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Abstract

Ty1 is one of the many transposons in the budding yeast Saccharomyces cerevisiae. The

life-cycle of Ty1 shows numerous similarities with that of retroviruses, e.g. the initially syn-

thesized polyprotein precursor undergoes proteolytic processing by the protease. The retro-

viral proteases have become important targets of current antiretroviral therapies due to the

critical role of the limited proteolysis of Gag-Pol polyprotein in the replication cycle and they

therefore belong to the most well-studied enzymes. Comparative analyses of retroviral and

retroviral-like proteases can help to explore the key similarities and differences which may

help understanding how resistance is developed against protease inhibitors, but the avail-

able information about the structural and biochemical characteristics of retroviral-like, and

especially retrotransposon, proteases is limited. To investigate the main characteristics of

Ty1 retrotransposon protease of Saccharomyces cerevisiae, untagged and His6-tagged

forms of Ty1 protease were expressed in E. coli. After purification of the recombinant pro-

teins, activity measurements were performed using synthetic oligopeptide and fluorescent

recombinant protein substrates, which represented the wild-type and the modified forms of

naturally occurring cleavage sites of the protease. We investigated the dependence of

enzyme activity on different reaction conditions (pH, temperature, ionic strength, and urea

concentration), and determined enzyme kinetic parameters for the studied substrates. Inhib-

itory potentials of 10 different protease inhibitors were also tested. Ty1 protease was not

inhibited by the inhibitors which have been designed against human immunodeficiency virus

type 1 protease and are approved as antiretroviral therapeutics. A quaternary structure of

homodimeric Ty1 protease was proposed based on homology modeling, and this structure

was used to support interpretation of experimental results and to correlate some structural

and biochemical characteristics with that of other retroviral proteases.
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Introduction

The transposons of yeast, the Ty elements, are long terminal repeat (LTR)-containing retro-

transposons. The LTR-containing class of retrotransposons can be subdivided into the Ty1-co-
pia and the Ty3-gypsy main classes. The genome of the budding yeast Saccharomyces cerevisiae
genome contains several retrotransposons, of which the Ty1 retrotransposon is the most well-

studied [1, 2].

Ty1 belongs to the class of LTR-containing retrotransposons which comprise a large family

of elements in eukaryotic nuclear genomes, and are highly similar to that of simple retroviruses

(Fig 1A). Each end of the Ty1 genome is terminated by identical LTR sequences, and it con-

tains open reading frames (ORF) of gag and pol, or a single gag-pol [1]. Ty1 mRNA contains a

7-nucleotide signal for directing +1 ribosomal frameshifting from the ORF of gag to that of pol
[3, 4]. The proteins which are necessary for retrotransposition are encoded by the genome;

while Gag precursor protein (p49-Gag) is translated from gag, the Gag-Pol precursor polypro-

tein (p199-Gag-Pol) is synthesized when frameshifting occurs (Fig 1B). Similarly to retrovi-

ruses, limited proteolysis of these precursor polyproteins is a key step of the replication cycle

and is carried out by Ty1 PR. The structural proteins and enzymes are processed from Gag or

Gag-Pol [5–7], and this cleavage releases p45-Gag, protease, integrase (IN) and reverse tran-

scriptase (RT), products that are similar to the proteins found in retroviruses [8, 9] (Fig 1B).

LTR-containing retrotransposons and retroviruses show similarities in their life-cycle,

but due to the lack of obligatory extracellular steps, the replication cycle of the Ty1 retrotran-

sposon is intracellular and is not infectious [2]. This is caused by the lack of env gene in the

Fig 1. Genome organization of retroviruses and Ty1 retrotransposon. (A) Schematic representations of retroviral and Ty1

retrotransposon genomes are shown. (B) Proteins translated from gag and gag-pol ORFs are shown. Red dashed lines indicate

polyprotein processing by Ty1 PR. Numbers denote molecular weights of the protein products.

https://doi.org/10.1371/journal.pone.0227062.g001
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retrotransposon genome (Fig 1A). The Ty1 mRNA, Gag, and Gag-Pol assemble into virus-like

particles (VLPs) which undergo intracellular maturation [10, 11]. After maturation of Ty1 pro-

teins, cDNA is synthesized by reverse transcription of Ty1 RNA, followed by nuclear import

and integration of the cDNA into the genome by IN enzyme [12–16]. After integration, the

life-cycle may start again.

Despite the expanding knowledge about retroviral-like proteases, the information about the

biochemical, enzymatic, and structural characteristics of retrotransposon proteases are still

limited. The only retrotransposon protease of which the recombinant form has been purified

and characterized in detail is the protease of Drosophila melanogaster: Copia Gag precursor

protein [17]. Both Copia of D. melanogaster and Ty1 of S. cerevisiae belong to the Copia trans-

poson endopeptidase family (family A11) based on the MEROPS database [18], but they are

distantly related members within this family [19].

The processing pathway and the role of Ty1 PR in VLP formation were already explored [8,

20–22]. It is known that Ty1 PR shares the consensus D-S/T-G-A catalytic motif with retrovi-

ral aspartic proteases, and that it processes the functional proteins from the Gag-Pol polypro-

tein, which is necessary to form functional intracellular VLPs. The proteolysis occurs

differentially at the known cleavage sites, which have been identified previously by chemical

sequencing [20, 21]. The precursor is cleaved first at the Gag/PR cleavage site, and this process-

ing is highly temperature-sensitive [23]. The structures of any Ty retrotransposon proteases

have not been solved experimentally, and preparation of homology model structures was also

not published so far, thus structural similarities and differences of Ty retrotransposon and ret-

roviral proteases remained unknown. A recently discovered feature of the human immunode-

ficiency virus type 1 (HIV-1) PR is the extended surface binding site. The surface residues of

the enzyme were found to be able to bind P12-P6 and P6’-P12’substrate residues. This surface

site is referred to as the substrate-groove [24], but whether the presence of the binding site is

specific for HIV-1 PR and for retroviral proteases or is it shared by all retroviral-like proteases

has not been studied. It was also found that the hydrophobicity profiles of Ty1 [20] and Ty3

protease cleavage sites [25] show remarkable differences compared to that of retroviral prote-

ases, but the compositions of substrate binding cavities have not been determined in the case

of any Ty retrotransposon protease.

Despite the availability of a protocol for enzyme purification [22], some characteristics of

the purified Ty1 PR of S. cerevisiae has not been investigated so far, therefore, here we aimed

to investigate enzymatic properties of Ty1 retrotransposon protease and to compare its prop-

erties to that of retroviral and retroviral-like proteases. For characterization, we performed

enzyme reactions using different substrates and reaction conditions. Sensitivity of Ty1 PR

against protease inhibitors has not been tested previously; therefore, a panel of inhibitors was

used to test their inhibitory potential. Besides in vitro experiments, in silico structural analysis

was also performed, homology modeling was used to build a proposed quaternary structure of

Ty1 PR. The model was compared to the structures of retroviral and retroviral-like proteases

in order to correlate our findings with the results of in vitro experiments.

Materials and methods

Cloning, protein expression and purification of Ty1 protease

The pET11a vector encoding Ty1 Gag-PR-His6 (and containing modified frameshift site in the

gag-pol overlap region to provide expression of Gag-PR) was a kind gift provided by Dr. J.F.

Lawler (The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA). The

coding sequence of untagged Ty1 protease (543 bp) was cloned into pET11a plasmid (Nova-

gen) by PCR (see S1 Table for oligonucleotide sequences) from Ty1 Gag-PR-His6 using
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BamHI and NdeI restriction endonucleases. High-Speed Plasmid Mini Kit (Geneaid) was used

for plasmid preparation. Both Ty1 PR and Ty1 Gag-PR-His6 sequences cloned into pET11a

plasmids were sequenced by using BigDye Terminator v3.1 Cycle Sequencing Kit (Applied

Biosystems) and data were evaluated using ABI Prism 3100-Avant Genetic Analyzer (Applied

Biosystems).

Purified plasmids were transformed into BL21(DE3) Escherichia coli cells. Bacteria were

grown in 100 ml Luria-Bertani (LB) medium containing 0.1% (w/v) ampicillin at 37˚C until

reaching an optical density of 0.6–0.8 at 600 nm. Protein expression was induced by the addi-

tion of 1.0 mM isopropyl β-D-1-thiogalactopyranoside (IPTG), followed by incubation for 4 h

at 26˚C. Cells were harvested by centrifugation at 6000 g for 20 min at 4˚C using a Thermo Sci-

entific Sorvall Lynx 4000 centrifuge. Following the removal of the supernatant, the pellet was

solubilized in 10 ml lysis buffer (20 mM Tris-HCl, 5 mM imidazole, 0.5 mM NaCl, 10% glyc-

erol, pH 8.0) [22] and lysed by sonication for 9 min on ice. Samples were centrifuged at 12000

g for 20 min at 4˚C. While Ty1 Gag-PR-His6 fusion protein was purified from the soluble

supernatant fraction, Ty1 PR was isolated from the insoluble pellet fraction which was sus-

pended in 5 ml of guanidine solution (50 mM Tris-HCl, 6 M guanidine-HCl, pH 8.0).

The untagged Ty1 PR was purified by gel filtration on a Superose 12 10/300 GL column

(GE Healthcare) with Äkta Purifier (Amersham Pharmacia Biotech, Uppsala, Sweden) system.

The Ty1 Gag-PR-His6 fusion protein was purified by Ni-chelate affinity chromatography on a

His-Trap Column (GE Healthcare) with Äkta Prime instrument (Amersham Pharmacia Bio-

tech). Purity of the proteases was confirmed by SDS-PAGE using a 14% polyacrylamide gel.

The purified fractions were dialyzed against a”yeast in vivo-like” buffer (50 mM phosphate

buffer, 300 mM KCl, 245 mM glutamate, 50 mM MgSO4, 0.5 mM CaCl2, 100 mM NaCl, pH

6.8) [26] for 16 h at 4˚C, and concentrated by using 10K and 3K Amicon Ultra 0.5 ml centrifu-

gal filters (Merck, Millipore). Protein concentration was determined using the Bradford assay

(Sigma).

Western blotting

Proteins were separated by SDS-PAGE using 14% polyacrylamide gel, and then transferred

onto nitrocellulose membrane at 100 V for 70 min. ProSieve PreStained Protein Ladder Plus

(Lonza) marker was used as standard. Dry milk (2%) dissolved in Tris-buffered saline (TBS,

pH 7.5) was used to block the membrane for 1 h at room temperature. For the detection of

tagged Ty1 proteins (Gag-PR-His6 and PR-His6) by Western blot, we used mouse anti-His pri-

mary antibody (460693, Invitrogen) in a 1:5000 dilution (0.24 μg/ml) diluted with TTBS (TBS

complemented with Tween20) containing 0.1% dry milk. The membrane was incubated with

the primary antibody for 2 h at room temperature. Then, it was washed three times with TTBS

for 15 min and followed by incubation with goat anti-mouse secondary antibody (A4416,

Sigma) for 1 h at room temperature. After repeated washing steps (in TTBS), the proteins were

detected on the membrane by using SuperSignal West Pico chemiluminescent substrate

(Thermo Scientific).

Peptide-based proteolytic assays

The oligopeptides used in the proteolytic assays (Table 1A) were synthesized as previously

described [27]. Reaction mixtures contained 10 μl peptide buffer A (20 mM PIPES, 100 mM

NaCl, 0.5% Nonidet P-40, 10% glycerol, 2 mM dithiotreitol (DTT), pH 7.0), 5 μl purified Ty1

PR-His6 (processed from Ty1 Gag-PR-His6) or Ty1 PR, and 5 μl oligopeptide substrate (2 mg/

ml) dissolved in water. Reaction mixtures were incubated for the different experiments from 2
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up to 5 h at 30˚C. The reactions were stopped by the addition of 180 μl 1% trifluoroacetic acid

(TFA).

The products were separated by an HPLC-based method using a 0–100% water-acetonitrile

gradient in the presence of TFA on Merck Hitachi instrument. For enzyme kinetic measure-

ments, VPTIN�NVHTS oligopeptide substrate (representing Ty1 PR/IN cleavage site) was

used at 0.2–1.2 mM; Ty1 PR (400–1600 nM) was incubated with the substrate at 30 ˚C for 2 h,

whereas Ty1 PR-His6 (500–1500 nM) was incubated for 2.5 h. Kinetic parameters (shown in

Table 1A) were determined by fitting the data obtained at less than 20% substrate hydrolysis to

the Michaelis-Menten equation using GraphPad Prism version 5.00 for Windows (GraphPad

Software, La Jolla California USA, www.graphpad.com). Statistical significances were deter-

mined by GraphPad QuickCalcs (https://www.graphpad.com/quickcalcs/ttest2).

Dependence of enzyme activity on ionic strength, pH, temperature and

urea concentration

To determine the effects of different reaction conditions on protease activity, VPTIN�NVHTS

synthetic oligopeptide substrate (0.47 mM) was used as substrate in cleavage reactions. Reac-

tions were performed in peptide buffer B (100 mM MES, 200 mM Tris, 100 mM sodium

Table 1. Kinetic parameters of Ty1 PR.

A Oligopeptide Enzyme Km (mM) kcat (s-1) kcat/Km (mM-1 s-1)

VPTIN�NVHTS Ty1 PR 0.21 ± 0.07 0.006 ± 0.001 0.028 ± 0.0105

VPTIN�NVHTS Ty1 PR-His6 0.25 ± 0.09 0.009 ± 0.001 0.036 ± 0.0132

IHLIA�AVKAV Ty1 PR, Ty1 PR-His6 no cleavage was observed

TARAH�NVSTS Ty1 PR, Ty1 PR-His6 no cleavage was observed

B Oligopeptide Enzyme� Km (mM) kcat (s-1) kcat/Km (mM-1 s-1)

VPTIN�NVHTS HFV PR 0.03 ± 0.01 0.0002 ± 0.00003 0.007 ± 0.0024

IHLIA�AVKAV HFV PR 1.00 ± 0.16 0.0020 ± 0.00020 0.002 ± 0.0004

TARAH�NVSTS HFV PR not hydrolyzed

C Protein substrate Cleavage site sequence Km (μM) kcat (s-1) (�10−4) kcat/Km (mM-1 s-1)

PR/IN_10aa_wt VPTIN�NVHTS 4.64 ± 1.52 2.16 ± 0.22 0.047 ± 0.016

PR/IN_20aa_wt PSNISVPTIN�NVHTSESTRK 1.90 ± 0.52 2.45 ± 0.19 0.129 ± 0.037

PR/IN_20aa_mut GGGGGVPTIN�NVHTSGGGGG 1.90 ± 0.61 2.52 ± 0.17 0.133 ± 0.044

IN/RT_10aa_wt IHLIA�AVKAV 1.60 ± 0.78 0.58 ± 0.05 0.036 ± 0.018

IN/RT_20aa_wt RSKKRIHLIA�AVKAVKSIKP 3.31 ± 0.65 0.75 ± 0.04 0.023 ± 0.005

Gag/PR_10aa_wt TARAH�NVSTS 4.55 ± 1.43 3.20 ± 0.17 0.070 ± 0.022

Gag/PR_20aa_wt NSKSKTARAH�NVSTSNNSPS 2.27 ± 0.90 0.66 ± 0.05 0.029 ± 0.012

D Protein substrate Cleavage site sequence Km (μM) kcat (s-1) (�10−4) kcat/Km (mM-1 s-1)

PR/IN_10aa_wt VPTIN�NVHTS 4.50 ± 1.76 19.15 ± 2.5 0.426 ± 0.176

PR/IN_20aa_wt PSNISVPTIN�NVHTSESTRK 10.00 ± 1.59 55.80 ± 4.0 0.558 ± 0.097

PR/IN_20aa_mut GGGGGVPTIN�NVHTSGGGGG 6.12 ± 1.33 38.00 ± 2.8 0.621 ± 0.142

IN/RT_10aa_wt IHLIA�AVKAV 6.96 ± 2.21 20.00 ± 2.0 0.287 ± 0.096

IN/RT_20aa_wt RSKKRIHLIA�AVKAVKSIKP 10.81 ± 3.79 30.30 ± 4.7 0.280 ± 0.108

Gag/PR_10aa_wt TARAH�NVSTS 18.21 ± 4.58 46.60 ± 6.1 0.256 ± 0.072

Gag/PR_20aa_wt NSKSKTARAH�NVSTSNNSPS 7.92 ± 9.11 34.96 ± 11.9 0.441 ± 0.530

(A) Oligopeptide substrates representing natural PR/IN (VPTIN�NVHTS), IN/RT (IHLIA�AVKAV) and Gag/PR (TARAH�NVSTS) cleavage sites of Ty1

retrotransposon were tested as substrates of Ty1 PR and Ty1 PR-His6. (B) Values determined previously for HFV PR [40] are also shown for comparison. (C-D) His6-

MBP-mTurquoise2 recombinant fluorescent protein substrates representing natural PR/IN, IN/RT, or Gag/PR cleavage site of Ty1 retrotransposon were used as

substrates for untagged Ty1 PR, the cleavage reactions were performed in cleavage buffer A (C) or cleavage buffer B (D). Errors represent SD (n�2).

https://doi.org/10.1371/journal.pone.0227062.t001
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acetate) for 4 h, assays were initiated by mixing 10 μl buffer, 5 μl substrate, and 5 μl enzyme.

The pH optimum of Ty1 PR-His6 was determined in peptide buffer B for 4 h at 30˚C, the pH

range was set to be 6.5–9.0. The effect of ionic strength was also determined in peptide buffer

B (pH 8.0), the final concentration of NaCl ranged from 0.5 up to 2 M, reaction mixtures were

incubated for 5 h at 30˚C. The temperature optimum of the Ty1 protease was determined in

peptide buffer A, the temperature ranged from 18 to 37˚C. Urea dissociation curve was deter-

mined in peptide buffer B (pH 8.0), buffer was supplemented with urea (from 0.05 up to 0.25

M), and the incubation was performed for 4 h at 30˚C.

Inhibition study

Ty1 PR-His6 activity was measured in the presence of various HIV-1 protease inhibitors.

Atazanavir, nelfinavir, saquinavir, darunavir, amprenavir, lopinavir, tipranavir [28], acetyl-

pepstatin, and pepstatin A [29], and DMP-323 [30] were in-house stocks. To study effect of

inhibitors on proteolytic activity, reaction mixtures contained 5 μl purified Ty1 PR-His6 (400–

1600 nM), 10 μl peptide buffer A, 4.8 μl oligopeptide substrate (VPTIN�NVHTS, 0.44 mM),

and 0.2 μl inhibitor. For screening, inhibitors were dissolved in DMSO to have�100 nM final

concentration. DMSO solution containing no inhibitor was used as control. Reaction mixtures

were incubated for 2 h at 30˚C. The half maximal inhibitory concentration (IC50) was deter-

mined for acetyl-pepstatin (final concentration ranging from 100 up to 1000 nM).

Expression vector for fluorescent kinetic assays

We used a slightly modified pDest-His6-MBP-mTurquoise2 plasmid, prepared in our labora-

tory by Gateway Cloning Technology as previously described [31], and modified in the present

study as follows. The empty pDest-His6-MBP-mTurquoise2 plasmid was linearized by PacI

and NheI endonucleases (New England Biolabs). After separation by electrophoresis, the linear

plasmid was extracted from a 1% agarose gel by NucleoSpin Gel and PCR Clean-up kit

(Macherey-Nagel). The oligonucleotides containing a BamHI restriction site prior to the cod-

ing sequence of a (GGGGS)4 flexible linker (S1 Table) were incubated with the purified linear

pDest-His6-MBP-mTurquoise2 plasmid (150 ng). For annealing, the mixture was incubated

for 2 min at 65˚C then 2 min at 4˚C. After the addition of T4 DNA ligase and T4 DNA ligase

buffer (10X) (New England Biolabs), the mixture was incubated for 16 h at 16˚C. Then, the

reaction mixture (5 μl) was transformed by heat shock into TOP10 E. coli-derived competent

cells, followed by spread and growth on selective LB agar plates (containing ampicillin). After

culturing of the selected colonies, plasmids were purified using High-Speed Plasmid Mini Kit

(Geneaid) and later sequenced by using BigDye1 Terminator v3.1 Cycle Sequencing Kit

(Applied Biosystems) and capillary DNA sequencing using a sequencing forward primer

(S1 Table).

For the cloning of the cleavage site’s coding sequences into the expression vector, a pDest-

His6-MBP-(GGGGS)4-mTurquoise2 plasmid was linearized with BamHI and PacI restriction

endonucleases (New England Biolabs). The linear plasmid was separated by electrophoresis

and purified from the 1% agarose gel using NucleoSpin Gel and PCR Clean-up kit (Macherey-

Nagel). Annealing and ligation were performed as described above in this section, using 150

ng purified linear plasmid and 200 ng oligonucleotide primer (S1 Table) for each reaction.

Expression and purification of fluorescent substrates

Recombinant fluorescent substrates were expressed in E. coli BL21(DE3) cells as previously

reported [31–33]. The His6-tagged fluorescent recombinant protein substrates were purified

from the supernatant of the lysed cells by the addition of Ni-NTA magnetic agarose beads
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(Qiagen) and were incubated for 30 min while continuously shaking. Using a Dynamag™-2

magnetic particle concentrator (Thermo Fischer Scientific, Invitrogen), the magnetic beads

were washed with washing buffer (50 mM sodium-acetate, 300 mM NaCl, 5 mM imidazole,

0.05% Tween20, pH 7.0). Finally, the magnetic beads binding the His6-tagged fluorescent

recombinant protein substrates were washed with the following Ty1 cleavage buffers: cleavage

buffer A (10 mM PIPES, 75 mM NaCl, 0.25% Nonidet P-40, 5% glycerol, 75 mM KCl, 12.5

mM NaH2PO4, 61.25 mM sodium-glutamate, 12.5 mM MgSO4, 0.125 mM CaCl2, 0.05%

Tween20, pH 7.0) or cleavage buffer B (50 mM MES, 100 mM Tris, 50 mM sodium-acetate,

150 mM NaCl, 75 mM KCl, 12.5 mM NaH2PO4, 61.25 mM sodium-glutamate, 12.5 mM

MgSO4, 0.125 mM CaCl2, 0.05% Tween20, pH 8.0). The purified His6-tagged fluorescent

recombinant protein substrates were used for proteolytic assays, based on the method

described previously [31–33].

In-solution digestion and gel electrophoretic analysis

The recombinant substrates were purified for in-solution digestion by their elution from the

affinity beads using elution buffer (100 mM EDTA, 0.05% Tween20, pH 8.0), followed by

buffer exchange to distilled water using 10K Amicon Ultra-0.5 mL centrifugal filters (Milli-

pore). The reaction mixtures contained 10 μl peptide buffer A, 5 μl recombinant protein sub-

strate (1–3 mg/mL), and 5 μl Ty1 PR (300–1200 nM), while control samples contained”yeast

in vivo-like” buffer in place of enzyme. The cleavage reactions were incubated for 16 h at 30 ˚C

and stopped by the addition of Laemmli sample buffer (containing SDS and β-mercaptoetha-

nol). Before electrophoresis, proteins were denatured at 95˚C for 7 min. Uncleaved substrates

and cleavage products were separated by SDS-PAGE using 16% SDS gels. The denatured fluo-

rescent proteins were renatured by rinsing the polyacrylamide gel in distilled water to remove

SDS, as described previously [31, 33]. After in-gel renaturation, both blue light transillumina-

tion (Dark Reader transilluminator, Clare Chemical Research) and Coomassie staining (Page-

Blue Protein Staining solution, Thermo Scientific) were used for protein detection.

Fluorescent assay of proteolysis and calibration curve of recombinant

fluorescent substrates

To assay the kinetics of proteolysis, Ni-NTA beads were coated with substrates as follows. A

homogenous suspension of His6-tagged substrates was assayed in 2.0 ml Protein Lobind

Microcentrifuge tubes (Eppendorf) using increasing concentrations of the substrate. The

supernatant was removed using a Dynamag™-2 magnetic particle concentrator, and cleavage

buffer A or B was added to set equal final volume for each sample. After the reaction, substrate

concentrations were determined using the Bradford assay. Substrate control samples and

blanks were also prepared in the same manner to allow for determination of concentrations

and to detect non-specific substrate dissociation. To determine the substrate concentration,

blank samples were incubated in elution buffer in parallel with the kinetic measurements.

Kinetic measurements were carried out by the cleavage of His6-MBP-VPTIN�NVHTS-

(GGGS)4-mTurquoise2 (PR/IN_10aa_wt), His6-MBP-PSNISVPTIN�NVHTSESTRK-

(GGGS)4-mTurquoise2 (PR/IN_20aa_wt), His6-MBP-GGGGGVPTIN�NVHTSGGGGG-

(GGGS)4-mTurquoise2 (PR/IN_20aa_mut), His6-MBP-TARAH�NVSTS-(GGGS)4-mTur-

quoise2 (Gag/PR_10aa_wt), His6-MBP-NSKSKTARAH�NVSTSNNSPS-(GGGS)4-mTur-

quoise2 (Gag/PR_20aa_wt), His6-MBP-IHLIA�AVKAV-(GGGS)4-mTurquoise2 (IN/

RT_10aa_wt), and His6-MBP-RSKKRIHLIA�AVKAVKSIKP-(GGGS)4-mTurquoise2

(IN/RT_20aa_wt) substrates (up to 0.08 mM concentration) by untagged Ty1 PR (up to

micromolar concentrations). Reaction mixtures were incubated at 30˚C for 2 h. The
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enzyme reactions were stopped by separation of the supernatants from the magnetic beads.

Fluorescence of supernatants was measured using a Synergy2 multimode plate reader,

using 400/10 nm excitation and 460/40 nm emission filters. The relative fluorescent intensity

(RFU) values were corrected by that of the blank samples, then divided by the slopes of the

substrate calibration curves in cleavage buffers, and were plotted against the concentration

of coated substrates (μM). The substrate control samples were used to determine the

substrate concentration by dividing the RFU by the slope of the substrate calibration curve

in the elution buffer. Kinetic parameters were determined at less than 20% substrate

hydrolysis by Michaelis-Menten non-linear regression analysis using GraphPad Prism ver-

sion 5.00 for Windows (GraphPad Software, La Jolla, California USA, www.graphpad.com)

(Table 1).

In silico analyses

Secondary structure prediction was performed by using the PredictProtein server [34] based

on the sequence of Ty1 PR (UniProtKB: Q07793). Disorder prediction was performed using

the IUPred web server [35]. Crystal structures of yeast DNA damage-inducible protein 1

(Ddi1) (PDBID: 2I1A) [36] and xenotropic murine leukemia virus-related virus (XMRV) pro-

tease (PDBID: 4EXH) [29] were used as templates for homology modeling by Modeller 9v13

[37]. Molecular visualizations were performed using the PyMOL Molecular Graphics System

(Version 1.3 Schrödinger, LLC).

Sample preparation for cleavage site identification

The Ni-NTA magnetic beads were coated with the recombinant substrates and then incu-

bated with Ty1 PR in cleavage buffer B at 30˚C for 16 h. After the incubation, cleavage prod-

ucts were eluted from the beads by imidazole-containing buffer (50 mM NaH2PO4, 300 mM

NaCl, 250 mM imidazole, pH 8.0). The eluted fractions were concentrated by repeated centri-

fugation steps (12000 × g, 10 cycles) using 10K Amicon Ultra 0.5 ml centrifugal filters while

changing the buffer to 50 mM Tris (pH 8.0). TEV PR was added to the concentrated samples,

followed by incubation at 30˚C for 16 hours. TEV PR stock solution was a kind gift of David

S. Waugh (NCI-Frederick, USA), and was purified by the method described previously [38].

After incubation, the samples were analyzed by MALDI-TOF MS in order to determine the

molecular weights of the short proteolytic fragments released upon cleavage by Ty1 and TEV

PRs.

Matrix-assisted laser desorption/ionization time-of-flight mass

spectrometry (MALDI-TOF MS)

The MALDI-TOF MS measurements were carried out by a Bruker Autoflex Speed mass spec-

trometer. Reflectron mode was used for all samples, where the reflectron voltage 1, reflectron

voltage 2, ion source voltage 1 and ion source voltage 2 were 21.00 kV, 9.55 kV, 19.00 kV and

16.65 kV, respectively. Solid phase laser (355 nm,�100 μJ/pulse) was applied at 500 Hz and 10

000 shots were summed. Spectra were calibrated by Peptide Calibration Standard obtained

from Bruker.

The samples were prepared with 2,5-dihydroxybenzoic acid (DHB) matrix dissolved in

50% aqueous acetonitrile with 0.1% TFA, the concentration was 100 mg/ml. 1 μl matrix was

deposited on the plate and 1 μl sample was added immediately and allowed to dry.
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Results

Cloning, expression, and purification of Ty1 protease

A pET11a plasmid constructed for the bacterial expression of Ty1 Gag-PR-His6 was kindly

provided by Dr. J.F. Lawler. The coding sequence of Ty1 PR was cloned into a pET11a bacte-

rial expression plasmid, and the success of cloning was verified by sequencing. Plasmids bear-

ing the coding sequences of Ty1 PR or Ty1 Gag-PR-His6 (Fig 2) were transformed into E. coli
cells. After refolding, Ty1 PR protease was purified by gel filtration (Fig 3A). The Ty1 Gag-

PR-His6 recombinant protein was found to be processed, as determined by its purification

using Ni-chelate affinity chromatography. Therefore, the autoproteolysis of Ty1 Gag-PR-His6

precursor (molecular weight: ~72 kDa) resulted in the Ty1 PR fused to a C-terminal hexahisti-

dine tag (Ty1 PR-His6) (molecular weight: ~21 kDa). This result suggests that autoproteolysis

occurred, as previously observed for the processing of Gag protein by Ty1 PR [20]. Both the

precursor and the processed proteins were identified by Western Blot, thereby proving the

presence of the different enzyme forms (Fig 3B). The processed Ty1 PR-His6 fusion protein

was used for the proteolytic assays (Fig 3C).

Enzymatic assays using synthetic oligopeptide substrates

For investigation of optimal conditions for enzyme folding, Ty1 PR was dialyzed against vari-

ous buffers and buffer combinations that have been shown previously to be suitable for retrovi-

ral protease activity [39]. In peptide-based assays, both protease and oligopeptide solutions

were added to the buffer, and the reaction mixtures were incubated at 30˚C, and stopped by

the addition TFA. The mixtures were then injected onto a reversed-phase chromatography

Fig 2. Studied forms of Ty1 protease. (A) Coding sequences were cloned into pET11a bacterial expression plasmid using NdeI and

BamHI restriction endonucleases. The Ty1 Gag-PR-His6 precursor polyprotein and the untagged protease have been expressed in bacterial

cells. The Ty1 PR-His6 is formed by the autoproteolysis (dashed red line) of Gag-PR-His6 precursor protein. Abbreviations: Amp,

ampicillin resistance gene; lacI, repressor protein gene; Ori, bacterial origin; MCS, multi cloning site. (B) Sequence of Ty1 Gag-PR-His6 is

shown. Color code: Gag, green; protease, blue; His6, orange. Active site motif is underlined.

https://doi.org/10.1371/journal.pone.0227062.g002
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column in order to separate substrates and cleavage products, the substrate turnover was

determined by integration of peak areas.

Ty1 PR—dialyzed against”yeast in vivo-like” buffer [26]—showed activity only in PIPES-

(peptide buffer A) or MES-based (peptide buffer B) buffers. The proportion of different buffers

in the reaction mixtures was also found to be a determinant of enzyme activity, and optimal

ratio of water,”yeast in vivo-like”, and PIPES or MES-based buffers was found to be 1:1:2,

respectively. Besides determination of optimal buffer environment, the effects of different reac-

tion conditions have also been investigated to determine the biochemical characteristics of the

protease (Fig 4).

The dependence of enzyme activity on ionic strength was studied, and highest activities

were measured at 1.5–2 M NaCl concentration (Fig 4A). Similarly to the proteases of HIV-1

and human foamy virus (HFV) [40, 41], the enzyme activity was boosted by high ionic

strength, and higher activity was observed for Ty1 PR at> 1 M NaCl concentration. Copia

transposon protease of D. melanogaster also showed highest activity at high (2 M) NaCl con-

centration; activity was significantly lower at< 2 M NaCl concentration, but higher ionic

strengths also decreased activity [17].

pH optimum of Ty1 PR was found to be slightly alkaline (7.7) (Fig 4B), which is higher

than that of any studied retroviral proteases. For instance, the optimal pH of HFV protease is

6.6–6.8 [40] while that of HIV-1 PR is between 4 and 6 [41]. Interestingly, the optimal pH

required for D. melanogaster Copia transposon protease was found to be similar to that of

HIV-1, with synthetic substrate cleaved most efficiently at pH 4.0 [17].

Fig 3. Purification of Ty1 PR and Ty1 PR-His6. (A) Image of a Coomassie-stained SDS-PAGE gel of eluate fractions after purification of

untagged Ty1 PR by gel filtration. (B) Western blot image shows that Ty1 PR-His6 (molecular weight: ~21 kDa) was processed from its Gag-

PR-His6 precursor (molecular weight: ~72 kDa) during the purification. Both protein forms were detected by anti-His antibody. While the

Ty1 PR-His6 processed form was detected in the elute fraction, the full-length precursor was present in the flow-through. (C) Image of a

Coomassie-stained SDS-PAGE gel showing eluate fractions from Ty1 PR-His6 purification. Purified fractions of Ty1 PR-His6—which

contained no unprocessed Gag-PR-His6 precursor—were used for protease assays.

https://doi.org/10.1371/journal.pone.0227062.g003
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Temperature optimum was found to be close to 30˚C, lower enzyme activities were mea-

sured at higher temperatures (Fig 4C). This is comparable with the optimal temperature

required for the proteases of some non-retroviral proteases like tobacco vein mottling virus

(TVMV) and tobacco etch virus (TEV), which also showed decreased activities at higher tem-

peratures (> 34˚C) [42]. In contrast, HFV [40] and HIV-1 PRs [41] were highly active at 37˚C.

The observed temperature optimum of Ty1 PR is in agreement with the previous findings of

Lawler and coworkers who observed significantly lower transposition ability at high tempera-

tures (32–36˚C), due to the temperature sensitivity of Ty1 PR [23]. Interestingly, Copia trans-

poson protease of D. melanogaster was found to have lower temperature sensitivity, with

highest activity measured at 70 ˚C, but relative activity not lower than 50% in the 20–70˚C

temperature range [17].

The Ty1 protease was observed to be sensitive to urea, increasing the urea concentration

caused decrease of enzyme activity (Fig 4D). The urea concentration causing 50% loss of

enzyme activity (also referred as urea dissociation constant, UC50) for Ty1 PR was found to be

0.05 M. This concentration is markedly lower than that of HIV-1 PR (UC50 = 1.47 M) and is

more similar to that of XMRV PR (UC50 = 0.2 M) [29]. Higher sensitivity to urea implies

lower dimer stability for Ty1 protease, the possible structural background of this difference is

discussed later in the In silico structural analysis section.

Both Ty1 PR and Ty1 PR-His6 enzyme forms showed very low specific activities on syn-

thetic oligopeptide substrates representing Ty1 cleavage sites, as compared to the findings with

Fig 4. Effects of reaction conditions on Ty1 protease activity. In all measurements the enzyme was incubated with VPTIN�NVHTS

synthetic substrate, and reaction velocity was determined (nM s-1). (A) Effects of ionic strength on the activity of Ty1 PR-His6 measured

at increasing NaCl concentrations. (B) Determination of the pH optimum of Ty1 PR-His6 in 6.5–9.0 pH range. (C) Determination of

the temperature optimum of Ty1 PR. D) Dependence of enzyme activity of Ty1 PR-His6 on urea concentration (in 0–0.25 M

concentration range). Error bars represent SD (n = 2).

https://doi.org/10.1371/journal.pone.0227062.g004
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retroviral proteases—especially HIV-1, human T-lymphotropic virus type 1, bovine leukemia

virus, and Moloney murine leukemia virus proteases—on peptides representing their respec-

tive cleavage sites [43]. Similarly low catalytic activities were also observed previously for HFV

and the Gag-encoded Avian myeloblastosis virus (AMV) proteases [40]. Both the untagged,

and the His6-tagged (self-processed) PRs cleaved the VPTIN�NVHTS synthetic oligopeptide

substrate representing the PR/IN cleavage site of Ty1, and the kinetic constants have been

determined (Table 1A). The specificity constants were similar, the difference between the

obtained values was found to be not significant statistically, which implied a negligible influ-

ence of the C-terminal histidine tag, and similar folding efficiency. The very low specificity

constants were comparable to that reported for HFV proteinase (0.007 mM-1s-1) obtained by

using this substrate and a buffer optimized for that protease (Table 1B), and cleavage efficiency

on peptides representing HFV cleavage sites were found to be very similar to this value [40].

Moreover, we have also tested the cleavage of synthetic oligopeptides representing other Ty1

cleavage sites (IN/RT: IHLIA�AVKAV; Gag/PR: TARAH�NVSTS); however, no cleavage was

observed in these substrates (Table 1A).

Enzymatic assays using recombinant protein substrates

For enzymatic assays, we have applied a previously published recombinant fusion protein sub-

strate-based method [31, 33]. The schematic representation of a recombinant substrate is

shown in Fig 5. The protein substrates contain an N-terminal His6 affinity tag which enables

protein immobilization, the maltose binding protein (MBP) partner improves folding, while

the fluorescent tag (mTurquoise2) provides fluorimetric detection. The substrates contain a

control cleavage site (for TEV PR), which was used in the identification of cleavage position in

the substrate. The substrates contain a cleavage site of the studied protease, as well, the herein

designed substrates contained different cleavage site sequences of Ty1 PR (Table 1C and 1D).

In this study, we have modified the primarily designed substrate system [31, 33] by the inser-

tion of a (GGGGS)4 sequence prior to the fluorescent protein tag. The incorporated sequence

is a known flexible linker [44]; besides improving folding, the linker was expected to make the

cleavages site more accessible for the protease due to providing higher flexibility for the fluo-

rescent tag.

Seven different recombinant protein substrates, representing naturally occurring cleavage

sites of Ty1 PR, were tested in different buffer systems (Table 1C and 1D). Many components

were identical in the applied buffers, but the PIPES-based cleavage buffer A had lower pH (7.0)

and contained glycerol and Nonidet P-40. The MES-based cleavage buffer B had higher pH

(8.0) and ionic strength, conditions found to be optimal for activity of Ty1 PR on the peptide

substrate (Fig 4). Catalytic constants were considerably higher when determined in cleavage

buffer A (Table 1C) than in cleavage buffer B (Table 1D).

To detect the uncleaved substrates and cleavage fragments in the reaction mixtures, the

samples were analysed by SDS-PAGE. We observed no significant unspecific substrate degra-

dation during the incubation. Upon digestion with Ty1 PR, the appearance of only a single

fluorescent cleavage fragment was observed in the case of all types of cleavage sites (Fig 5).

This implied that there are no alternative cleavage sites in the recombinant proteins and the

substrates are cleaved only within the inserted Ty1 PR cleavage site sequences (Fig 5). To

prove this, we performed analysis of cleavage fragments by MALDI-TOF MS, which is dis-

cussed later in Identification of cleavage positions in the recombinant protein substrates section.

The enzyme kinetic parameters of Ty1 PR were determined by fluorimetric assays. For the

recombinant protein substrates containing a 10 residue-long cleavage site sequence the cata-

lytic constants were found to have the same order of magnitude, and the highest value was
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observed for the substrate representing the PR/IN cleavage site when measured in cleavage

buffer B (Table 1D). The catalytic efficiencies were higher for the substrates containing 20 resi-

due-long cleavage site sequences than for those with shorter sequences (10 residue-long)

(Table 1D). In contrast, the kcat/Km constants were lower for the substrates containing longer

IN/RT or Gag/PR cleavage site sequence if it was measured in cleavage buffer A (Table 1C),

possibly due to the different buffer environments.

The importance of surface residues in substrate binding has recently been proven for HIV-

1 PR. This binding surface has been referred as the substrate-groove [24]. The interdomain

region between the matrix and capsid domains of HIV-1 polyprotein was found to contain

~20 residues, and is unstructured and accessible for the viral protease. In addition to the previ-

ously known S5-S5’ sites, HIV-1 PR was found to interact with those substrate residues of the

interdomain linker which are not closed by the flaps (P12-P6 and P6’-P12’) (S1 Fig). The bind-

ing of additional residues along the cleavage position provides stronger interactions between

the enzyme and the substrate compared to the shorter recognition sequences (P4-P4’) [24].

The comparison of catalytic constants measured for the substrates containing 10 and 20 resi-

due-long cleavage site sequences was found to be insufficient to elucidate the presence of a

Fig 5. Cleavage reactions by fluorescent recombinant protein substrates. (A) Schematic representation of a recombinant fusion protein

substrate and scheme of in-solution cleavage reactions. The TEV PR and Ty1 PR cleavage sites are colored by red and green, respectively.

Cleavage site sequences are also shown for both proteases, asterisks indicate cleavage position. Red arrow shows cleavage by Ty1 PR, upon

cleavage of the substrate (“S”), N- and C-terminal cleavage products (“N” and “C”, respectively) are produced. After enzymatic digestion, the

cleavage products and uncleaved substrates can be separated by denaturing SDS-PAGE. Proteins can be visualized after in-gel renaturation of

fluorescent proteins by blue light transillumination or by Coomassie staining. (B) Representative gel images are shown for substrates

containing PR/IN, IN/RT, and Gag/PR cleavage sites, after cleavage reactions the bands were visualized in the polyacrylamide gels by blue

light transillumination (upper gel images) and by Coomassie staining (lower gel images), as well. (C) The workflow of cleavage site

identification, which includes a cleavage reaction with Ty1 PR, the separation of the cleavage fragments, and the digestion of N-terminal

cleavage fragment by TEV PR. Resulted short fragments can be subjected to MALDI TOF-MS analysis. The recombinant substrate is

identical with that one shown in figure part A, but here we show its immobilization to magnetic affinity beads (Ni-NTA). (D) The molecular

weights (Da) of proteolytic fragments were calculated by ProtParam tools of ExPASy (available at https://web.expasy.org/protparam), and

were compared to [M+H]+ values (Da) determined by MALDI-TOF MS. # denotes detection with low intensity.

https://doi.org/10.1371/journal.pone.0227062.g005
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substrate-groove in Ty1 PR. Therefore, in order to investigate whether Ty1 PR has a substrate-

groove surface binding site similar to that of HIV-1 PR, a recombinant substrate containing a

modified PR/IN cleavage site was also designed (PR/IN_20aa_mut). In this substrate the outer

P10-P6 and P6’-P10’ cleavage site residues (PSNISVPTIN�NVHTSESTRK) were substituted to

glycines (GGGGGVPTIN�NVHTSGGGGG) to disrupt all the possible side chain-mediated

enzyme-substrate interactions at these sites. The kcat/Km catalytic constants were comparable

for PR/IN_20aa_wt and PR/IN_20aa_mut substrates (Table 1C and 1D). Glycine substitutions

of the outer residues caused only slight changes of kcat/Km values; the observed differences

were found to be not statistically significant. While HIV-1 protease was found to have a func-

tional substrate-groove being involved in substrate binding [24], our in vitro results imply that

the contribution of the corresponding residues at the surface of Ty1 PR to the substrate bind-

ing may be negligible. The modification of P10-P6 and P6’-P10’ substrate residues—i.e. abol-

ishment of side chain-side chain interactions at these sites—caused no significant changes in

catalytic constants in any of the studied buffers. Therefore, we propose that Ty1 PR surface res-

idues may have only weak interaction with the substrate at these sites.

Identification of cleavage positions in the recombinant protein substrates

We found previously that the separation of cleavage products by SDS-PAGE may indicate the

presence of alternative cleavage sites in the recombinant substrates [31], but the control cleav-

age site of TEV PR in a His6-MBP-mTurquoise2 fusion protein has not been used up to now

in order to determine cleavage position of the studied protease.

Here we aimed to prove the lack of alternative cleavage positions; thus, the recombinant

substrates were digested by Ty1 and TEV PRs, as well. The released short proteolytic fragments

were then identified by MALDI-TOF MS, in the case of all studied substrate variants. Cleavage

reactions by Ty1 PR were performed in cleavage buffer B, therefore, buffer exchange was per-

formed (to 50 mM Tris, pH 8.0) in order to eliminate Tween20 buffer component which may

interfere with MALDI-TOF MS analyses. We found that elimination of Tween20 by centrifu-

gal filter units was successful, and that polyethylene glycol-derivatives did not impair detection

of small proteolytic fragments.

After Ty1 and TEV PR digestion, the molecular masses of proteolytic fragments have

been determined by MALDI-TOF MS and then were compared to the calculated m/z values

([M+H]+). The measured values corresponded well to the calculated ones (Fig 5). Results of

MALDI-TOF MS were in agreement with those of SDS-PAGE analysis, and showed that the

recombinant substrates are cleaved only at the desired positions by Ty1 PR. By these results we

have proved that the protein substrates do not contain any alternative cleavage sites and are

not cleaved by Ty1 PR neither at the inserted (GGGGS)4 flexible linker nor at the harbouring

sequences.

Inhibition studies

To test whether Ty1 protease is sensitive towards protease inhibitors, activity of Ty1 PR-His6

was measured in the presence of different inhibitors (Fig 6). Atazanavir, nelfinavir, saquinavir,

darunavir, amprenavir, lopinavir, and tipranavir inhibitors have been approved by the Food

and Drug Administration (FDA) and are applied in antiretroviral therapy, DMP-323 is a tight-

binding inhibitor of HIV-1 PR, while acetyl-pepstatin and pepstatin A are classical inhibitors

of aspartic proteases.

We found that only acetyl-pepstatin inhibited the proteolytic activity of Ty1 PR, other

inhibitors were showed no inhibitory potential (at�100 nM final concentration). While

amprenavir, atazanavir, darunavir, tipranavir, lopinavir, and DMP-323 have been reported to
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be able to inhibit XMRV PR [45], here we found that these molecules—as well as nelfinavir

and saquinavir—were also unable to inhibit Ty1 PR. Both acetyl-pepstatin and pepstatin A

were reported to be weak inhibitors of XMRV PR [29], and in our experiments pepstatin A

showed no inhibitory potential on Ty1 PR-His6.

For acetyl-pepstatin, we determined IC50 as 367.5 nM and Ki as 296 nM (Fig 6). These

results indicate that acetyl-pepstatin has a lower inhibitory potential for Ty1 PR than for HIV-

1 PR (Ki = 13.15 nM, IC50 = 1.18 nM), but this value is more comparable with that one deter-

mined for XMRV PR (Ki = 712 nM, IC50 = 1290.2 nM) [29]. Interestingly, pepstatin A was

found to be a potent inhibitor of the Copia transposon protease (Ki = 15 nM), with the sensi-

tivity of the protease against pepstatin A closely resembling that of HIV-1 PR [17]. Despite the

fact that out of the tested inhibitors only acetyl-pepstatin inhibited the enzyme activity, it

should be considered only as a weak inhibitor of Ty1 PR. Interestingly, acetyl-pepstatin was

found previously to have a unique binding mode to XMRV PR, and simultaneously two mole-

cules can bind to the active site in a head-to-head orientation [29]. Future crystallographic

studies may help to investigate whether the binding mode in the case of Ty1 PR resembles that

of the XMRV-acetyl-pepstatin complex.

In silico structural analysis

A proposed model was prepared for Ty1 protease by homology modeling because the structure

of the protease has not been solved experimentally to date.

Based on the boundaries previously determined [20, 21], the protease domain of Ty1 is

unusually long, consisting of 181 residues. It contains extended N- and C-terminal regions,

Fig 6. Inhibition of Ty1 PR-His6 by acetyl-pepstatin. Inhibitory constant was determined using VPTIN�NVHTS

synthetic oligopeptide substrate. Activity measured in the absence of inhibitor was defined as 100%. Error bars represent

SD (n = 3).

https://doi.org/10.1371/journal.pone.0227062.g006

Characterization of Ty1 protease

PLOS ONE | https://doi.org/10.1371/journal.pone.0227062 January 9, 2020 15 / 24

https://doi.org/10.1371/journal.pone.0227062.g006
https://doi.org/10.1371/journal.pone.0227062


which is not characteristic for retroviral and retroviral-like proteases (Fig 7A). To the best of

our knowledge, neither the structural nor the functional roles of these extended regions have

been explored to date. Notably, the presence of extensions has been observed in retroviral pro-

teases. For example, both the N- and C-terminal regions of Moloney murine leukemia virus

(Mo-MuLV) protease were found to be several residues longer than that of HIV-1 PR [46];

however, the N-terminal extension is considerably shorter than that of Ty1 PR. Although the

presence of this extension shows no effect on the proteolytic activity of Mo-MuLV PR, precise

processing of HIV-1 protease via cleavage of the N-terminal sequence (prior to the region

being part of dimer interface) leads to increase of enzymatic activity [47]. While proteases of

murine leukemia virus and XMRV show 98% sequence identity and differ only in two residues

[29], both can be used for comparison with Ty1 PR, thus in Fig 7 we represent sequence of

XMRV PR.

Fig 7. Sequences and structures of Ty1 PR and representative retroviral and retroviral-like proteases. (A) Sequences of Ty1, DNA

damage-inducible protein 1 (Ddi1), equine infectious anemia virus (EIAV), xenotropic murine leukemia virus-related virus (XMRV), and

human immunodeficiency virus type 1 (HIV-1) proteases were aligned. Arrangement of secondary structural elements is shown based on

prediction for Ty1 PR, and based on crystal structures of Ddi1, EIAV, XMRV, and HIV-1 PRs, using DSSP (dictionary of protein secondary

structure) images available in Protein Data Bank. Sequence numbering is shown for Ty1 PR. β-sheets and α-helices are indicated by orange

and red, respectively. D-S/T-G-A catalytic motif residues are bold and underlined. (B) Cartoon representations are shown based on crystal

structures of HIV-1, XMRV, and Ddi1 PRs, and based on homology model structure of Ty1 PR (41–164 residues). Upper panel shows the

front views of the proteases, whereas bottom panel shows the enlarged views of dimer interfaces, together with the organizations of β-sheets.

Additional helical inserts in the proximities of flaps (shown by arrows) are present only in the case of Ddi1 and Ty1 PRs. Catalytic aspartates

are shown sticks and dots, while the monomers are differentiated by lighter and darker shades. N- and C-terminal extensions are not shown

for Ty1 PR, structures of the full-length protease are shown in S3 Fig.

https://doi.org/10.1371/journal.pone.0227062.g007
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The in silico predictions showed a good agreement with the overall arrangement of the sec-

ondary structural elements with that of other retroviral and retroviral-like proteases (Fig 7A).

Furthermore, the D-S-G-A sequence in Ty1 PR corresponds to the consensus D-S/T-G-A

active-site motif of retroviral proteases, and Ty1 PR was predicted to share its general fold with

the retroviral proteases (Fig 7B).

Predictions showed lack of ordered secondary structural elements (α-helices or β-strands)

in the N-terminal region (N1-H56) of the protease. Disorder prediction also indicated the

unstructured nature of this N-terminal extension, similarly to the extension in Mo-MuLV PR

which was proposed to be flexible and has unknown conformation [46]. An α-helix was pre-

dicted to be possibly located near the catalytic motif of the protease (A71-H75), which may

correspond to the additional helical insert previously observed for the Ddi1 [36] and equine

infectious anemia virus (EIAV) proteases [48] (Fig 7A).

The results of predictions implied that the dimer interface of the homodimeric Ty1 PR con-

tains only C-terminal β-sheets which are connected by short loops. In contrast with HIV-1

and equine infectious anemia virus (EIAV) proteases, Ty1 PR’s dimer interface consists of

only C-terminal β-sheets which show no alternation. The C-terminal region of each monomer

was predicted to contain four β-sheets (Fig 7A); however, none of the known retroviral or ret-

roviral-like homodimeric aspartic proteases have eight-stranded dimeric interfaces. Therefore,

we propose that homodimeric Ty1 PR’s dimer interface also consists of only six β-sheets (Fig

7B), similar to Ddi1 proteins [36]. As a consequence, the yeast Ddi1 protease structure was

used to model the Ty1 PR dimer interface. Furthermore, without a proper template having an

eight-stranded dimer interface, it was not possible to build a reliable eight-stranded interface

model; exploration of the possible involvement of a fourth β-sheets in the dimer formation

could only be estimated.

The higher sensitivity of Ty1 PR to urea, as compared to HIV-1 PR, can be explained by the

differences in the organizations of dimer interfaces. While β-sheets of the N- and C-terminal

regions alternate in the HIV-1 PR (Fig 7B), dimer interfaces of Ty1 and XMRV PRs comprise

only C-terminal β-sheets showing no alternation (Fig 7B). Both XMRV [29] and Ty1 PRs

showed lower dimer stabilities (e.g. higher sensitivity towards urea) compared to HIV-1. This

implies that a dimer interface containing only C-terminal β-sheets without alternation provide

lower stability for the homodimeric enzymes (e.g. for Ty1 and XMRV PRs), while alternating

β-sheets ensure stronger interaction between the monomers (e.g. for HIV-1 PR).

Additionally, the sequence of the catalytic motif may also be a determinant of dimer stabil-

ity. Homodimers of retroviral aspartic proteases are stabilized by intermonomeric interactions

of Ser or Thr residues of the D-S/T-G-A consensus active site motif called “fireman’s grip”. It

was found previously that the enzymes containing Ser in this motif instead of Thr may form

less stable dimers: while T26S mutant HIV-1 protease exhibited lower specific activity com-

pared to the wild-type [49], the S25T mutant HFV PR showed decreased sensitivity against

urea [50]. Ty1 PR also contains Ser in this position (S2 Fig), which may also contribute to its

lower dimer stability.

Structure of the full-length Ty1 PR was also modeled in order to investigate the extended

N- and C-terminal regions (S3 Fig). These long regions are not present in the available struc-

tures of related aspartic proteases, therefore, without a template the predicted conformations

of the extended regions were considered as highly approximate. Despite the poor model quali-

ties of the N- and C-terminal regions, the proposed models of the full-length protease were

used to support the interpretation of in vitro results. To study the putative involvement of sub-

strate-groove residues in substrate binding, enzyme kinetic measurements were performed by

recombinant protein substrates, but the recognition of P10-P6 and P6’-P10’ cleavage site resi-

dues by the Ty1 PR has not been established undoubtedly (Table 1D). The structures of the
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possible conformational variants (S3 Fig) implied that the surface residues of Ty1 PR may be

not as accessible as in the substrate-groove of HIV-1 PR, due to the putative proximities of the

N- and C-terminal extensions to the active site and enzyme surface. Considering this potential

steric hindrance to substrate binding, we presumed that the binding surface for P10-P6 and

P6’-P10’ substrate residues in Ty1 PR is absent or has a different structure than that of the sub-

strate-groove of HIV-1 protease [24]. Without having more accurate model complexes or per-

forming extended molecular dynamical calculations, we were unable to explore either whether

the surface residues of Ty1 PR are accessible for recognition or the mechanism underlying the

involvement of long N- and C-terminal regions in substrate binding.

Natural cleavage site sequence of Ty1 and Ty3 proteases have already been analyzed and

average hydrophobicity indexes were determined for P10-P10’ residues of Ty PR cleavage sites

[20]. The comparison revealed remarkable differences of specificities compared to retroviral

protease cleavage sites, but protease structures have not been compared previously. Here we

used the proposed model structure of Ty1 PR to study substrate binding cavities. The amino

acid compositions of P4-P1 sites were determined by structure-based alignment of HIV-1 and

Ty1 PRs. The cavity compositions have already been determined for HIV-1 PR [51, 52], the

substrate binding cavities of Ty1 PR have been mapped by the identification of residues in the

corresponding positions (S4 Fig).

We found that the S1 binding site of Ty1 PR consists of mainly hydrophobic residues, and

thus is similar to the S1 site of HIV-1 PR. However, while retroviral proteases prefer binding of

predominantly hydrophobic P1 residues [52], based on average hydrophobicities of all three

known Ty1 cleavage sites both the P1 and P1’ residues are hydrophilic [20]. S2 site is also

hydrophobic based on the model structure, in agreement with the higher hydrophobicity of P2

and P2’ residues, which are mainly Val or Ile in the cleavage site sequences (S4 Fig). Most of

the residues forming the S3 site were found to be hydrophilic, in agreement with the cleavage

site sequences which contain almost exclusively hydrophilic residues in P3 and P3’ positions.

Based on average values the P4 and P4’ residues are not highly hydrophobic or hydrophilic,

and the S4 site was found to be comprised by mainly hydrophobic residues; however, this site

is less well-defined and is exposed to the surface [51]. The average distribution of hydrophobic,

hydrophilic and charged residues in the substrate binding cavities showed no significant differ-

ences compared to HIV-1 PR, with the exception of S3 site of Ty1 PR which contains no

charged residues. While the binding site compositions are mostly in agreement with the

hydrophobicity profiles of cleavage site sequences, the specificities cannot be estimated accu-

rately purely based on binding cavity compositions. Extended in silico calculations on enzyme-

ligand complexes and in vitro enzymatic experiments using a series of modified substrates

would be necessary for the detailed investigation of enzyme specificity, which was out of the

scope of this study.

Discussion

In this study we performed the biochemical characterization of recombinant Ty1 PR expressed

in bacterial cells. Both untagged and His6-tagged forms of the enzyme were expressed. While

untagged Ty1 PR was purified by gel filtration, affinity chromatography was used to purify

Ty1 Gag-PR-His6 recombinant protein. In agreement with the known autoproteolysis of the

Gag protein [20], we also observed self-processing of Ty1 Gag-PR-His6 precursor, and in the

activity assays we used the processed Ty1 PR-His6 form of the enzyme.

In order to investigate the biochemical characteristics of Ty1 PR, activity measurements

have been performed. Highest activities were measured at higher salt concentrations (> 1 M

NaCl), and the slightly alkaline pH and 30˚C temperature were optimal for the enzyme,
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suggesting a general adaptation to the intracellular life-cycle and lower temperature optimum

for yeasts. Additionally, the observed temperature sensitivity of protease may contribute to

that of Ty1 transposition efficiency, as well. While the optimal temperature for the protease

was found to be close to 30 ˚C, this temperature is known to be suboptimal for the transposi-

tion of most yeast strains, which showed highest transposition efficiency at ~24 ˚C [23]. Not

only the protease, but the reverse transcriptase is also a determinant of the temperature sensi-

tivity of transposition, in virus-like particles formed at 37 ˚C the RT activity was severely

impaired in case of Ty1 [23]. Temperature-induced conformational changes of the template/

primer complex and Gag-Pol polyprotein were considered to contribute to temperature sensi-

tivity of Ty1. In contrast with the previously observed insensitivity of exogenous Ty1 RT on

temperature in vitro [23], our results imply that Ty1 PR is inherently temperature sensitive

and therefore it may contribute to the temperature-dependence of transposition efficiency.

The urea concentration leading to 50% loss in enzymatic activity was found to be substantially

lower than in the case of HIV-1 PR, and was more similar to that of XMRV PR [29]. Proteo-

lytic assays showed very low specific activity of Ty1 PR compared to retroviral proteases; the

obtained values were comparable with that of HFV and AMV PRs. The sensitivity of Ty1 retro-

transposon PR against protease inhibitors has not been tested so far. We found that all tested

protease inhibitors—which have been designed against HIV-1 PR and are applied in antiretro-

viral therapies—were inefficient against Ty1 PR. Only a general aspartic protease inhibitor ace-

tyl-pepstatin showed inhibitory potential, while pepstatin A was unable for the inhibition of

Ty1 PR.

Neither experimental nor in silico methods have been applied to investigate the structural

characteristics of Ty1 PR until now. We predicted both secondary and quaternary structure of

Ty1 PR by homology modeling. The protease was found to share its overall fold and the con-

served active site motif with HIV-1 PR, but some structural characteristic differ from that of

retroviral proteases. Due to the putative presence of an additional helical insert and the N- and

C-terminal extended regions, Ty1 PR shows higher structural similarity with the retroviral-

like Ddi1 proteases rather than with HIV-1 PR. Furthermore, dimer interface organization of

Ty1 PR was predicted to be more similar to that of XMRV and Ddi1 PRs. Consistent with the

results of in vitro stability analyses, dimer interfaces consisting of non-alternating C-terminal

β-sheets provide only lower dimer stability and higher sensitivity to urea, as we observed it for

Ty1 PR and has previously been reported for XMRV PR [29]. The sequence of the D-S/T-G-A

motif may also contribute to lower dimer stability, because a Ser residue in the catalytic motif

can provide lower stability in the “fireman’s grip” compared to a Thr [49].

Besides the synthetic oligonucleotides widely used in protease assays, fluorescent protein-

containing substrates were also used in activity measurements. The applied fluorimetric prote-

ase assay has been designed and tested previously on HIV-1 and TEV PRs [31–33], and we suc-

cessfully adapted it for the investigation of Ty1 PR. The previously designed pDest-His6-MBP-

mTurquoise2 expression vector [31–33] has been modified to contain the coding sequence of

a (GGGGS)4 linker. In the recombinant substrate, this flexible linker was expected to provide

flexibility for the fluorescent tag and accessibility for the cleavages site. The prepared protein

substrates contained different cleavage site sequences of Ty1 PR, the sequences of which hav-

ing been determined previously [20]. We used SDS-PAGE and MALDI-TOF MS analyses to

prove that Ty1 PR cleaves the protein substrates only at the desired positions within the incor-

porated target sequences. Substrates containing wild-type or modified cleavage site sequences

were also designed and have been used to investigate the putative presence of a substrate-bind-

ing surface (corresponding to substrate-groove of HIV-1) in Ty1 PR. Our results did not find

evidence for the presence of such a substrate-groove in Ty1 PR. Based on the proposed model

structures, the residues building the S4-S1 substrate binding cavities have been identified and
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we infer that interactions with P10-P6 and P6’-P10’ residues in the case of Ty1 PR differ com-

pared to HIV-1 PR. The effect of the extended N- and C-terminal regions of Ty1 PR on sub-

strate binding or on the accessibility of the enzyme surface for substrate binding remains

unclear.

Supporting information

S1 Table. List of applied oligonucleotide primers. The primer sequences listed in this table

have been deposited into the public oligonucleotide database of the Laboratory of Retroviral

Biochemistry (http://lrb.med.unideb.hu/index.php/research/oligos).

(DOCX)

S1 Fig. Representation of the substrate groove of HIV-1 PR. (A) Modeled complex of HIV-1

PR with a peptide substrate representing P5-P4 residues of HIV-1 matrix/capsid cleavage site.

The peptide residues are bound to the active site of the enzyme (S5-S4’ binding sites). The

model complex was prepared by the method described previously [51]. (B) Modeled complex

of HIV-1 PR with a peptide substrate representing P12-P12’ residues of the same cleavage site.

While P5-P5’ residues are bound to the active site, the P12-P6 and P6’-P12’ residues interact

with the S-groove at the enzyme surface. The modeled complex was prepared and kindly

provided by Gary S. Laco [24], the figure was prepared without modification of the original

coordinates. The protease is shown by surface representation, while the peptide by sticks,

sequences of the substrates are also indicated.

(TIF)

S2 Fig. Fireman’s grip in Ty1 PR. (A) Side view of the homology model of homodimeric Ty1

PR. The monomers are colored by different shades, catalytic aspartates are also shown in the

active site (boxed). (B) The active site is highlighted, residues are shown in top view. Hydrogen

bonds around the catalytic aspartates are shown by grey dotted lines, distances are also indi-

cated (Å).

(TIF)

S3 Fig. Ty1 PR contains N- and C-terminal extensions. (A) Result of secondary structure

prediction for the full-length Ty1 PR is shown based on Fig 7A. β-sheets are colored by orange,

while α-helices are red, the residues of the catalytic motif are bold and underlined. (B) The

proposed model of homodimeric Ty1 PR (41–164 residues) of the protease modeled without

the extensions is shown without the terminal extensions. (C-D) The front (C) and top views

(D) of superimposed models containing both N- and C-terminal extensions (1–40 and 156–

181 residues, respectively) are also represented, the extensions are shown by different colors.

(TIF)

S4 Fig. Compositions of S4-S1 substrate binding cavities in HIV-1 and Ty1 PRs. (A) Sub-

strate binding site compositions of HIV-1 PR were determined previously [51, 52], while the

residues of Ty1 PR in the corresponding positions based on structure-based alignment. Resi-

dues involved in putative side chain-side chain interactions are shown by bold letters, other-

wise are shown in italics. (B) Average hydrophobicities of Ty1 PR cleavage site residues were

determined based on the values described by Kyte and Doolittle [53] and are shown for P5-P5’

positions. Red arrow shown cleavage position.

(TIF)

S1 Raw Images.

(PDF)
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28. Mahdi M, Szojka Z, Mótyán JA, Tőzsér J. Inhibition Profiling of Retroviral Protease Inhibitors Using an

HIV-2 Modular System. Viruses. 2015; 7(12): 6152–62. https://doi.org/10.3390/v7122931 PMID:

26633459
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the active-site threonine of HIV-1 proteinase: rethinking the “fireman’s grip” hypothesis. Protein Sci.

2000; 9(9): 1631–41. https://doi.org/10.1110/ps.9.9.1631 PMID: 11045610

50. Sperka T, Boross P, Eizert H, Tözsér J, Bagossi P. Effect of mutations on the dimer stability and the pH

optimum of the human foamy virus protease. Protein Eng Des Sel. 2006; 19(8): 369–75. https://doi.org/

10.1093/protein/gzl021 PMID: 16799151
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