirror,
ωc/ωa/b � 1. Such an assumption does not represent a
significant limitation for our purposes, but allows us to
neglect extra effects such as the dressing of the mirror by
virtual photons and the consequent modification of the
ground state of the interacting system [58]. More specif-
ically, under this condition the effects of anti-resonant

terms of the Hamiltonian in Eq. (3) like â†âb̂, â2b and

(
â†
)2
b† can be neglected, as they are responsible for a

minor correction to the energy levels of the system [59].
The opto-mechanical coupling is thus modelled by the

resonant terms â2b̂†,
(
â†
)2
b̂ only, which describe the cre-

ation (resp. annihilation) of mechanical excitations in
the mirror and the simultaneous annihilation (resp. cre-
ation) of a pair of photons. This is the physical mecha-
nism responsible for the DCE, and thus for the exchange
of energy between the mirror and the field and, in the
final instance, for the appearance of friction in the me-
chanical motion of the mirror. A more general numerical
approach that includes the ultra-strong coupling limit
ωc/ωa/b & 1 and the effects of the anti-resonant terms
was recently pursued in [37].

We consider that both the mirror and the cavity mode
are coupled to external degrees of freedom. In particular,
we assume that the mirror is mechanically driven by an
external coherent force of amplitude F (t), which can be
modelled by means of additional time-dependent terms
in the Hamiltonian

Ĥdrive = −~
(
b̂F ∗(t) + b̂†F (t)

)
. (5)

Summing up all terms, the coherent dynamics of the sys-
tem is modelled by the total Hamiltonian

Ĥ = Ĥ0 + Ĥint + Ĥdrive

= ~ωaâ†â+ ~ωbb̂†b̂+ ~ωc
(
b̂†â2 + b̂

(
â†
)2)

− ~
(
b̂F ∗(t) + b̂†F (t)

)
.

(6)

On top of this, we take into account losses in the sys-
tem by coupling the optical field to an external radiative
and/or non-radiative baths and by including mechanical
dissipation damping the mirror motion. Both these ef-
fects are included at the level of the master equation, so
that the time evolution of the density matrix ρ̂ of the
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interacting mirror-field system has the form

dρ̂

dt
=

1

i~

[
Ĥ, ρ̂

]
+ Lâ[ρ̂] + Lb̂[ρ̂], (7)

in terms of the Lindblad superoperators

Lô ≡ (γo/2)
(
2ôρ̂ô† − ô†ôρ̂− ρ̂ô†ô

)
(8)

describing cavity and mechanical losses with ô = â, b̂,
respectively. Equation of motion for expectation value of
generic observables Ô can finally be obtained from the
master equation,

d 〈O〉
dt

=
1

i~
TrS

{[
Ô, Ĥ

]
ρ̂
}

+
∑
ô=â,b̂

γo
2

(
Tr
{[
ô†, Ô

]
ô ρ̂
}

+ Tr
{
ô†
[
Ô, ô

]
ρ̂
})

. (9)

In the next sections we are going to develop a formal-
ism to obtain explicit results for the quantum system
dynamics, which is able to go beyond the mean-field ap-
proximation and take into account the quantum fluctu-
ations of the field at the simplest level. Based on this,
we will provide a quantitative estimate for the friction
due to the emission of dynamical Casimir pairs, and we
will compare the analytical results with the full numerical
solution of the master equation in Eq. (7).

III. THEORETICAL MODELS

A. Mean-field theory of the parametric oscillator

The cubic nature of the Hamiltonian in Eq. (6) makes
the solution of the interacting field-mirror problem far
from trivial. Simplifying hypothesis are thus needed, in
order to derive approximate solutions which are able to
capture at least some of the most significant properties
of the system. We begin our discussion from a semi-
classical approximation, where one focuses on the average
value of the field and mirror oscillation amplitudes and

replaces the â and b̂ operators with the corresponding

classical variables a ≡ 〈â〉 and b ≡ 〈b̂〉. The equations
of motion for such mean fields can be derived from the
master equation.

Assuming that the drive is monochromatic F (t) =
F0 e

−iωt with given amplitude F0 and frequency ω, we
can usefully move to the frame rotating with the angu-
lar frequency ω of the drive. Within the rotating frame,
the annihilation operators transform to â → â e−iωt/2

and b̂ → b̂ e−iωt, so that the equation of motion for the
expectation values get the autonomous form

da

dt
= −

(γa
2
− i∆a

)
a− 2iωca

∗b, (10)

db

dt
= −

(γb
2
− i∆b

)
b− iωca2 + iF0, (11)

where we defined the detuning ∆a ≡ ω/2−ωa and ∆b ≡
ω−ωb. Given the dissipative form of Eqs. (10) and (11), a
steady-state solution can be derived by setting the time
derivatives to zero. These equations have the simplest
form in the fully resonant case where the drive is resonant
with the mirror frequency (ω = ωb) and this latter is in
resonance with twice the optical frequency (ωb = 2ωa).

In these conditions the system exhibits a sort of phase
transition at the threshold value F0 = F th

0 ≡ γaγb/8ωc
of the drive amplitude, at which the solution

aB = 0, (12)

bB =
2i

γb
F0, (13)

that is stable below the threshold F0 < F th
0 , becomes dy-

namically unstable. Above threshold, the system spon-
taneously break a Z2 symmetry and has the choice to
migrate towards two possible different branches, char-
acterized by the same mirror amplitude but equal and
opposite values of the field amplitude,

a±A = ±
(
F0 − F th

0

ωc

)1/2

, (14)

bA = i
γa
4ωc

. (15)

The parametric oscillator threshold at F th
0 thus separates

two qualitatively different regimes of the system. Below
the threshold, the classical component of the cavity field
is zero, while the average amplitude of the mechanical
oscillations increase linearly with the strength of the ap-
plied drive. As we shall see shortly, in this regime the
quantum fluctuations of the field play a major role in
determining the quantum state of the cavity field. Con-
versely, above the threshold, the expectation value of the
field is finite and the mirror amplitude saturates to a fi-
nite value. In this case the system behaves to a good
approximation classically, with the quantum fluctuations
accounting only for small corrections to the mean-field
dynamics. For later convenience we define γ2

0 ≡ γaγb/2,
so that F th

0 = γ2
0/4ωc.

While this classical model is typically able to repro-
duce the general trend of the steady-state field expec-
tation values, it is not able to capture strictly quantum
effect, such as the parametric amplification of vacuum
fluctuations of the electromagnetic field via the dynami-
cal Casimir effect and, in turn, the back-reaction of the
dynamical Casimir photons onto the mechanical degrees-
of-freedom. This can be directly seen from the mean-field
steady-state below threshold found above, which contains
no cavity excitation aB = 0.

Generalization of the steady-state solutions (12-13) to
general values of ∆b further shows that the response func-
tion of the oscillator to the external drive has the form
of a Lorentzian function with central frequency ωb, and
a linewidth equal to the damping rate γb of the bare me-
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chanical oscillator,

|b(ω)|2 =
|F0|2

∆2
b + (γb/2)2

. (16)

The absence of any Casimir emission and any back-
reaction effect shows that, in order to understand the
physics of these effects it is necessary to go beyond the
mean-field approximation and include quantum fluctu-
ations in the model. This will be the objective of the
following sections.

B. Beyond mean-field

In order to go beyond the mean-field theory, we first
note that, because of the symmetry properties of the
Hamiltonian in Eq. (6), the expectation value of any cor-
relator containing an odd number of cavity field annihila-
tion and creator operators â, â† does not change in time
under the Hamiltonian evolution and remains strictly
zero in the steady-state. The fundamental dynamical
quantities for the field are thus given by the quadratic
operators q̂ ≡ â2 and n̂a ≡ â†â.

On this basis, a simple description of the quantum dy-
namics of the system can be formulated in terms of the
time evolution of the expectation values of the ampli-

tudes b ≡
〈
b̂
〉

and q ≡ 〈q̂〉 for the mirror and the cavity

field respectively, and of the number of photons in the
cavity na ≡ 〈n̂a〉. Working again in the frame rotating
at the drive frequency ω, we can describe the system by
the set of three equations

db

dt
= −

(γb
2
− i∆b

)
b− iωcq + iF0, (17)

dna
dt

= −γana − 2iωc
〈
q†b
〉

+ 2iωc
〈
qb†
〉
, (18)

dq

dt
= − (γa − i∆q) q − 4iωc 〈nab〉 − 2iωcb, (19)

where we defined the detuning ∆q ≡ ω − 2ωa. Eqs. (17-
19) reveal how the presence of cubic terms in the Hamil-
tonian Eq. (6) leads to an infinite hierarchy of correlators,
that need to be suitably truncated in order to obtain a so-
lution to the problem. This effectively means neglecting
the correlation of higher order between the mirror and
the field, and attention must be paid to the conditions
under which this approximation is justified. To this aim
we identify three different regimes.

i) In the limit of a weak drive F0 � F th
0 , the correla-

tors involving products of two b̂, q̂ and n̂a operators can
be safely neglected as they represent higher order terms
in the infinitesimal quantities q, b and na. From now on,
this regime will be called linear regime, since in this case
the Eqs. (17-19) reduce to a set of three linear equations.
In spite of its simplicity, this linear model is able to ac-
count for the quantum fluctuations responsible for the
DCE emission and, then, for the back-reaction effect.

ii) In the opposite limit of a strong drive F0 � F th
0 ,

the system is in the parametric oscillator limit. As men-
tioned in the previous section, in this regime the sys-
tem behaves in an approximately classical way: the non-
factorisable component (that is the cumulant in the lan-
guage of statistics) in the correlations between the field
and the mirror can be neglected and the correlations can
be factorized as 〈a2b†〉 ' qb∗ and 〈a†ab〉 ' nab (we in-
dicated by “∗” the complex conjugate operation). The
equations of motion (17-19) then reduce to the closed
nonlinear system

db

dt
= −

(γb
2
− i∆b

)
b− iωcq + iF0, (20)

dna
dt

= −γana − 2iωcq
∗b+ 2iωcqb

∗, (21)

dq

dt
= − (γa − i∆q) q − 4iωcnab− 2iωcb. (22)

iii) In the region of parameters between these two lim-
its, that is for F0 ∼ F th

0 , quantum fluctuations play a
crucial and complex role and the non-trivial higher or-
der correlations between the field and the mirror need
to be fully taken into account to properly describe the
properties of the system.

For the purpose of this article, we note that the best
conditions for the investigation of the back-reaction ef-
fects from the DCE photons are met in the linear regime
of weak drive and weak excitation. In this case, all the
key features of the DCE mechanism are kept into play,
with the advantage of being able to neglect all the com-
plex nonlinear effects arising from the radiation pressure
coupling of the field with the mechanical oscillator. As
we will see in the next sections, this simplifies very much
the analysis, and closed expressions for the quantities of
interest can be obtained by analytical means.

IV. VACUUM-INDUCED FRICTION

In the previous sections we have introduced the phys-
ical model under consideration and the theoretical tools
that can be used to study its non-equilibrium dynam-
ics. In this section we investigate the central subject
of the article, namely the observable signatures of the
back-reaction effect of the dynamical Casimir emission
onto the mechanically moving mirror. In the next two
subsections, this back-reaction effect will be studied in
the two most relevant cases of the ring-down oscillations
of a freely oscillating mirror and of a mechanically driven
mirror subject to a monochromatic force.

A. Free evolution

We start our study of the back-reaction effect from the
case of the free evolution of the mirror: the physical idea
is that the cavity is prepared in its vacuum state, while
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FIG. 2. Free evolution of the interacting cavity field-mirror system. At the initial time t = 0, the cavity field is in its vacuum
state, while the mechanical oscillator is in a coherent state of amplitude b0 = 2. Solutions are given in terms of the number of
photons in the cavity 〈â†â〉 and of mechanical oscillator quanta 〈b̂†b̂〉. The different panels (a-d) are for growing values of the
ratio ωc/γ0 = 0.1, 0.5, 5, 10. In each panel, the solution (L) of the linearized equations is plotted as a blue fine dashed line, the
solution (NL) of the nonlinear mean-field equations is shown as a dashed red line, and the full numerical solution (ME) of the

master equation Eq. (7) is shown as a continuous (black) line. In the panels for 〈b̂†b̂〉, the dotted green lines (not distinguishable
in panel (a)) show the evolution of the mirror in the absence of opto-mechanical coupling to the cavity field, that is for ωc = 0.

the mirror is prepared in a coherent state with a given
amplitude. Starting from this state, the system is then
let evolve in the absence of any external drive F0 = 0.
The dissipative nature of the evolution will eventually
bring it back to the ground state with all fields being in
their vacuum state, but the intermediate dynamics will
carry interesting signatures of the dynamical Casimir and
of the back-reaction effects.

To investigate this physics, we go back to the full set
in Eqs. (17-19). In absence of the external drive, that is
for F0 = 0, there is no advantage in moving to the rotat-
ing frame for the operators. We start from the simplest
and most relevant regime of a small initial perturbation
from the ground state, in which case the equations can

be linearized into the form

db

dt
= −iωbb−

γb
2
b− iωcq, (23)

dq

dt
= − (γa − 2iωa) q − 2iωcb, (24)

which describe a damped oscillating evolution for both
the mirror and the field amplitude starting from the ini-
tial conditions b(0) = b0 and q(0) = 0. These equations
of motion can be analytically solved and, in the resonant
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case ωb = 2ωa, provide the solutions

b(t) = e−iωbt−γ1t/2 b0
2ωd

[(
γa −

γb
2

)
sin(ωdt)

+2ωd cos(ωdt)
]
, (25)

q(t) = e−2iωat−γ1t/2 b0
4ωdωc

[(
γa −

γb
2

)2

−4ω2
d

]
sin(ωdt). (26)

which show a complex temporal envelope modulating the
free oscillations of b(t) and q(t) at ωb = 2ωa. A similar
expression can be obtained also for the average number
of photons na, but we do not report here because it is
quite involved and not that instructive. For the sake of
compactness, we have used the shorthands γ1 = γa+γb/2
for the averaged dissipation rate and

ωd =

√
2ω2

c − (γa − γb/2)
2
/4 , (27)

for the effective energy exchange frequency. Given the
even symmetry of Eq. (25) with respect to ωd, either
of the two roots can be chosen. As a key result of this
work, and in agreement with the conclusions of the recent
work [37], we easily see that two regimes can be identi-
fied, depending on the relative values of the interaction
frequency ωc and the dissipation rates γa and γb, i.e. the
real vs. imaginary nature of ωd.

In the under-damped ωc > (γa − γb/2) /(2
√

2) regime,
the exchange frequency ωd is real and energy is peri-
odically exchanged between the mirror and the optical
mode of the cavity, before being eventually damped with
an exponential law on a longer timescale. In the oppo-
site over-damped regime, damping is so large that ωd is
purely imaginary and the amplitude of the mirror os-
cillations is monotonically damped out. Of course, the
resulting damping rate gets contributions from the bare
decay rate γb as well as from the back-reaction effect. In
the weak opto-mechanical regime ωc � γa,b and assum-
ing γa � γb, the reinforced damping reads

γeff
b ' γb +

4ω2
c

γa
. (28)

Since the dynamical Casimir emission is suppressed for
substantial values of the mirror-cavity detuning |ωb −
2ωa| � γa,b, the back-reaction contribution can be iso-
lated by comparing the values of the damping rate that
are observed in the two cases when the cavity is tuned
respectively on- or far-off resonance from the mirror.

This linearized approach holds for weak initial ampli-
tudes b20 � γ2

a/ω
2
c , so that the nonlinear terms in the

motion equations are negligible. In more general case,
the full quantum nonlinear equations (17-19) should be
considered. For small values of ωc/γa,b, one can expect
that nonlinear mean-field equations (20-22) should pro-
vide a reasonable approximate description.

These analytical expectations are validated in Fig. 2
that shows the free evolution of the system starting from

b0 = 2 and the cavity field in its vacuum state. The
panels (a-d) refer to growing values of coupling strength,
ωc/γ0 = 0.1, 0.5, 5, 10. In each panel, the different
curves show the full numerical solution of the master
equation (black solid line), the solution of the linearized
equations (blue dotted) and the solution of the non-
linear mean-field equations (red dashed). The dotted

green lines in the panels for 〈b̂†b̂〉 show the bare damp-
ing of the mechanical oscillator at γb. For simplicity we
have assumed equal dissipation rates for both the cav-
ity and the mechanical oscillator γa = γb = γ, so that
γ0 = γ/

√
2 and γ1 = 3γ/2. With this choice, one has

ωd =
(
2ω2

c − γ2/16
)1/2

.
In panels (a), we illustrate the over-damped regime of

weak opto-mechanical coupling: while the mechanical os-
cillator performes a monotonic decay towards its ground
state, the cavity field is initially excited by the dynamical
Casimir effect, then the photons are lost by dissipation.
Consequences of back-reaction can be found in the decay
rate of the mirror oscillation, that is reinforced compared
to its bare value γb (green dotted line). The quantitative
importance of this effect grows with ωc: while it is almost
invisible on the scale of panel (a), it shows up clearly in
panel (b). In both these panels, the agreement of the
different approximations to the full numerical solution is
very good and the discrepancy gets smaller as ωc/γ0 is
decreased.

In panels (c-d), we illustrate the under-damped regime
where a continuous and periodic transfer of energy occurs
between the mirror and the field and viceversa. The time
scale on which such a conversion takes place can be es-
timated from the analytical theory to be on the order of
1/ωd. Because of the losses, the system then decays to-
wards the vacuum state on a time scale set by the charac-
teristic time 1/γ1. Given the relatively large initial value
of b chosen here, the linearized approach provides inaccu-
rate results. The nonlinear mean-field equations are how-
ever able to reasonably capture the oscillation frequency.
Quantum fluctuations and correlations are then respon-
sible for the quick damping of the oscillations shown in
the full numerics.

B. Driven-dissipative steady-state under a
monochromatic drive

After having discussed the free evolution of the sys-
tem under the combined effect of the losses and the dy-
namical Casimir emission, we now turn to the driven-
dissipative dynamics when the system is continuously
driven by a monochromatic drive acting on the mirror.
As we have done in the previous section, the full numer-
ical results will be compared to the solution of the non-
linear equations (20-22): as compared to the pure mean-
field theory based on one-operator expectation values of
Sec. III A, these equations explicitly include the relevant
two-operator quantities that enter into the DCE, in par-
ticular q = 〈â2〉.
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1. Linear regime

We start from the case where the strength of the ex-
ternal drive is small enough that the system is slightly
perturbed from the vacuum. In this regime, an analyti-
cal solution for the response of the mirror can be obtained
by linearizing the equations of motion, which gives

b(ω) = R(ω)F0, (29)

where R(ω) is the response function of the oscillator

R(ω) = − ∆q + iγa

∆b∆q + i
(
γa∆b + γb

2 ∆q

)
− (2ω2

c + γ2
0)
.

(30)
This formula is one of the key results of our work. In the
completely resonant case ωb = 2ωa, it simplifies as

R(ω) = − ∆ + iγa
∆2 + iγ1∆− (2ω2

c + γ2
0)
. (31)

where ∆ = ω − ωb = ω − 2ωa. As expected, in the limit
ωc → 0 of a vanishing opto-mechanical interaction, the
response function reduces to the response (16) of the bare
oscillator.

For small ωc � γa,b, and assuming for simplicity γa �
γb, the response (31) takes the Lorentzian form

R(ω) =
1

∆ + iγeff
b /2

, (32)

with the effective damping rate for the mirror given in
Eq. (28). This last formula clearly shows the back-
reaction effect of the dynamical Casimir emission as a
reinforced broadening of the mirror response: while the
first term in Eq. (28) is the bare damping of the mechan-
ical oscillator, the second term accounts for the damp-
ing due to the creation of photon pairs out of the vac-
uum. Since the dynamical Casimir effect is dramatically
suppressed far away from resonance |ωb − 2ωa| � γ0,1,
the back-reaction contribution can be extracted just by
looking at the dependence of the linewidth on the cavity-
mirror detuning ωb−2ωa = ∆q−∆b. Of course, isolating
the back-reaction contribution to the mechanical dissipa-
tion requires that the intrinsic dissipations γa,b are not
far larger than the optomechanical coupling ωc.

For arbitrary values of ωc, the squared amplitude of
the mirror oscillations follows directly from Eq. (31),

|b(ω)|2 =
∆2 + γ2

a

(∆2 − (2ω2
c + γ2

0))
2

+ γ2
1∆2

|F0|2 . (33)

For strong values of the coupling ωc � γa,b, the periodic
energy exchange between mechanical and optical modes
predicted in the previous section manifests itself in a
complex response spectrum showing a pair of Lorentzian
peaks of width γ1 separated by a splitting approximately
given by 2

√
2ωc,

|b(ω)|2 =
2ω2

c

(∆2 − 2ω2
c )

2
+ 2ω2

cγ
2
1

|F0|2 . (34)

Quantitatively, for typical parameters of high-frequency
optomechanical systems taken from [60], the optome-
chanical coupling results on the order of ωc ≈ 1 Hz. As we
have seen in this section, weak optomechanical couplings
require correspondingly small dissipation rates γ . ωc
for the back-reaction effect to be observable, which is
anticipated to pose serious difficulties to experimental
verification of our predictions.

2. Nonlinear mean-field regime

For higher strength of the drive, calculation of the re-
sponse of the system need to include the nonlinear char-
acter of the system, encoded in the Eqs. (20)-(22). Since
we are interested in the stationary state of the system,
we pose the time derivatives to zero here. To analytically
tackle the nonlinear equation, we combine the first and
the second ones to find the steady-state for the mirror
oscillation amplitude and for the field fluctuations as a
function of the average number of photons in the cavity
na,

b =
(∆ + iγa)F0

[2ω2
c (1 + 2na)− (∆2 − γ2

0)]− i∆γ1
, (35)

q =
2ωc (1 + 2na)F0

[2ω2
c (1 + 2na)− (∆2 − γ2

0)]− i∆γ1
. (36)

FIG. 3. Stationary state in the presence of a monochromatic
mechanical drive acting on the mirror, in terms of the num-
ber of photons in the cavity as a function of the drive fre-
quency ω. All curves are for the resonant case ωb = 2ωa,
while different values λ′ = F0/(F

th
0 )′ = 1, 3, 5 for the drive

amplitude are used. The presence of multiple solutions for
the same drive frequency and amplitude indicates multistable
behaviours, the dynamically unstable branches being high-
lighted by symbols.

Here we posed ωb = 2ωa (that is ∆a = ∆b = ∆).
From the third equation we then find a condition for
x ≡ (1 + 2na) in the form of a third order polynomial
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equation,

ω4
cx

3 − ω2
c

[
ω2
c +

(
∆2 − γ2

0

)]
x2 +

[(
∆2 − γ2

0

)2
4

+ω2
c

(
∆2 − γ2

0

)
+

∆2

4
γ2

1 − 4F 4
0

]
x

− 1

4

((
∆2 − γ2

0

)2
+ ∆2γ2

)
= 0. (37)

which can be easily solved by numerical means. The
solution then provides the amplitude of the mirror and
field oscillations through Eqs. (35) and (36).

Because of the nonlinear nature of the problem, multi-
ple (up to three) solutions could exist for these equations,
depending on the values of the strength and frequency of
the drive. Such multistability effects are well-known in
optics and a simplest example in our context is illustrated
in Fig. 3: depending on the drive frequency, one or two
stable solutions can be found, as well as a dynamically
unstable one. The splitting of the two tilted peaks is due
to a nonlinear Rabi coupling between the mechanical and
optical degrees of freedom [61], and, for na � 1 can be

estimated from (37) to be approximately 2ωc n
1/2
a .

a. Modified parametric oscillator This general the-
ory can be successfully used to study the dynamical
Casimir emission and the back-reaction effect in the non-
linear regime. For simplicity we restrict to the fully res-
onant case ω = ωb = 2ωa and we give a special attention
to the field fluctuations, taken into account in our theory
at the level of the averages of the q̂ operator (we remind
that q̂ ≡ â2). Setting ∆ = 0, Eqs. (35-36) simplify to

b =
iγaωcF0

2ω2
cx+ γ2

0

, (38)

q =
2ω2

cF0

2ω2
cx+ γ2

0

, (39)

while (37) reduces to

ω4
cx

3 − ω2
c

(
ω2
c − γ2

0

)
x2(

γ4
0

4
− ω2

cγ
2
0 − 4ω4

cF
2
0

)
x− γ4

0

4
= 0. (40)

In the F0 → 0 limit, this set of equation admits the
explicit solutions

b =
iωcγaF0

2ω2
c + γ2

0

, q =
2ω2

cF0

2ω2
c + γ2

0

, na =
8ω4

cF
2
0

(2ω2
c + γ2

0)
2 ,

(41)
that fully recover the result of the linearized equations
(20)-(22). This is immediately seen, for example, by com-
paring the expression for b in Eq. (41) with the one in
(29) and (31) for ∆ = 0.

In the opposite limit F0 →∞, the nonlinear mean-field
equations predict for the stationary state of the system

b =
iγa
4ωc

, q = F0, na = F0 , (42)

FIG. 4. Stationary state of the driven-dissipative evolution in
the presence of a monochromatic drive acting on the mirror in
a fully resonant condition ω = ωb = 2ωa. Panel (a) shows the
amplitude of the mirror oscillations as a function of the drive
amplitude. The solid line is the mean-field solution of (10-11),
squares show the analytical nonlinear expression (40) and the
circles indicate the full numerical prediction of the master equa-
tion. Different colors refer to different values of the optomechan-
ical coupling, ωc/γ0 = 0.5 (red) and 2 (black). Panel (b) shows
the relative deviation between the analytical nonlinear solutions
and the full numerical solution. Panels (c,d) show the numer-
ical solutions for the normalized correlations between the field
and the mirror, as defined in Eqs. (44). Vertical dashed lines
indicate the points of maximum deviation ∆b/ 〈b〉.

the equal expressions for q and na suggest that in this
regime the cavity field is in a coherent state and its am-
plitude recovers the mean-field prediction (15).

The different dependence on the strength F0 of the
drive appearing in Eqs. (41) and (42) is a hint of the
parametric oscillator transition. In order to estimate the
amplitude of the drive at which the crossover between
the below- and above-threshold regimes takes place, we
equate the amplitude of the mechanical oscillations as
predicted in Eqs. (41) and (42), obtaining the thresh-

old value
(
F th

0

)′
= (1/2)

(
ωc + γ2

0/2ωc
)
. In the limit

ωc → 0, this expression reduces to the critical value
F th

0 predicted by the mean-field theory. Such a tran-
sition is illustrated in Fig. IV B 2 a(a), where is shown
the solution for b as a function of F0, for the values
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γa/
√

2 = γb/
√

2 = γ/
√

2 = 0.5, 2 (that is for γ0 = 0.5, 2
respectively). A close analysis of the figure reveals the
existence of three distinct regimes depending on the value

of the ratio λ′ ≡ F0/
(
F th

0

)′
of the drive strength. In con-

trast to the pure mean-field theory discussed in Sec. III A,
the transition between the different regimes is not sharp
but is smoothened out by quantum fluctuations.

The three regimes correspond to i) below (λ′ � 1),
ii) above (λ′ � 1) and iii) around (λ′ ' 1) threshold.
The solutions in Eq. (41) refers to the first of these re-
gions (regime (i)). The most interesting feature is that
the quantum fluctuations due to the mirror-field inter-
action decrease the slope of b as a function of F0 with
respect to the mean-field prediction in Eq. (13) and this
deviation grows with ωc. All these elements confirm the
origin of this feature in the DCE emission of photons
that increases the effective damping of the mirror via the
back-reaction effect. Note also that, in this regime, the
theoretical solution agrees very well with the (fully quan-
tum) numerical one. This happens because, despite the
quantum fluctuations are not negligible in this limit and
the factorization of the correlations is not justified, the
system is only weakly displaced from its vacuum state,
and the correlations account for higher order terms in
the infinitesimal displacement of the system above its
vacuum state.

Above the parametric oscillator transition (regime
(iii)), the coherent oscillations of the mirror generated by
the driving force are so large to induce a self-supported
coherent oscillation in the cavity field as well. In the
DCE context, such oscillations were observed in [62] and
must, of course, be distinguished from the quantum-
fluctuation-induced excitation that is observed in the cav-
ity in the regime (i) below the transition [54]. Also in this
regime (iii), the mean-field solution agrees well with both
the theoretical and the numerical solutions: the system
behaves in fact classically and quantum effects have a
negligible impact on the dynamics.

In the region (ii) in between these two limits, that is

for values of the order F0 ∼
(
F th

0

)′
, the quantum fluc-

tuations have non-negligible effects on the properties of
the system, whose dynamics significantly deviates from
the prediction of the theoretical model developed in the
previous sections. These considerations are supported
from the numerical results in Fig. IV B 2 a(c-d), where
the normalized correlations

〈
n̂ab̂
〉
c
≡

〈
n̂ab̂
〉

nab
− 1 (43)

〈(
â†
)2
b̂
〉
c
≡

〈(
â†
)2
b̂
〉

q∗b
− 1 (44)

are plotted as a function of the drive strength (we re-
mind that by q∗ we mean the complex conjugate of q,
that is the expectation value

〈
q̂†
〉
). From the same fig-

ures, we also confirm the expectation that the stronger is
the optomechanical coupling compared to the loss rates

ωc/γ0, the stronger is the effect of the quantum correla-
tions and thus the larger are the deviations of the ana-
lytical results from the fully quantum numerical solution
(Fig. IV B 2 a(b)).

b. Spectral response After having characterized the
general features of the parametric transition in the fully
resonant case, we now discuss the response of the mir-
ror as a function of the drive frequency. In the linear
regime of a weak drive, we obtained in Eqs. (33) that
the linewidth of the response function gets an additional
contribution from the back-reaction effect of the DCE
emission. The same conclusions can be drawn from the
analysis of the more general nonlinear set of Eqs. (20-22),
despite in this case an explicit solution for the response
function cannot be obtained.

In Figs. 5, these predictions are contrasted with the
corresponding numerical results. In panels (a-c) we con-
sider the case of a relatively weak ωc/γ0 = 0.5 and dif-

ferent values of the drive strength F0/
(
F th

0

)′
= 0.5, 2, 5.

We observe a good matching between the nonlinear ana-
lytical result and the numerical solution in the first and
last cases, corresponding respectively to situations well
below and well above the parametric oscillator transition.
As expected, in the first case the linearized solution in
Eq. (33) also provides a good approximation to the re-
sponse function. A sizeable deviation between the ana-
lytical and numerical results for the response function is

instead observed in the intermediate case F0/
(
F th

0

)′
= 2,

that is the value of the drive strength for which the dis-
crepancy between the analytical and numerical solutions
for ∆ = 0 was the largest in Fig. IV B 2 a.

The response for a larger value ωc/γ0 = 2 of the op-
tomechanical coupling is shown in Fig. 5(d). The drive

amplitude F0/
(
F th

0

)′
= 3 is again chosen to maximize

the deviation between the analytical and numerical solu-
tions for ∆ = 0 shown in Fig. IV B 2 a. As expected, by
comparing Figs. 5(b) and 5(d) we notice a better agree-
ment between the two solutions in the case of a weaker
opto-mechanical coupling.

V. CIRCUIT ANALOGUE

In the previous sections of this article, observable sig-
natures of the back-reaction effect have been identified
in the relaxation dynamics of the system as well as in its
response to an external drive. All these signatures will
be of experimental interest as soon as a suitable opto-
mechanical device is realized, in which the mechanical
frequency is on resonance with the optical one ωb ≈ 2ωa
to give a sizable dynamical Casimir emission and the
opto-mechanical coupling is large enough to make the
back-reaction effect visible over other dissipation chan-
nels. As we have mentioned in the introduction, this
objective is however still facing great experimental dif-
ficulties, in particular for what concerns the mechanical
frequency. In the first observation of dynamical Casimir
emission [54], this difficulty was circumvented by making
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FIG. 5. Steady-state amplitude of the mirror oscillation as a function of the frequency ω of the monochromatic drive. We
consider the mechanical oscillator resonant with the cavity field: ωb = 2ωa, and use different values for the optomechanical

coupling and of the drive amplitude. Panels (a-c): ωc/γ0 = 0.5 and F0/
(
F th
0

)′
= 0.5 (a), F0/

(
F th
0

)′
= 2 (b), F0/

(
F th
0

)′
= 5

(c). Panel (d): ωc/γ0 = 2 and F0/
(
F th
0

)′
= 3. The black symbols indicate the numerical solution of the master equation (7).

The prediction of the linearized theory is shown as a solid green line. The prediction of the nonlinear mean-field model is shown
as a dashed red line. The response of the bare mirror for a vanishing optomechanical coupling is shown as a dotted blue line.

use of an analog model based on a superconductor-based
waveguide. As theoretically proposed in [51, 52], the role
of the mirror is played here by a SQUID device and its
mechanical motion in space is simulated by tuning the
reflection phase of the SQUID via an externally imposed
static magnetic field.

In this section, we build atop all these works to pro-
pose and theoretically characterize a configuration where
the mirror motion is not externally predetermined, but
constitutes an independent degree of freedom of the sys-
tem, dynamically coupled to the cavity field via the opto-
mechanical Hamiltonian (3). The basic idea is to replace
the externally imposed magnetic field with the one gen-
erated by another, independent LC circuit concatenated
to the SQUID. A possible implementation of this idea is
sketched in Fig. 6. In contrast to the open-waveguide ex-
periment [54], the opposite end of the CPW terminates
here on a highly reflecting capacitive gap, so to obtain
discrete high-Q cavity modes as experimentally realized
in [62]. Using experimental parameters from these works,
a quantitative estimate for the effective opto-mechanical
coupling that can be realistically obtained in state-of-
the-art devices is obtained. Most remarkably, this value
appears very promising in view of an experimental ob-
servation of the back-reaction effect.

The starting point is the relation between the effec-
tive position xeff of the analog mirror (measured from
the physical position of the SQUID) and the magnetic
flux φ threaded through the SQUID. Such a formula was

derived in full detail in [52],

xeff =

(
Φ0

2π

)2
1

`wgEJ(φ)
(45)

where `wg is the impedance per unit length of the waveg-
uide, Φ0 is the quantum of magnetic flux. Here, EJ(φ)
is the (flux-dependent) Josephson energy of the SQUID,
written as

EJ(φ) = 2EoJ |cos(πφ/Φ0)| (46)

in terms of the single junction Josephson energy EoJ . Pro-
vided the modulation frequency is much smaller than the
plasma frequency of the SQUID ωs = 2π

√
2EoJ/Φ

2
0C

o
J

(where CoJ is the capacitance of each Josephson junc-
tion forming the SQUID), a small time-dependent flux
δφ then results in a time-dependent variation of the ef-
fective cavity length

δxeff = −xeff
δEJ(φ)

EJ(φ)
= xeff

sin(πφ/Φ0)

cos(πφ/Φ0)

π δφ

Φ0
. (47)

Assuming that the self-inductance of the SQUID
is much smaller than the kinetic one, LSQUID �
[Φ0/(2π)]2/EoJ , the former can be neglected. The mag-
netic flux threaded by the LC circuit through the SQUID
can be written as δφ = MILC in terms of the current ILC
flowing through the LC and the mutual inductance M ,
this latter being of course bounded from above by the
self-inductance of the circuit, M/LLC < 1.
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FIG. 6. a) Pictorial representation of LC resonator magnetically coupled to the coplanar wave-guide. b) Sketch of the equivalent
circuit. (c) Effective cavity with moving mirror in correspondence of the SQUID.

Using the expression for the average magnetic energy
stored in the ground state of the LC

1

2LLC

[ϕ
(1)
LC ]2

2
=

1

4
~ωLC , (48)

in terms of the zero-point fluctuations ϕ
(1)
LC of the mag-

netic flux, we can directly estimate ϕ
(1)
LC in terms of cir-

cuit parameters, and then write the (operator-valued)
magnetic flux threaded through the SQUID,

δφ̂ =
M

LLC
ϕ

(1)
LC

(
b̂+ b̂†√

2

)
(49)

in terms of the creation and destruction operators for the

LC harmonic oscillator, b̂ and b̂† in our notation.
Inserting this expression into the one for the effective

length (47) and, this latter into the standard effective
time-dependent Hamiltonian for the DCE emission in a
cavity of average length xo [57],

HDCE(t) = −~ωa
δx(t)

2xo
(
â+ â†

)2
(50)

and promoting the position δx(t) to an operator, one
gets to an effective coupling Hamiltonian between the
LC circuit and the (lowest) cavity mode in the desired

form (3), with a coupling constant

~ωc =
~ωa

4
√

2π

M

LLC

ωa
IoJZwg

√
~ωLCLLC

sin(πφ/Φ0)

cos2(πφ/Φ0)
.

(51)
Here, we have considered the lowest mode of the waveg-
uide with ωa ≈ πv/xo. Furthermore, ωLC is the fre-
quency of the LC circuit (ωb in the rest of the arti-

cle), v =
√
`wgcwg and Zwg ≡

√
`wg/cwg are respec-

tively the velocity and the impedance of the waveguide
mode in terms of the impedance `wg and capacitance cwg
for unit length, IoJ = 2πEoJ/Φ0 is the critical current of
each Josephson junction forming the SQUID. A deriva-
tion of this same result starting from a more extended
Lagrangian theory for the analogue system is reported in
the appendix.

Plugging into this formula typical values for the
SQUID device inspired from the experiment [54], namely
an operating frequency ωa/(2π) ≈ 5 GHz, an average
cavity length of the order of a wavelength (in the waveg-
uide) xo ≈ 2πv/ωa, a critical current IoJ ≈ 1.25µA, an
impedance Zwg ≈ 55 Ω, an inductance LLC ≈ 0.1 nH
(of the order of the kinetic inductance of the Josephson
junction), a flux concatenation ratio M/LLC = 0.1, and
a trigonometric factor of order 1, one obtains a value for
~ωc in the order of a few 104 Hz. Given state-of-the-art
values of the linewidths of superconductor-based oscilla-
tors in the tens of kHz range [63], this value for ~ωc is very
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promising in view of experimental observation of the dy-
namical Casimir-induced damping of the LC circuit oscil-
lations, as well as of the dynamical Casimir-induced peri-
odic exchange of energy between the LC circuit and the
coplanar cavity. From a physical standpoint, the strong
value of the analog opto-mechanical coupling can be un-
derstood in terms of the very light mass that the LC
circuit displays when viewed as an (analog) mechanical
oscillator.

Finally, it is important to note that the LC circuit
can be straightforwardly driven and/or monitored just by
coupling it to an external circuit as shown in Fig.6. This
provides the experimental access needed to implement
both the free evolution and the driven-dissipative steady-
state schemes discussed in the previous section.

VI. CONCLUSIONS

In this work we have theoretically studied a simplest
system where the back-reaction effect of quantum fluc-
tuations of the electromagnetic field onto a mechanically
moving neutral object can be investigated. An optical
cavity closed by a freely moving mirror attached to a
spring is considered. The mechanical motion of the mir-
ror is responsible for the conversion of zero-point quan-
tum fluctuations of the electromagnetic field into real
cavity photons via the dynamical Casimir effect, which
then leak out of the cavity and can be observed as propa-
gating radiation. In return, the dynamical Casimir pho-
tons exert a friction force on the moving mirror that
damps its motion. This quantum friction effect is studied
in two most remarkable configurations.

When no other external mechanical force is applied
onto the mirror and the opto-mechanical coupling is rel-
atively weak, the mirror motion performs periodic ring-
down oscillations that are slowly damped out. The back-
reaction appears as an additional contribution to the
damping rate on top of standard friction. Since dynam-
ical Casimir emission is strongest when the mechanical
oscillations are on resonance with twice the cavity fre-
quency, the two contributions to damping can be dis-
entangled by looking at the variation of the mechani-
cal damping rate as a function of the cavity frequency.
As first predicted in [37], for strong values of the opto-
mechanical coupling, the monotonic decay of the ring-
down oscillations is replaced by a periodic exchange of en-
ergy between the mechanical and optical degrees of free-
dom in a sort of dynamical Casimir-induced two-photon
Rabi oscillations.

When a periodically oscillating external force is ap-
plied to the mirror, the system is able to reach at long
times a stationary state characterized by periodic oscilla-
tions of the mirror and a continuous emission of dynam-
ical Casimir photons. In particular, we have shown how
the properties of the back-reaction force can be extracted
from the dependence of the mechanical oscillation ampli-
tude on the frequency of the applied force. For weak

opto-mechanical couplings, this response shows a single
yet broadened peak whose linewidth carries an additional
contribution from the back-reaction effect. For stronger
couplings, the peak is replaced by a doublet whose split-
ting corresponds to the frequency of the periodic energy
exchange between the mechanical and optical degrees of
freedom.

While our study identified unambiguous signatures of
the back-reaction effect that could be used in experiments
with standard opto-mechanical devices based on macro-
or mesoscopic mechanically moving mirrors, the quanti-
tatively weak magnitude of the predicted effects makes
their actual experimental measurement a very challeng-
ing task. In the last part of our work, we have therefore
investigated the observability of the back-reaction effect
in analog models based on circuit-QED systems. Taking
inspiration from the device proposed in [51, 52] and re-
cently used in [54] for the first observation of an analog
of the dynamical Casimir effect, we propose a configu-
ration where the massive, mechanically moving mirror is
replaced by a SQUID element magnetically coupled to
an independently evolving LC circuit. In such a system,
the ring-down oscillations can be monitored by following
in time the evolution of the oscillating current in the LC
circuit. The response to the external force can be studied
by sending an external monochromatic field onto the LC
circuit and looking either at its current response or at
the energy that is absorbed from the external field. The
actual values of the system parameters that emerge from
our simple modeling are extremely promising in view of
experimental detection of the effect in state-of-the-art
samples.

While the friction force of the dynamical Casimir ef-
fect onto the moving mirror is a simplest example of
back-reaction effect of quantum fluctuations onto their
environment, next theoretical steps will attack the far
more difficult case of the back-reaction of Hawking radi-
ation onto a black hole horizon. Schemes to study this
physics in analog models based on condensed matter or
optical systems are being explored, with special attention
to unveiling analogies and differences with the late-time
evaporation of astrophysical black holes.
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FIG. 7. Discrete model of the CPW magnetically coupled with the LC circuit.

Appendix: Lagrangian formulation of the
LC-SQUID-CPW system

The following derivation is an extension of the La-
grangian formulation developed in [52], to the case in
which the drive on the SQUID represents a dynamical
degree-of-freedom for the system. Without affecting the
generality of the following arguments, we assume the
drive provided by a simple LC circuit that is magneti-
cally coupled to the SQUID. Other devices could have
been considered to the same aim, such as another CPW,
or any other electronic circuit that can be magnetically
coupled to the SQUID.

For convenience, we start by writing the Lagrangian
for the lumped-element model of the circuit depicted in
Fig. 7, and take the continuum limit after we calculate
the equation of motion for the discrete degrees of free-
dom. Such a Lagrangian can be written as

L = LCPW + LSQUID + LLC, (A.1)

where

LCPW =

N−1∑
n=1

[
1

2
∆x cwg Φ̇2

n −
1

2

(Φn+1 − Φn)
2

∆x `wg

]
,

(A.2)

LSQUID =
∑
j=1,2

[
1

2
CJ,j

(
Φ̇J,j

)2

+ EJ,j cos

(
2π

ΦJ,j
Φ0

)]
,

(A.3)

LLC =
1

2
CLCΦ̇2

LC −
1

2LLC
Φ2
LC . (A.4)

are the Lagrangian for the CPW, the SQUID and the LC
resonator respectively. Here we defined the flux quan-
tum Φ0 ≡ π~/e (e is the electron charge), the capac-
itance cwg and inductance `wg densities in the CPW,

the capacitance CLC and inductance LLC respectively
for the capacitor and inductor in the LC resonator, as
well as the capacitance CJ,j and the Josephson energy
EJ,j = ~Ic,j/2e of the jth junction in the SQUID loop,
characterized by the critical current Ic,j . We wrote the
Lagrangian in Eqs. (A.2-A.4) by assuming the node fluxes
as generalized coordinates, which are defined as the time
integral of the local voltage Vj

Φj(t) ≡
∫ t

dτVj(τ) . (A.5)

Here j = 1, 2, ..., N denote the (discrete) degrees-of-
freedom of the CPW, while j = LC refers to the flux
and the voltage across the LC resonator. We dropped
from LSQUID a term

(
LI2

)
SQUID

/2, accounting for the

magnetic energy stored in the SQUID because of the cur-
rent ISQUID circulating in the loop. In other terms, we
assumed the size of the SQUID loop small enough so
that its self-inductance LSQUID is negligible compared

to the Josephson inductances LJ,j = (Φ0/2π)
2
/EJ,j .

Given these assumptions, the fluxes ΦJ,j across the junc-
tions can be directly related to the external flux pierc-
ing the loop as ΦJ,1 − ΦJ,2 = φ, so that the SQUID
can be described by the single degree of freedom ΦJ =
(ΦJ,1 + ΦJ,2) /2. As a consequence, the SQUID behaves
as a single Josephson junction described, in the simpler
case of a perfectly symmetric junction characterized by
the values CJ,1 = CJ,2 = CoJ/2 and EJ,1 = EJ,1 = EoJ ,
by the effective Lagrangian

LSQUID =
1

2
CoJ Φ̇2

J + EJ (φ) cos

(
2π

ΦJ
Φ0

)
. (A.6)

Here we indicated by EJ (φ) = 2EoJ

∣∣∣cos
(
π φ

Φ0

)∣∣∣ the en-

ergy stored in the SQUID, which is a nonlinear function
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of the external flux piercing the flux. We work in the limit
in which the plasma frequency ω2

S = (2π/Φ0)
2

(2EoJ/C
o
J)

of the SQUID far exceed the other characteristic frequen-
cies in the circuit. In this regime, the oscillations of the
phase across the SQUID are small, that is ΦJ/Φ0 � 1.
Furthermore, we consider the external magnetic field
piercing the SQUID to perform small oscillations around
a bias value φb, and we call δφ the amplitude of these
oscillations, that are driven by the LC resonator mag-
netically coupled with its loop. With these assumptions
we can approximate the SQUID Lagrangian by using the
expansions

cos

(
2π

ΦJ
Φ0

)
≈ 1−

(
2π

Φ0

)2
Φ2
J

2
, (A.7)

EJ(φ) = 2EoJ

∣∣∣∣cos

(
π
φ

Φ0

)∣∣∣∣
= 2EoJ

∣∣∣∣cos

(
π
φb + δφ

Φ0

)∣∣∣∣
≈ 2EoJ cos

(
π
φb
Φ0

)
− 2EoJ sin

(
π
φb
Φ0

)(
π
δφ

Φ0

)
.

(A.8)

In the third line in Eq. (A.8) we assumed the amplitude
of the oscillations δφ small enough so that the overall flux
piercing the SQUID does not change sign. For the sake
of brevity, we label in what follows ϕb = πφb/Φ0, and
write δφ = χΦLC , being χ ≡ M/LLC , where M is the
mutual inductance between the LC and the SQUID and
ΦLC is the flux through the LC circuit. Under these as-
sumptions, the Lagrangian for the SQUID-LC subsystem
can be written in the form

LSQUID + LLC = L′SQUID + L′LC + Lint, (A.9)

with

L′SQUID =
1

2
CoJ Φ̇2

J − EoJ
(

2π

Φ0

)2

cosϕbΦ
2
J , (A.10)

L′LC =
1

2
CLCΦ̇2

LC −
1

2LLC
Φ2
LC

− χEoJ
(

2π

Φ0

)
sinϕbΦLC , (A.11)

L′int = χ
EoJ
2

(
2π

Φ0

)3

sinϕbΦ
2
JΦLC . (A.12)

The Lagrangian in Eqs. (A.10) and (A.11) describes the
free evolution of the SQUID and the LC resonator re-
spectively. There we notice the presence of a term linear
in the flux ΦLC , which accounts for a shift of the equilib-
rium position of the oscillator, due to its coupling with
the SQUID. The Lagrangian in Eq. (A.12) is instead cu-
bic in the products between the flux ΦJ across the junc-
tion and the flux ΦLC across the inductance of the LC,
and is responsible for a coupling between the two devices.
In terms of Eqs. (A.2) and (A.10-A.12), the Lagrangian
for the full circuit can thus be written as

L = LCPW + L′SQUID + L′LC + L′int. (A.13)

1. Equations of motion

a. Radiation field

Basing on the effective Lagrangian in Eq. (A.13), we
determine here the equation of motion for the electro-
magnetic field. In the bulk region of the medium, in
the continuum limit ∆x→ 0, the field satisfies the wave
equation

∂2Φ

∂t2
− v2 ∂

2Φ

∂x2
= 0, (A.14)

where v = 1/
√
cwg`wg is the velocity of light in the

CPW. Beside this, we need to pose opportune bound-
ary conditions (BC) to the field. On the side opposite
to the SQUID, that is at x = −L, such a BC is de-
termined by the fact that the CPW is open and the
current Iwg need to be zero. Here the current is writ-
ten in terms of the flux on the N and N − 1 node as
(ΦN − ΦN−1) = Iwg (`wg∆x), from which follows in the
continuum limit Iwg = −∂Φ/(`wg∂x). This yields the
first BC

∂Φ(t,−L)

∂x
= 0. (A.15)

On the SQUID side instead, posing a BC means fixing
the value of Φ(0, t), which corresponds to Φ1 in the dis-
cretized version of the Lagrangian in Eq. (A.2). It is
important here to note that, in the model analyzed, Φ1

is not only a BC for the field, but it is a true dynamical
quantity for the system. To determine the correspond-
ing equation of motion, we notice that Φ1 coincides with
the flux ΦJ across the junctions (see Fig. 7). By posing
ΦJ = Φ1, and minimizing the Lagrangian in Eq. (A.13)
with respect to variations in Φ1 we obtain, again in the
continuum limit

CoJ Φ̈(t, 0) +
1

`wg

∂Φ

∂x
(t, 0) + 2EoJ

(
2π

Φ0

)2

cosϕb Φ(t, 0)

− EoJ
(

2π

Φ0

)3

χ sinϕb Φ(t, 0)ΦLC = 0. (A.16)

Since we work in the regime ω2 � ω2
S , the first term in

Eq. (A.16) can be neglected, that reduces to

Φ (t, 0) +
∂Φ

∂x
(t, 0) δLeff = 0. (A.17)

Here we defined the effective variation of the CPW length

δLeff =
1

2EoJ`wg cosϕb

(
Φ0

2π

)2
1

(1− πχ tanϕbΦLC/Φ0)
.

(A.18)
To first order in ΦLC/Φ0, such an effective length is given
by the sum of the two contributions

δLeff = δLφb

eff + δLδφeff . (A.19)



16

Here

δLφb

eff ≡
1

cosϕb

LJ
`wg

(A.20)

is an effective length experienced by the CPW as an effect
of the bias component φb of the magnetic flux concate-
nated with the SQUID, while

δLδφeff =
ΦLC
R

(A.21)

with

R =
(

tanϕbπχδL
φb

eff

)−1

Φ0 (A.22)

is an effective length induced by the drive. In Eq. (A.20)
we introduced the characteristic inductance of the
SQUID LJ = (Φ0/2π)

2
/(2EoJ). For convenience we shift

in what follows the origin of the x coordinate by L, and
rewrite the BCs obtained above as

∂Φ(t, 0)

∂x
= 0, (A.23)

Φ (t, L) +
∂Φ

∂x
(t, L) δLeff = 0. (A.24)

The former is satisfied by choosing field modes of the
form cos(knx), while the latter sets the allowed values
of the wavevector κn, that need to satisfy the following
relation

(κnδLeff) tan(κnL) = 1. (A.25)

In the limit κnδLeff � 1, the BC at x = L can be sim-
plified as

Φ(t, d) = 0, (A.26)

with d = L+ δLeff the total effective length of the CPW.
From the BC written in this form we find the allowed
wavevectors κn = (2n+ 1)π/2d(t). The (normalized)
basis functions, at the generic time instant t, can thus
be written as

ϕn(x) =

√
2

d(t)
cos(κnx), (A.27)

in terms of which the field in the CPW can be expanded
as Φ(t, x) =

∑
nQn(t)ϕn(x), with Qn(t) the coefficients

of the expansion, having the units [flux] × [length]1/2.
Upon substitution of Eq. (A.27) into the equation of mo-
tion in Eq. (A.14), we obtain the equation of motion for
the Qn

Q̈n + ω2
nQn − 2

ḋ

d

∑
k

Q̇ngnk

−

(
d̈d− ḋ2

d2

)∑
k

Qkgnk −
ḋ2

d2

∑
k,j

Qkgkjgnj = 0,

(A.28)

with the coefficients

gnk =

{
(−1)n+k

2
(1+2k)(1+2n)
k(k+1−n(n+1)) ifn 6= k,

0 ifn = k.

(A.29)

b. The LC resonator and its effective mass

In the previous section we derived the equation of mo-
tion for the field in the CPW. Since one of the BCs is
non-stationary, we expanded the field in the instanta-
neous basis of eigenmodes {ϕn(x)}, and wrote the equa-
tion describing the time evolution for the coefficients Qk
of such an expansion. This procedure is not new in lit-
erature, but has been pursued in order to calculate the
particle production from DCE or in cosmological scenar-
ios as expanding universes [1, 64, 65]. What is different
in the problem we study is that we consider the BC, that
is the LC resonator in our case, as a truly dynamical ob-
ject. In this section we study its dynamics, and derive
the equation that describes the evolution in time of the
effective length d(t) of the CPW. The ultimate aim of
this procedure is to introduce the effective mass for the
BC, and provide an estimate for its value.

We start from the Euler-Lagrange equation for the LC
resonator, that can be obtained directly from the La-
grangian in Eq. (A.9). This has the form

Φ̈LC + ω2
LCΦLC +

(
Φ0

2π

)
χ

2LJCLC
sinϕb

−
(

2π

Φ0

)
χ

4LJCLC
sinϕb Φ2(t, L) = 0. (A.30)

The value of the field Φ(t, L) at x = L is obtained from
the BC in Eq. (A.26)

Φ(t, L) = −∂φ
∂x

(d(t))(d(t)− L)

=

√
2

d

(∑
n

(−1)n κnQn

)
(d(t)− L),

(A.31)

where we used here the expansion Φ(t, x) =∑
nQn(t)ϕn(x), along with the definition in Eq. (A.27)

for the field eigenmodes. Upon substitution of Eq. (A.31)
into Eq. (A.30) we can write the equation for the LC res-
onator as

Φ̈LC + ω2
LCΦLC +

(
Φ0

2π

)
χ

2LJCLC
sinϕb×1−

(
2π

Φ0

)2
(d− L)2

d

∑
n,k

(−1)n+kQnQkκnκk

 = 0.

(A.32)

In writing Eq. (A.32) we neglected a correction to the
LC frequency, induced by the electromagnetic field in
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the CPW. In order to make connection with the optome-
chanical problem discussed in the previous sections, we
write this equation in standard mechanical units and de-
fine an effective mass for the LC oscillator. To this aim
we start from the free Lagrangian

LLC =
1

2
CLCΦ̇2

LC −
1

2LLC
Φ2
LC , (A.33)

and write it in terms of the effective length d defined
above. By using Eq. (A.21), this takes the form

LLC =
1

2
CLCR

2ḋ2 − 1

2LLC
R2
[
d− (L+ δLφb

eff)
]2
.

(A.34)
The momentum conjugate to the effective length d is

p =
∂LLC

∂ḋ
= CLCR

2ḋ, (A.35)

and allows us to identify the effective mass m = R2CLC .
Considering typical values for the physical parameters of
the system, such an effective mass can take values of the
order

m = CLCR
2 = CLC

(
cosϕb
tanϕb

`wg
LJ

Φ0

πχ

)2

∼ 10−30 Kg.

(A.36)

In terms of these quantities, the Eq. (A.32) can be rewrit-

ten as

md̈+mω2
LC (d− Leq)− 1

d

∑
kn

(−1)n+kQ̃nQ̃kωnωk = 0.

(A.37)
Here we defined the quantities

Q̃n ≡
(

2π

Φ0

)
δLφb

eff

(ma
v2

)1/2

Qn (A.38)

Leq ≡ L+ δLφb

eff −
a

ω2
LC

(A.39)

a ≡ RΦ0

2π

χ

2LJm
sinϕb (A.40)

and used the zeroth order approximation

(d− L)
2

d
≈

(
δLφb

eff

)2

d
. (A.41)

The coefficients Q̃n have here the units [length] ×
[mass]1/2, and the Eq. (A.37) is equivalent to the equa-
tion of motion of a mirror interacting with an electro-
magnetic field via its radiation pressure. We do not go
through the quantization procedure for this theory. It is
laborious and already addressed in [57]. For our purposes
it is sufficient to remember that, in the regime of small
oscillations of the mirror around its equilibrium position,
the quantized theory leads to the Hamiltonian we used in
Eq. (3) to describe the interaction. By taking advantage
of this analogy, the value of the effective coupling con-
stant can be calculated by using the definition in Eq. (4)
given in Sec. II (with ωLC in place of ωb). Given the
expression for the effective mass in Eq. (A.36), this re-
produces the result in Eq. (51) of the main text.
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