
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 6, 2019

1Abstract—This article describes implementation possibilities

of specialized microcontroller peripherals, as hardware solution

for Internet of Things (IoT) low-power communication,

interfaces. In this contribution, authors use the NXP FlexIO

periphery. Meanwhile, RFC1662 is used as a reference

communication standard. Implementation of RFC1662 is

performed by software and hardware approaches. The total

power consumption is measured during experiments. In the

result section, authors evaluate a time-consumption trade-off

between the software approach running in Central Processing

Unit (CPU) and hardware implementation using NXP FlexIO

periphery. The results confirm that the hardware-based

approach is effective in terms of power consumption. This

method is applicable in IoT embedded devices.

 Index Terms—Energy harvesting; Low-power electronics;

Finite state machine; FlexIO.

I. INTRODUCTION

The majority of today’s Internet of Things (IoT) devices

are designed as low-cost and low-power embedded

platforms [1]. Generally, current IoT design goals require

modern approaches that can achieve minimal power

consumption and minimal processing times [2]. This

research direction is very important, especially in battery-

powered or harvesting IoT platforms [3].

Low-power devices usually operate in duty-cycle scenario

[4] when run and sleep modes are changing in regular or

adaptive intervals [5]. There are two possible approaches to

obtain a power reduction. The first method is based on an

absolute power consumption reduction in run and sleep

modes [6]. The second method aims for effective computing

algorithms [7] that allow minimization of time spent in run

modes, which in turn decreases total power consumption.

The goal of this work is to introduce a method for the

hardware-based approach of energy demanding

communication protocols to improve low-power designs in

Manuscript received 7 February, 2019; accepted 5 September, 2019.

This work was supported by the project “Development of algorithms

and systems for control, measurement and safety applications V” (No.

SP2019/107) of Student Grant System, VSB-TU Ostrava. This work was

also supported by the European Regional Development Fund in the

Research Centre of Advanced Mechatronic Systems project (No.

CZ.02.1.01/0.0/0.0/16_019/0000867) within the Operational Programme

Research, Development and Education.

run modes of IoT devices. This contribution presents

utilization possibilities of a special microcontroller (MCU)

module to reduce processing times in low-power

communication protocols implementation. The NXP FlexIO

module demonstrates a hardware-based approach

communication protocol implementation represented by

RFC1662 standard, which can be used for IoT embedded

devices. A transfer of computational tasks from Central

Processing Unit (CPU) to special peripherals, such as

FlexIO, causes an increase of instant supply current demands

in the run mode [8], [9]. Therefore, a trade-off between the

task duration and power supply demands must be examined

to be able to select a proper approach for the target

application.

This paper is organized into five sections. Introduction

provides a short overview of the current state of the art in

IoT application and applications of special hardware

modules. The NXP FlexIO periphery and selected

communication standard RFC1662 are described in Section

II. The software and hardware implementations of the

proposed approach are detailed in Section III. The

comparison between the software and hardware

implementations is evaluated in Section IV. The final section

(Section V) brings major conclusions and outlines directions

for the future research.

II. BACKGROUND

This section introduces two technologies implemented in

the experimental part of this work, which are NXP FlexIO

module and communication standard RFC1662.

A. NXP FlexIO Module

NXP FlexIO is used as the communication MCU module.

It can emulate various protocols for serial and parallel

communication, such as UART, SPI or I2C. The module

consists of three main parts (Fig. 1), which are shifters,

timers, and pins. The input data are uploaded to the shifter

and, then, shifted to the output pin by the clock generated by

the timer.

FlexIO can be used for various use-cases, such as

emulation of a serial or parallel communication interfaces,

user-defined time charts and trigger signals generation,

creation of output logical function through logical look-up

A Hardware Approach of a Low-Power IoT

Communication Interface by NXP FlexIO

Module

Libor Chrastecky, Jaromir Konecny, Martin Stankus, Michal Prauzek*

Faculty of Electrical Engineering and Computer Science, VSB Technical University of Ostrava,

Ostrava, Czech Republic

michal.prauzek@vsb.cz

http://dx.doi.org/10.5755/j01.eie.25.6.24824

35

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 6, 2019

tables or create a programmable hardware Finite State

Machine (FSM). A programmable FSM allows for

replacement of a system control performed by a central

processing unit (CPU).

SHIFTBUF

SHIFTER

SHIFTBUF

SHIFTER

31 0

31 0

Timer
Selection

Output
Selection

FXIO_Dn
in

FXIO_Dn
out/outen

External Triggers

Timer Timer

0

0

0

i

i

i

Fig. 1. Block diagram of NXP FlexIO module.

Figure 1 shows the implementation of NXP FlexIO

module on NXP Kinetis ARM Cortex-M KL28Z MCU [10].

FlexIO consists of 16-bit counter with trigger signal support,

reset, and start and stop conditions. It includes program logic

blocks that allow for implementation of digital logic

functions on a chip and adjustable interactions possibilities

among internal and external peripherals.

FlexIO features include:

 32-bit shifter registers with transmission, receive, and

data comparison mode,

 Double cache for shifting operations during data

transfer,

 Internal shifter with chain support to large data transfer,

 1, 2, 4, 8, 16 or 32 multi-bits shifting width support for

parallel interfaces,

 Programmable FSM allowing the transfer of basic

system control function from a CPU with up to 8 status

support, 8 outputs, and 3 status selector inputs.

B. Communication Standard RFC1662

For FlexIO module testing purposes, byte-oriented point-

to-point communication standard RFC1662 [11] is used. In

this standard, data are assembled as a frame, which starts

and ends with a specific flag. When the flag is found in the

data, it must be replaced by two-byte escape sequence (first

ESC, second ESC_FLAG). If ESC itself appears in the data,

it must be also replaced by another escape sequence (first

ESC, second ESC_ESC).

Data
0x2A

Data
0x8E

Data
0x7E

Data
0x45

Data
0x7D

Data
0x55

Data
0x2A

Data
0x8E

Data
0x45

Data
0x55

ESC
0x7D

ESC_FLAG
0x5E

ESC
0x7D

ESC_ESC
0x5D

Data
0x2A

Data
0x8E

Data
0x45

Data
0x55

ESC
0x7D

ESC_FLAG
0x5E

ESC
0x7D

ESC_ESC
0x5D

FLAG
0x7E

FLAG
0x7E

Data to send

Escaped special chars

Packet to send

Fig. 2. RFC1662 frame schematic.

The RFC1662 standard defines the flag value as 0x7E.

The ESC value is defined as 0x7D, ESC_FLAG and

ESC_ESC are defined as 0x5E, and 0x5D, respectively.

Figure 2 shows an example of the frame processing

(escaping).

The data to send contain flag (0x7E) and ESC (0x7D)

byte. Data to send must be escaped and the flag and ESC are

replaced by the escape sequence. Then, the start and

terminate flags are added to the escaped data and this

comprises a complete frame to be sent.

III. IMPLEMENTATION AND TESTING

This section brings an overview of FSM implementation

in terms of software and hardware approach. In testing

subsection, the parameters of testing procedure are

presented.

A. Implementation

In the experimental section, we designed FSM to compare

the software implementation with the hardware approach

using FlexIO module. The FSM implementation represents

RFC1662 protocol and the goal of this experiment is the

evaluation in term of energy demands.

The FSM implementation using the data link layer RS-486

is depicted in Fig. 3.

STARTSTART

RESYNC

IDLE RUN

STOP

ESCAPED

ESCFLAG

ERR

ESC

FLAG

FLAG_ESC

ESC_ESCNOT FLAG &
NOT ESC

FLAG

FLAG

FLAG

FLAG

ESC

NOT
FLAG

NOT

FLAG

NOT FLAG &

NOT ESC

NOT
FLAG

ESC

NOT FLAG &
NOT ESC

NOT FLAG &

NOT ESC

NOT ESC_ESC &

NOT FLAG_ESC

FLAG

FLAG

ESC

Fig. 3. Design of finite state machine representing RFC1662 functionality.

A device implementing FSM starts in RESYNC state,

because communication might already run and unchecked

start may cause a communication error. In RESYNC state,

FSM expects the FLAG, i.e., start or end of the message.

After receiving the FLAG, the FSM changes the state into

IDLE. If FSM receives a FLAG again, the state will be not

changed and the start of the message is indicated again. If

FSM receives (in IDLE) other character than FLAG, the

FSM changes the state to RUN state and this state is

dedicated to the message content reception. If FLAG

character is received in RUN state, the FSM goes to STOP

state and entire frame is received.

If FSM receives ESC character in RUN, IDLE, ESC or

FLAG state, FSM expects an escape sequence and active

state is changed to ESCAPED state. The ESCAPED state

means that one of two special characters (ESC_ESC and

FLAG_ESC) is expected. If FSM receives ESC_ESC or

36

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 6, 2019

ESC_FLAG, the FSM enters ESC or FLAG state,

respectively, and corresponding value is written to the

receiving data buffer. If FSM receives other character than

ESC_ESC or ESC_FLAG in ESCAPED state, the message

is corrupted and FSM goes to ERR state, and waits for the

FLAG character. The FLAG character can also be received

in FLAG or ESC state and indicates the end of the received

frame. So, FSM goes to STOP state.

Software implementation uses the Universal

Asynchronous Receiver Transmitter (UART) module as a

physical layer. It is depicted in Fig. 4. FSM implementation

is coded in C language and it is running in CPU ARM

Cortex-M core. Each received byte causes an interrupt and

received characters are read and processed by C-coded

algorithm.

External

Transmitter

(PC)

UART

interrupt

handler

Store Packet

data

Decode DataTransmit Data

Fig. 4. Basic scenario of software finite state machine design.

Hardware implementation also uses UART as the physical

layer (Fig. 5). The FSM is implemented using FlexIO

module. Each state is denoted as a 3-bit value, i.e., 0–7 and

these values are stored in the look-up table LUT Output. The

process starts by receiving one byte by UART and the

received byte and current FlexIO state together form an

input address of the look-up table, where the next FlexIO

state value is located. The value of the next state is written to

the FlexIO input and, then, the FlexIO timer trigger is

activated by Trigger MUX Control (TRGMUX). This event

will cause the state changing.

LUT

UART FlexIO Output
Trigger

Receive
data

Next
FlexIO state

Current
FlexIO state

FlexIO state
output

Fig. 5. Functional diagram of hardware approach using FlexIO.

Each state processes a specific action, which is defined by

FSM. Each action launches a Direct Memory Access (DMA)

channel and DMA engine performs target action (e.g.,

constant moved to the defined memory space). DMA events

are represented in Fig. 5 by the action arrows.

In Fig. 6, we can see the DMA channel functionality with

the scatter/gather operation, which allows for handling of

multiple transmissions by loading new Transfer Control

Descriptor (TCD) structure. TCD structure is implemented

in DMA channel configuration and affects the transmission

parameters. Upon each transfer via DMA channel a new

TCD structure is written to DMA transfer control registers,

so that allows for modification of source and destination

addresses for each transfer.

When UART module receives one byte, it causes DMA

request. DMA transfers UART receive register to a data

storage variable and UART receiving register content is

automatically erased. Then, a current state value and UART

variable value are transferred to a source address in TCD

structure, which comprises an address of an item in

LUT_NextState. The item in LUT_NextState represents an

address of the second look-up table item in LUT_Output and

it is transferred to a source address in a new TCD structure.

LUT_Output is an array consisting of next state values.

DMA engine transfers the LUT_Output item value to the

MCU output pins. Output pins are directly connected to

FlexIO input pins. Therefore, we need a trigger that handles

the input FlexIO pin changed event. First, we create special

trigger on a MCU pin, which is internally connected with

FlexIO Timer by TRGMUX. FlexIO Timer starts counting

and stops immediately. After FlexIO Timer is stopped, the

FlexIO input values are read, and these values represent the

new applied FSM state.

UART STORE
DATA

LUT-
NextState

LUT-
Output

FlexIO
Inputs

FlexIO
Trigger

Clear
Trigger

FlexIOUART
Receive

DMA
Request

data

data store

UART

data offset

Next
State

Next
State

Trigger
High

Trigger
Low

Change
Next State

Enable DMA
Request

Enable DMA
Request for FlexIO

Current
State

Fig. 6. Direct memory access engine using FlexIO module.

B. Testing Procedure

For evaluation purposes, a testing application in C#

language was designed. The application allows to send data

to the testing setup, while the test itself includes the

evaluation of frame reception with different sizes, ESC

characters amount, and errors count. The test aims for a

comparison of hardware and software approaches in terms of

processing duration and total energy demands.

Table I shows an overview of the experimental testing

parameters. The transmitting speed in UART peripheral is

set to 115200 Baud and the maximum packet size is 1500

37

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 6, 2019

bytes. The test is designed to evaluate responses to the

frames without any error and the frames with one error.

TABLE I. TESTING MESSAGE PARAMETERS.

Testing Parameters

Message length 500/1000/1500

Number of ESC character within message 0/10/20

Number of Errors within message 0/1

IV. RESULTS

Firstly, the power consumption of hardware and software

approaches was evaluated. The testing setup operated at

3.3 V and the current in active state was 15.52 mA for the

software implementation and 16.59 mA for hardware

implementation. Both values were measured by

picoAmmeter Keithley 6485. The hardware approach using

FlexIO module has higher power consumption because this

solution uses more hardware peripherals (e.g., DMA engine)

than software approach.

Total processing times of hardware and software

approaches (obtained by DSOX2024A Oscilloscope) are

presented in Table II. The results include frame receiving

duration in software and hardware implementation and

energy saving by FlexIO approach for each testing frame

described by the amount of characters in frames. In total, the

average transmission time for software implementation is

136.4 ms and for solution using FlexIO – 80.3 ms. The

hardware approach achieves lower processing time because

this solution does not need CPU operation and uses mostly

hardware modules, such as DMA, FlexIO or TRGMUX.

Figure 7 shows differences between the total power

consumption of hardware and software approaches. In all

cases, the hardware approach has lower energy demands

even with higher instant power consumption. On average,

the hardware implementation consumption is approximately

37 % lower than software approach. However, the

disadvantage of hardware implementation is that it uses

significantly more memory space than software approach

due to fact that implementation needs to encode the received

characters through look-up tables to 3-bit values for the

FlexIO module.

TABLE II. RESULTS OF ALGORITHM PROCESSING TIMES.

Packet Char
SW time

[ms]

HW time

[ms]

Energy

(HW-SW)

[%]

500-0-0 498 110.8 49 54

500-0-1 199 73.6 19 72

500-10-0 488 119 48 57

500-10-1 365 85.2 36 55

500-20-0 478 114 48 55

500-20-1 394 105.2 40 60

1000-0-0 998 146 95 30

1000-0-1 399 106 39 61

1000-10-0 988 144 95 29

1000-10-1 413 111.6 42 62

1000-20-0 978 148 95 31

1000-20-1 809 129.2 79 35

1500-0-0 1498 176 143 13

1500-0-1 649 112.4 62 41

1500-10-0 1488 193 144 20

1500-10-1 1311 182 128 26

1500-20-0 1478 208 143 27

1500-20-1 1454 191 141 21

Average 826.9 136.4 80.3 37

50
0_

0_0
(4

98
)

500
0

1(
19

9)

500
_10

_0
(4

88
)

50
0_1

0_
1(

36
5)

50
0_

20
_0

(4
78

)

500
_2

0_
1(

39
4)

10
00_

0_
0(9

98
)

10
00_

0_1
(3

99
)

10
00

_1
0_

0(
988

)

100
0_

10
_1

(4
13

)

10
00

_2
0_

0(
97

8)

10
00_

20
_1

(8
09

)

15
00

_0
_0

(1
49

8)

15
00

_0
_1

(6
49

)

150
0_

10
_0

(1
48

8)

15
00

_1
0_1

(1
311

)

15
00_

20_
0(

147
8)

15
00

_2
0_

1(
14

54
)

PacketSize_ESC_ERR(char)

E
n

e
rg

y
[m

J
]

SW

HW

0

2

4

6

8

10

12

Fig. 7. Bar graph comparison between energy consumption in hardware and software implementation.

V. CONCLUSIONS

This article introduces low-power IoT communication

interface featuring FlexIO module in communication

protocol FSM implementation for standard byte-oriented

point-to-point serial communication RFC1662. This

approach represents hardware-based method to save energy

in IoT communication scenarios. The novel method is

compared with reference software FSM implementation to

determine the energy saving. FlexIO approach achieves

better results in terms of processing times and total energy

efficiency. On average, the hardware approach is 37 % more

effective in terms of energy consumption and 41 % in term

of the processing time. Also, the implementation of the FSM

via the FlexIO periphery allows transfer of computational

power from CPU to HW modules and CPU computational

power can be used to perform another task.

In the future, the FSM realized by FlexIO could be used

to analyse inserted sync flags, or to distinguish odd and even

frames in interleaved video signal. As the most promising

area of interest, we are considering implementation of this

38

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 6, 2019

method in battery-powered or harvesting IoT embedded

platforms, where lower energy demands could extend

operational times.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of

Things: Vision, applications and research challenges”, Ad Hoc

Networks, vol. 10, no. 7, pp. 1497–1516, 2012. DOI:

10.1016/j.adhoc.2012.02.016.

[2] K. Georgiou, S. Xavier-De-Souza, and K. Eder, “The IoT energy

challenge: A software perspective”, IEEE Embedded Systems Letters,

vol. 10, no. 3, pp. 53–56, 2018. DOI: 10.1109/LES.2017.2741419.

[3] A. Raj and D. Steingart, “Review – power sources for the Internet of

Things”, Journal of the Electrochemical Society, vol. 165, pp.

B3130–B3136, 2018. DOI: 10.1149/2.0181808jes.

[4] C. Vigorito, D. Ganesan, and A. Barto, “Adaptive control of duty

cycling in energy-harvesting wireless sensor networks”, in Proc. of

2007 4th Annual IEEE Communications Society Conference on

Sensor, Mesh and Ad Hoc Communications and Networks, SECON,

2007, pp. 21–30. DOI: 10.1109/SAHCN.2007.4292814.

[5] P. Musilek, M. Prauzek, P. Kromer, J. Rodway, and T. Barton,

“Intelligent energy management for environmental monitoring

systems”, Smart Sensors Networks: Communication Technologies

and Intelligent Applications, Intelligent Data-Centric Systems, pp.

67–94, 2017. DOI: 10.1016/B978-0-12-809859-2.00005-X.

[6] M. Prauzek, P. Musilek, and A. Watts, “Fuzzy algorithm for

intelligent wireless sensors with solar harvesting”, in Proc. of IEEE

SSCI 2014 - 2014 IEEE Symposium Series on Computational

Intelligence, IES 2014 - 2014 IEEE Symposium on Intelligent

Embedded Systems, 2014, pp. 1–7. DOI:

10.1109/INTELES.2014.7008978.

[7] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and

D. Grossman, “Enerj: Approximate data types for safe and general

low-power computation”, in Proc. of ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 2011,

pp. 164–174. DOI: 10.1145/2345156.1993518.

[8] V. Patil, Y. Mane, and S. Deshpande, “FPGA based power saving

technique for sensor node in wireless sensor network (WSN)”,

Studies in Computational Intelligence, vol. 776, pp. 385–404, 2019.

DOI: 10.1007/978-3-662-57277-1_16.

[9] V. Markevicius, D. Navikas, D. Andriukaitis, M. Cepenas, A.

Valinevicius, M. Zilys, R. Malekian, A. Janeliauskas, W.

Walendziuk, A. Idzkowski, “Two thermocouples low power wireless

sensors network”, AEU - International Journal of Electronics and

Communications, vol. 84, pp. 242–250, 2018. DOI:

10.1016/j.aeue.2017.11.032.

[10] M. Tahir and K. Javed, ARM® Microprocessor Systems: Cortex®-M

Architecture, Programming, and Interfacing. CRC Press, 2017.

[11] S. Cheshire and M. Baker, “Consistent overhead byte stuffing”,

Computer Communication Review, vol. 27, pp. 209–220, 1997.

39

