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1Abstract—This article describes implementation possibilities 

of specialized microcontroller peripherals, as hardware solution 

for Internet of Things (IoT) low-power communication, 

interfaces. In this contribution, authors use the NXP FlexIO 

periphery. Meanwhile, RFC1662 is used as a reference 

communication standard. Implementation of RFC1662 is 

performed by software and hardware approaches. The total 

power consumption is measured during experiments. In the 

result section, authors evaluate a time-consumption trade-off 

between the software approach running in Central Processing 

Unit (CPU) and hardware implementation using NXP FlexIO 

periphery. The results confirm that the hardware-based 

approach is effective in terms of power consumption. This 

method is applicable in IoT embedded devices. 

 
 Index Terms—Energy harvesting; Low-power electronics; 

Finite state machine; FlexIO. 

I. INTRODUCTION 

The majority of today’s Internet of Things (IoT) devices 

are designed as low-cost and low-power embedded 

platforms [1]. Generally, current IoT design goals require 

modern approaches that can achieve minimal power 

consumption and minimal processing times [2]. This 

research direction is very important, especially in battery-

powered or harvesting IoT platforms [3]. 

Low-power devices usually operate in duty-cycle scenario 

[4] when run and sleep modes are changing in regular or 

adaptive intervals [5]. There are two possible approaches to 

obtain a power reduction. The first method is based on an 

absolute power consumption reduction in run and sleep 

modes [6]. The second method aims for effective computing 

algorithms [7] that allow minimization of time spent in run 

modes, which in turn decreases total power consumption. 

The goal of this work is to introduce a method for the 

hardware-based approach of energy demanding 

communication protocols to improve low-power designs in 
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run modes of IoT devices. This contribution presents 

utilization possibilities of a special microcontroller (MCU) 

module to reduce processing times in low-power 

communication protocols implementation. The NXP FlexIO 

module demonstrates a hardware-based approach 

communication protocol implementation represented by 

RFC1662 standard, which can be used for IoT embedded 

devices. A transfer of computational tasks from Central 

Processing Unit (CPU) to special peripherals, such as 

FlexIO, causes an increase of instant supply current demands 

in the run mode [8], [9]. Therefore, a trade-off between the 

task duration and power supply demands must be examined 

to be able to select a proper approach for the target 

application.  

This paper is organized into five sections. Introduction 

provides a short overview of the current state of the art in 

IoT application and applications of special hardware 

modules. The NXP FlexIO periphery and selected 

communication standard RFC1662 are described in Section 

II. The software and hardware implementations of the 

proposed approach are detailed in Section III. The 

comparison between the software and hardware 

implementations is evaluated in Section IV. The final section 

(Section V) brings major conclusions and outlines directions 

for the future research. 

II. BACKGROUND 

This section introduces two technologies implemented in 

the experimental part of this work, which are NXP FlexIO 

module and communication standard RFC1662. 

A. NXP FlexIO Module 

NXP FlexIO is used as the communication MCU module. 

It can emulate various protocols for serial and parallel 

communication, such as UART, SPI or I2C. The module 

consists of three main parts (Fig. 1), which are shifters, 

timers, and pins. The input data are uploaded to the shifter 

and, then, shifted to the output pin by the clock generated by 

the timer.  

FlexIO can be used for various use-cases, such as 

emulation of a serial or parallel communication interfaces, 

user-defined time charts and trigger signals generation, 

creation of output logical function through logical look-up 
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tables or create a programmable hardware Finite State 

Machine (FSM). A programmable FSM allows for 

replacement of a system control performed by a central 

processing unit (CPU).  
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Fig. 1.  Block diagram of NXP FlexIO module. 

Figure 1 shows the implementation of NXP FlexIO 

module on NXP Kinetis ARM Cortex-M KL28Z MCU [10]. 

FlexIO consists of 16-bit counter with trigger signal support, 

reset, and start and stop conditions. It includes program logic 

blocks that allow for implementation of digital logic 

functions on a chip and adjustable interactions possibilities 

among internal and external peripherals. 

FlexIO features include: 

 32-bit shifter registers with transmission, receive, and 

data comparison mode, 

 Double cache for shifting operations during data 

transfer, 

 Internal shifter with chain support to large data transfer, 

 1, 2, 4, 8, 16 or 32 multi-bits shifting width support for 

parallel interfaces, 

 Programmable FSM allowing the transfer of basic 

system control function from a CPU with up to 8 status 

support, 8 outputs, and 3 status selector inputs. 

B. Communication Standard RFC1662 

For FlexIO module testing purposes, byte-oriented point-

to-point communication standard RFC1662 [11] is used. In 

this standard, data are assembled as a frame, which starts 

and ends with a specific flag. When the flag is found in the 

data, it must be replaced by two-byte escape sequence (first 

ESC, second ESC_FLAG). If ESC itself appears in the data, 

it must be also replaced by another escape sequence (first 

ESC, second ESC_ESC). 
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Fig. 2.  RFC1662 frame schematic. 

The RFC1662 standard defines the flag value as 0x7E. 

The ESC value is defined as 0x7D, ESC_FLAG and 

ESC_ESC are defined as 0x5E, and 0x5D, respectively. 

Figure 2 shows an example of the frame processing 

(escaping). 

The data to send contain flag (0x7E) and ESC (0x7D) 

byte. Data to send must be escaped and the flag and ESC are 

replaced by the escape sequence. Then, the start and 

terminate flags are added to the escaped data and this 

comprises a complete frame to be sent. 

III. IMPLEMENTATION AND TESTING 

This section brings an overview of FSM implementation 

in terms of software and hardware approach. In testing 

subsection, the parameters of testing procedure are 

presented. 

A. Implementation 

In the experimental section, we designed FSM to compare 

the software implementation with the hardware approach 

using FlexIO module. The FSM implementation represents 

RFC1662 protocol and the goal of this experiment is the 

evaluation in term of energy demands. 

The FSM implementation using the data link layer RS-486 

is depicted in Fig. 3. 
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Fig. 3.  Design of finite state machine representing RFC1662 functionality. 

A device implementing FSM starts in RESYNC state, 

because communication might already run and unchecked 

start may cause a communication error. In RESYNC state, 

FSM expects the FLAG, i.e., start or end of the message. 

After receiving the FLAG, the FSM changes the state into 

IDLE. If FSM receives a FLAG again, the state will be not 

changed and the start of the message is indicated again. If 

FSM receives (in IDLE) other character than FLAG, the 

FSM changes the state to RUN state and this state is 

dedicated to the message content reception. If FLAG 

character is received in RUN state, the FSM goes to STOP 

state and entire frame is received.  

If FSM receives ESC character in RUN, IDLE, ESC or 

FLAG state, FSM expects an escape sequence and active 

state is changed to ESCAPED state. The ESCAPED state 

means that one of two special characters (ESC_ESC and 

FLAG_ESC) is expected. If FSM receives ESC_ESC or 
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ESC_FLAG, the FSM enters ESC or FLAG state, 

respectively, and corresponding value is written to the 

receiving data buffer. If FSM receives other character than 

ESC_ESC or ESC_FLAG in ESCAPED state, the message 

is corrupted and FSM goes to ERR state, and waits for the 

FLAG character. The FLAG character can also be received 

in FLAG or ESC state and indicates the end of the received 

frame. So, FSM goes to STOP state. 

Software implementation uses the Universal 

Asynchronous Receiver Transmitter (UART) module as a 

physical layer. It is depicted in Fig. 4. FSM implementation 

is coded in C language and it is running in CPU ARM 

Cortex-M core. Each received byte causes an interrupt and 

received characters are read and processed by C-coded 

algorithm.
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Fig. 4.  Basic scenario of software finite state machine design. 

Hardware implementation also uses UART as the physical 

layer (Fig. 5). The FSM is implemented using FlexIO 

module. Each state is denoted as a 3-bit value, i.e., 0–7 and 

these values are stored in the look-up table LUT Output. The 

process starts by receiving one byte by UART and the 

received byte and current FlexIO state together form an 

input address of the look-up table, where the next FlexIO 

state value is located. The value of the next state is written to 

the FlexIO input and, then, the FlexIO timer trigger is 

activated by Trigger MUX Control (TRGMUX). This event 

will cause the state changing. 

LUT

UART FlexIO Output
Trigger

Receive
data

Next 
FlexIO state

Current 
FlexIO state

FlexIO state 
output

 
Fig. 5.  Functional diagram of hardware approach using FlexIO. 

Each state processes a specific action, which is defined by 

FSM. Each action launches a Direct Memory Access (DMA) 

channel and DMA engine performs target action (e.g., 

constant moved to the defined memory space). DMA events 

are represented in Fig. 5 by the action arrows. 

In Fig. 6, we can see the DMA channel functionality with 

the scatter/gather operation, which allows for handling of 

multiple transmissions by loading new Transfer Control 

Descriptor (TCD) structure. TCD structure is implemented 

in DMA channel configuration and affects the transmission 

parameters. Upon each transfer via DMA channel a new 

TCD structure is written to DMA transfer control registers, 

so that allows for modification of source and destination 

addresses for each transfer. 

When UART module receives one byte, it causes DMA 

request. DMA transfers UART receive register to a data 

storage variable and UART receiving register content is 

automatically erased. Then, a current state value and UART 

variable value are transferred to a source address in TCD 

structure, which comprises an address of an item in 

LUT_NextState. The item in LUT_NextState represents an 

address of the second look-up table item in LUT_Output and 

it is transferred to a source address in a new TCD structure. 

LUT_Output is an array consisting of next state values. 

DMA engine transfers the LUT_Output item value to the 

MCU output pins. Output pins are directly connected to 

FlexIO input pins. Therefore, we need a trigger that handles 

the input FlexIO pin changed event. First, we create special 

trigger on a MCU pin, which is internally connected with 

FlexIO Timer by TRGMUX. FlexIO Timer starts counting 

and stops immediately. After FlexIO Timer is stopped, the 

FlexIO input values are read, and these values represent the 

new applied FSM state. 
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Fig. 6.  Direct memory access engine using FlexIO module. 

B. Testing Procedure 

For evaluation purposes, a testing application in C# 

language was designed. The application allows to send data 

to the testing setup, while the test itself includes the 

evaluation of frame reception with different sizes, ESC 

characters amount, and errors count. The test aims for a 

comparison of hardware and software approaches in terms of 

processing duration and total energy demands. 

Table I shows an overview of the experimental testing 

parameters. The transmitting speed in UART peripheral is 

set to 115200 Baud and the maximum packet size is 1500 
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bytes. The test is designed to evaluate responses to the 

frames without any error and the frames with one error. 

TABLE I. TESTING MESSAGE PARAMETERS. 

Testing Parameters 

Message length 500/1000/1500 

Number of ESC character within message 0/10/20 

Number of Errors within message 0/1 

IV. RESULTS 

Firstly, the power consumption of hardware and software 

approaches was evaluated. The testing setup operated at 

3.3 V and the current in active state was 15.52 mA for the 

software implementation and 16.59 mA for hardware 

implementation. Both values were measured by 

picoAmmeter Keithley 6485. The hardware approach using 

FlexIO module has higher power consumption because this 

solution uses more hardware peripherals (e.g., DMA engine) 

than software approach. 

Total processing times of hardware and software 

approaches (obtained by DSOX2024A Oscilloscope) are 

presented in Table II. The results include frame receiving 

duration in software and hardware implementation and 

energy saving by FlexIO approach for each testing frame 

described by the amount of characters in frames. In total, the 

average transmission time for software implementation is 

136.4 ms and for solution using FlexIO – 80.3 ms. The 

hardware approach achieves lower processing time because 

this solution does not need CPU operation and uses mostly 

hardware modules, such as DMA, FlexIO or TRGMUX. 

Figure 7 shows differences between the total power 

consumption of hardware and software approaches. In all 

cases, the hardware approach has lower energy demands 

even with higher instant power consumption. On average, 

the hardware implementation consumption is approximately 

37 % lower than software approach. However, the 

disadvantage of hardware implementation is that it uses 

significantly more memory space than software approach 

due to fact that implementation needs to encode the received 

characters through look-up tables to 3-bit values for the 

FlexIO module. 

TABLE II. RESULTS OF ALGORITHM PROCESSING TIMES. 

Packet Char 
SW time 

[ms] 

HW time 

[ms] 

Energy 

(HW-SW) 

[%] 

500-0-0 498 110.8 49 54 

500-0-1 199 73.6 19 72 

500-10-0 488 119 48 57 

500-10-1 365 85.2 36 55 

500-20-0 478 114 48 55 

500-20-1 394 105.2 40 60 

1000-0-0 998 146 95 30 

1000-0-1 399 106 39 61 

1000-10-0 988 144 95 29 

1000-10-1 413 111.6 42 62 

1000-20-0 978 148 95 31 

1000-20-1 809 129.2 79 35 

1500-0-0 1498 176 143 13 

1500-0-1 649 112.4 62 41 

1500-10-0 1488 193 144 20 

1500-10-1 1311 182 128 26 

1500-20-0 1478 208 143 27 

1500-20-1 1454 191 141 21 

Average 826.9 136.4 80.3 37 
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Fig. 7.  Bar graph comparison between energy consumption in hardware and software implementation. 

V. CONCLUSIONS  

This article introduces low-power IoT communication 

interface featuring FlexIO module in communication 

protocol FSM implementation for standard byte-oriented 

point-to-point serial communication RFC1662. This 

approach represents hardware-based method to save energy 

in IoT communication scenarios. The novel method is 

compared with reference software FSM implementation to 

determine the energy saving. FlexIO approach achieves 

better results in terms of processing times and total energy 

efficiency. On average, the hardware approach is 37 % more 

effective in terms of energy consumption and 41 % in term 

of the processing time. Also, the implementation of the FSM 

via the FlexIO periphery allows transfer of computational 

power from CPU to HW modules and CPU computational 

power can be used to perform another task. 

In the future, the FSM realized by FlexIO could be used 

to analyse inserted sync flags, or to distinguish odd and even 

frames in interleaved video signal. As the most promising 

area of interest, we are considering implementation of this 
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method in battery-powered or harvesting IoT embedded 

platforms, where lower energy demands could extend 

operational times. 
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