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Abstract: Despite the progress in understanding heavy metals behavior during coal combustion,
mitigation of heavy metals emissions is still a tough challenge due to a complex character of
this phenomenon. Several lists of potentially toxic elements have been presented; in most cases,
Pb belongs to the elements with the greatest environmental and human-health concern. The review
paper is focused upon the behavior of Pb during coal combustion. with particular attention paid
to decreasing its emissions. It summarizes the dominant parameters affecting its redistribution
among coal combustion streams. As gaseous emissions can quite easily pass through the particulate
control device, attention was paid primarily to Pb distribution between condensed and volatilized
phases. A crucial factor enhancing Pb volatility is the presence of organic or inorganic chlorides,
which is discussed in detail, including their chlorination mechanisms and interactions with other
fuel/flue gas species. Components decreasing Pb volatility and promoting the formation of condensed
phases are also discussed (higher levels of moisture, Na, O, etc.). Factors enhancing Pb volatility,
as well as factors facilitating Pb retention, are discussed with the view of fluidized-bed combustion,
pulverized-fuel combustion, or co-combustion of coal with wastes.
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1. Introduction

According to the World Coal Association [1], coal will continue to play an essential role in meeting
global energy needs—more than one third of the electricity production will be covered by coal in
the coming decades [1]. Since coal is a significant source of major, minor and trace elements, coal
combustion in power stations still remains significant with respect to environmental and human-health
concerns. Despite the fact that some of these elements are studied primarily with the view of their
further industrial utilization (yttrium [2], rare earth elements [3,4], Ge and Ga [5], etc.), most minor and
trace elements attract the researchers” attention due to their toxicity and as a human health hazard [6].

Significant progress was achieved during the last decades in meeting the challenges associated
with air emissions during coal combustion. Technologies are available for coal cleaning prior to
combustion [7], for the retention of ash particles (electrostatic precipitators, fabric filters etc.) [8], for an
abatement of nitrogen oxides (NOx) emissions (low NOXx burners, selective catalytic/non-catalytic
reduction), etc. Sulfur emissions are mitigated through dry/wet desulphurization technologies [9,10],
which provide promising achievements also for some other elements, such as Hg, As, Se, Cl and Br [11].
Due to its toxicity and volatility, world-wide attention is paid to Hg retention from flue gas, revealing
good results for activated carbon [12], unburned carbon [13-16], manganese-based adsorbents [17], etc.

Environmental concern relates also to other heavy metals (HMs) being potentially released from
power stations and exhibiting harmful effects on human health. Despite the progress in understanding
the HMs’ behavior, mitigation of HM emissions is still a tough challenge due to a complex character
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of this phenomenon. Several lists of potentially toxic elements have been presented [18-21]; in most
cases, Pb belongs to the elements of greatest environmental and human-health concern.

The review paper is focused upon the behavior of Pb during coal combustion, with particular
attention paid on decreasing its emissions. It summarizes and discusses the dominant parameters
affecting its redistribution among coal combustion streams, and namely between condensed and
volatilized phases.

2. Pb in Coal

Low-rank coals. According to Ketris and Yudovich [22], Clarke values for Pb in low rank coals
and the corresponding ashes are 6.6 and 38 ppm. The typical mode of occurrence of Pb in these coals
(according to Finkelman et al. [23]) is their monosulfides (galena) association of ca. 50% followed by
25% in silicates and 10% in pyrite. In low rank coals, some Pb can be organically associated, and in the
Appalachian Basin coals, Pb occurs also as PbSe (lead selenide, or also clausthalite) [23].

High-rank coals. Average levels of Pb in high rank coals and related coal ashes [22] are higher
than those in low rank coals/ashes—9.0 and 55 ppm. Dominant association of Pb in high rank coals
is similar to low rank coals (55% in monosulfides). Its occurrence in pyrite is more abundant (35%),
whereas its affinity to (alumino)silicates is generally low (5%) [23]. Minor carbonate-associated Pb has
also been reported in literature [24,25].

With no regard to coal rank, generally ca. 5-25% of Pb is firmly bound in (alumino)silicate
minerals, whereas other forms as sulfides, selenides, pyrite, carbonates and organic association prevail,
which is in line with quite high Pb volatility, making Pb available for the interactions with other
coal/flue gas/ash components [26].

3. Melting and Boiling Points of Pb and Its Target Compounds

Melting/boiling points of Pb and its compounds are important in terms of combustion temperature
and volatility [27]. However, as Pb and similarly also other HMs are not usually present as pure metals,
and typically interact with other fuel/flue gas components, creating e.g., oxides, chlorides, sulfates etc.,
then the melting/boiling points of these species might be even more important and might illustrate Pb
combustion behavior more accurately.

Melting and boiling points of Pb and its target compounds are summarized in Table 1.

Table 1. Melting points (m.p.) and boiling points (b.p.) of lead (Pb) and its target compounds.

Metal m.p. Pb 327 °C [28,29]
b.p. Pb 1744 °C [28,29]
Oxides m.p. PbO 886 °C [28,29]
PbO, 290 °C decomp.* [29]
PbO3 370 °C decomp.* [29]
PbOy 930 °C decomp.* [29]
b.p. PbO 1516 °C [28], 1470 °C [29]
Chloride m.p. PbCl, 501°C [26,29]
b.p. PbCl, 950 °C [28], 954 °C [29]
Sulphate m.p. PbSO, 1170 °C [28]
Sulphide m.p. PbS 1113 °C [30]
Selenide m.p. PbSe 1065 °C [30]

* decomposition.

Data summarized in Table 1 clearly document that the melting and boiling points of PbO are much
higher than those of chloride. Regarding the temperature in the combustion chamber and during flue
gas quenching, this phenomenon is a dominant reason why interaction of Pb with chlorine, oxygen,
moisture, etc. strongly affects its volatility and further post-combustion behavior. For example, shifting
the equilibrium from the oxide to chloride typically results in higher Pb volatility (if no other factors
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are not taken into account, e.g., the availability of calcareous minerals). Therefore, Table 1 provides
useful information for the discussions in the sections below.

4. Dominant Parameters Affecting Pb Behavior

Behavior of Pb is governed by both fuel characteristics and operating conditions. As it is a complex
phenomenon, even a moderate change in fuel composition or experimental conditions (or both) might
lead to substantially different results (which is likely a dominant reason why literature conclusions are
not always fully consistent). The most important parameters are summarized below:

4.1. Fuel Characteristics

e  Pb concentration in fuel (not only in coal, but also in combustion additives, municipal solid waste,
refuse-derived fuel, sewage sludge, agricultural/forest residues and other wastes co-combusted
with coal). It strongly affects the levels in solid combustion products and emissions.

e  Mode of occurrence of Pb in fuel, which controls namely its volatility in the combustion chamber.

e  Fuel granulometry (particle-size)

e  Concentrations of interacting components, such as:

- Chlorine

- Moisture

- Alkaline metals
- Sulfur

- Phosphorus, etc.

4.2. Operating Conditions

e  Combustion temperature. It is undoubtedly one of the most important parameters affecting the
volatility (of not only Pb, but also of all interacting species), melting/sintering (frittage) processes
and particle agglomeration.

e Combustion additives/adsorbents. Adding suitable combustion additives can efficiently reduce
the negative impact of Pb present in the fuel (by affecting Pb redistribution among coal combustion
products). Different approaches can be used or combined:

- Prior-to-combustion adsorbent treatment

- Co-combustion of additive and fuel in combustion chamber
- Adsorbent injection into post-combustion zone

- Combination of the aforementioned approaches

e  Major flue gas composition. Oxygen level is a crucial characteristic in this context. Moreover, the
behavior of Pb might be different in traditional N»/O, and oxy-fuel CO,/O, atmospheres.

e  Pressure in the combustion chamber. Change in the pressure can also affect Pb species formed in
the combustion process

e  Kinetic aspect. It should be mentioned in the overall evaluation as well, because kinetic constraints
may prevent the establishment of equilibrium distributions (e.g., gas velocity, dwell-time in the
combustion chamber etc.).

Resultant Pb behavior is given by a combination of the aforementioned effects that can be of both
synergistic or inhibitory character, which will be discussed in detail in the sections below.

5. Effect of Chlorine on Pb Behavior and Related Interactions

Chlorides formed by the interaction of Pb (and other HMs) with Cl-species typically exhibit
lower melting points than their corresponding oxides (and mostly lower than the combustion
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temperature [31]). This is the very reason why interactions with Cl and its compounds still attracts the
researchers’ attention [32].

In coal, Cl is predominantly present in pore moisture as chlorides, such as NaCl or KCl [33].
Even if a minor organic association of Cl (0.5-25%) in coal has also been reported [34], the effect
of inorganically-bound Cl is dominant during coal combustion without additives. Despite being
of minor significance in most coals, organically-associated CI could enhance Pb volatility as well.
A higher fraction of organically-bound Cl is typically more likely in the case of low rank coals for
two reasons: (i) Low rank coals were not submerged in considerable depths where basinal brines
(increasing inorganic Cl levels) were abundant, and (ii) a low extent of coalification keeps functional
groups more abundant in coal organic matter (providing active sites for Cl retention) [34]. From this
point of view, the enhancing effect on Pb volatility by organic Cl is more probable in the case of coals
with CI of syngenetic origin (i.e., those arising from a common ‘ancestor”).

Regarding the increasing amount of industrial, agricultural and forest residues or municipal solid
waste (MSW) (with respect to the theory that we might reach 2.2 billion tons of MSW/year by 2025 [35]),
there is a trend toward a co-combustion of coal and various types of waste. Then, the presence of plastics
can introduce organically-bound Cl into the combustion systems (e.g., in the form of polyvinylchloride
(PVQ)) [36-38]. If sewage sludge is co-combusted with coal, higher levels of ferric (iron(IlI)) chloride
(FeCl3) can be expected, and in the case of traditional MSW incineration the effect of NaCl originating
from food residues should be taken into account as well [36]. Some occurrence of calcium chloride
(CaClp) and aluminum (tri)chloride (AlCl3) can also be expected in all the aforementioned cases.

All these organic and inorganic chlorides can enhance the volatility of Pb; but the mechanism and
the volatilization efficiency can be substantially different.

5.1. PVC vs. NaCl

Effect of PVC. It has long been known that polyvinylchloride (PVC) can efficiently enhance the
volatility of Pb [39]. Rio et al. [40] concluded ca. 10-15% volatility increase for Pb at 850 °C;
increased volatilization of Pb at 950 °C by PVC addition (from 11% to 30%) was reported by
Li et al. [41]. Chiang et al. [42] documented the volatilization increase of Pb from 3% to 53% due to PVC
chlorination—the detected chlorination products in fly using PVC at 850 °C were namely oxychlorides
PbOCl; and PbO,Cl. Wang et al. [31] observed the decrease in volatilization temperature of Pb from
600-700 °C to ca. 500 °C in the presence of PVC, which was attributed to indirect low-temperature
chlorination. According to Wang et al. [31], PVC releases HCl at ca. 240 °C that reacts with PbO,
thereby enhancing Pb volatility. At higher temperatures (700-900 °C), PVC increases the volatilization
fraction of Pb as well.

Effect of NaCl. In contrast, NaCl did not decrease the volatilization temperature of Pb, but its
direct high-temperature chlorination enhances Pb volatility at 700-900 °C. The optimal effect of NaCl
on increasing Pb volatility was observed in the temperature range of 800-900 °C, which is lower
than the temperature needed for the release of HCI from NaCl [31]. Therefore, direct chlorination
is more likely in this case (than an indirect chlorination mechanism via HCl). However, direct
chlorination of PbO by NaCl requires also some other necessary components (such as H,O, SiO,,
Al,Os5 etc.) [31,43]. For example, in the presence of silica (SiO;) and alumina (Al,O3), the reaction
equation of Pb chlorination by NaCl is (Equation (1)) [43]:

2NaCl + PbO + 25i0, + Al,03 = PbCly(g) + 2NaAlSiO, 1)

The volatilization percentage of Pb (in air) at 973 K was ca. 30% and about 75% at 1223 K (data
plotted in graph for 30 min dwell time). In the case of longer dwell time (90 min), 98% of Pb was
volatilized in the form of lead(II) chloride (PbCl,). Thus, not only the thermodynamic aspect, but also
the kinetic limitations could play an important role [43].
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5.2. Comparison of Inorganic Chlorides

The effect of individual inorganic chlorides is different as well [44,45], and relates to a direct/indirect
chlorination mechanism. The direct chlorination mechanism is typical for NaCl [44,45]; nevertheless,
it results in the lowest volatilization of Pb by NaCl of all tested inorganic chlorides. Unlike NaCl, other
chlorides like MgCl,, CaCl, or FeCls first release chlorine (in the form of HCl and/or Cl, by reaction
with HyO or O,), followed by an interaction with Pb [45,46], according to Equations (2)—(4):

RC12 +1/20, =RO + C12 (2)
RCl, + H,O = RO + 2HCI 3)
PbO + 2HCI = PbCl, + H,O @)

Yu et al. [45] observed the most significant increase of Pb volatility (at 950 °C) in the presence of
FeCl3.6H,0, followed by CaCl, and NaCl, which is consistent with the conclusion of Nowak et al. [44]
reporting efficient Pb volatilization enhanced by MgCl, and CaCl; (unlike the effect of NaCl, being
quite low).

Aforementioned results suggest that PVC (present e.g., in wastes) is more problematic in the
case of a formation of hazardous gaseous Pb emissions than NaCl (which is the case of pure coal
combustion). Therefore, if coal is co-combusted with plastics-containing wastes (e.g., refuse-derived
fuel), the increasing Pb volatility requires special attention. If coal is co-combusted with sewage sludge,
higher levels of FeCls (and corresponding enhanced Pb volatility) can be expected as well.

For this reason, not only gaseous emissions of Cl species (Clp, HCl etc.), but also the enhanced
volatility of Pb (and some other HMs) [47] should be taken into account if waste materials are added to
coal during combustion.

5.3. Other Relating Interactions

As Pb chlorination is not a discrete phenomenon, there is still an effect of other interacting species
or adsorbents used. The presence of PVC or inorganic chlorides not only enhance Pb volatility, but also
exhibit the ability to modify the retention efficiency on the adsorbents.

Kaolinite, bauxite, Al,O3 and SiO, adsorbents. Chen et al. [48] observed the different influence
of PVC and NaCl on Pb retention on kaolinite, bauxite and Al,O3 (during laboratory fluidized-bed
combustion experiments). At 700-900 °C, bauxite was the best adsorbent for Pb if PVC was present
(in comparison to Al,O3 and kaolinite); but if NaCl was used, its retention efficiency was the worst.
If Pb was not converted to chlorides (low or negligible amount of NaCl/PVC), a high retention efficiency
can be obtained by kaolinite [49], for which a high temperature is recommended (t > 1000 °C) [24,50,51].
If SiO; is to be used as a Pb adsorbent, the conversion of PbO to PbCl; (e.g., by organic Cl below 350 °C)
can hinder Pb retention on SiO, because PbO retention on SiO, is more efficient than that of PbCl, [52].
Optimal temperature for the retention was 1000 °C and the retention product was PbO.SiO; [24].

Effect of CaO. Namely in fluidized-bed combustion, calcareous minerals (e.g., CaO) are typically
present at high levels and can substantially affect Pb behavior. Wang et al. [31] observed adsorption of
HCI (originated from PVC) by CaO, thereby inhibiting Pb volatilization at temperatures below 700 °C.
However, at higher temperatures, the retained chlorine was released back (and was available for the
interaction with Pb again). In the case of NaCl, the effect of CaO on Pb volatilization was not observed
(probably due to the direct chlorination mechanism).

If coal is combusted without an addition of wastes, the effect of CaO depends upon the Cl
association in coal. As Cl in most coals is present predominantly in the form of NaCl or KCl, the
significant effect of CaO cannot be expected. Nevertheless, it can be important in the case of coals with
Cl of dominant syngenetic origin, where a higher fraction of organically-bound Cl can be presumed [34].
However, to our best knowledge, there are no studies elucidating the interaction between organic Cl in
coal and CaO and their effect on Pb (or other HMs) volatilization.
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Tang et al. [53] reported that adding 10% CaO or CaCOj to synthetic MSW (flour, paper, wood
sawdust, high-density polyethylene (HDPE), textiles, rubber and leather) did not show any increase in
the Pb residual rate at 700 °C (i.e., no effect on Pb retention in ash); at 800—1000 °C the residual rate
even slightly decreased, even if chlorine was present in these wastes. The results are still consistent
with the conclusions of Wang et al. [31], stating that the efficient retention temperature of CaO was
below 700 °C (at higher temperatures, CaCl, can release chlorine back for Pb chlorination).

Effect of Na. Another element that can participate in these interactions is Na. Durlak et al. [54]
observed the effect of decreasing Na levels in MSW (in the waste feed) on an increasing percentage of
Pb in fly ash related to bottom ash (from 36% up to 60%). It was attributed to the competition of Pb
and Na for free Cl, hindering the formation of Pb—Cl species. Moreover, the affinity to Cl is in the order
Na > Pb > most HMs [36,55]. For example, Pb forms chloride more easily than Cd [56-59]. Therefore,
metal chlorides can be formed only if the Cl level is high enough (otherwise only NaCl is formed).
Hence, Na present in higher concentrations can indirectly decrease Pb volatility as well.

Kuo et al. [60] document a significant increase of Pb retention if sodium nitrate (Chile saltpeter,
NaNOs) (1.2% Na) was added to artificial solid waste (sawdust, metal nitrates solution, polyethylene
(PE))—PDb retention increased from ca. 10% (at 700, 800 and 900 °C) to 15% (700 °C), 20% (800 °C) and
>40% (900 °C). Improved Pb retention was attributed to an agglomeration-promotion effect that is
enhanced with increasing temperature. Na was added in the form of NaNOj, (i.e., no Cl was added),
which is in line with the observation of Peng et al. [61]. Hence, Na can improve Pb retention by two
different mechanisms—by an interaction with CI (thereby decreasing its concentration available for
interaction with Pb)—and by agglomeration-promotion effect.

However, this agglomeration effect (advantageous for the retention of Pb) is thought to be
inevitable in relation to the overall combustion process (e.g., due to fouling and slagging).

6. Effect of Moisture

There is a consensus in literature that a higher moisture level in the combustion chamber and flue
gas can shift the equilibrium towards the formation of Pb (and other HMs) oxides, thereby suppressing
the formation of chloride counterparts [28,41,54,62], which results in suppressed Pb (and other HMs)
volatility. Due to the presence of H,O vapor in the oxy-fuel atmosphere [62], this effect can be significant
during oxy-fuel combustion. It should be taken into account also if coal is co-combusted with wastes,
where some of them can contain higher percentages of H,O (sewage sludge, agricultural residues
etc.) [63,64], or if coal-water slurry is combusted [65,66].

Presence of Cl. As expected, not only higher moisture levels, but also higher Cl content is needed
to observe this phenomenon. Li et al. [41] reported the negligible effect of H,O (0-39.4%) on the Pb
retention rate in bottom ash at both 700 °C and 950 °C if no Cl was added to synthetic MSW—the effect
of moisture level was only within ca. 2% range. Increased Pb retention in bottom ash with increasing
H,0 levels (from 0 to 39.4%) was more significant if 1-5% Cl was added to MSW [41] (and combusted
at 950 °C). Then, Pb retention in bottom ash (due to higher moisture content) increased by ca. 10-15%
(which was still of minor significance in comparison with higher volatility caused by increasing ClI
levels—from ca. 90% retention at 0% Cl via ca. 60% retention for 1% Cl up to ca. 10% retention for
5% Cl). These results of Li et al. [41] are consistent with those of Meng et al. [67] concluding quite good
retention (ca. 90-100%) of Pb from synthetic MSW in bottom ash at both 700 °C and 900 °C if no Cl
was added. However, this quite good retention efficiency (in the absence of Cl) slightly decreased at
both temperatures with increasing moisture levels from 5 to 62% [67]. Hence, as the suppression of Pb
volatility by H,O (at ca. 950 °C) is due to an intensification of the transfer from PbCl, to PbO [41,67,68],
it is observed only if the concentration of Cl is high enough to form PbCl,.

Effect of temperature. In addition to this, Meng et al. [67] observed the decrease in Pb volatility due
to moisture (in the presence of Cl) only at 950 °C. At 700 °C (in the presence of 1% PVC and 0.5% NaCl),
higher moisture content even promoted Pb volatilization and its release from bottom ash. At 700 °C,
Pb retention in bottom ash decreased from ca. 60% to ca. 30% when the H,O level increased from 5%
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to 62%. At 950 °C (in the presence of 1% PVC and 0.5% NaCl), adding more H,O moderately increased
Pb retention in bottom ash, but it was still quite low (ca. below 18%).

Equilibrium calculations of Durlak et al. [54] also documented the conversion of PbCl,(g) to
PbO due to increasing moisture content (up to 35%). As the related temperature was 950 °C, these
conclusions are consistent with those of Meng et al. [67] suggesting that the temperature of 950 °C
promotes this effect. It is in line with the depressed volatilization of Pb by H,O within the temperature
range of 950-1000 °C in a simulated laboratory incinerator observed also by Youcai et al. [28].

Nevertheless, it should be mentioned in this context that the results of Morf et al. [69] did not
confirm the decrease of Pb volatility due to moisture in flue gas in an MSW incinerator plant with a
grate furnace (with 1000-1015 °C combustion temperature and 1.04-1.48% Cl in wet input waste).

Physical aspect of higher moisture content. In addition to aforementioned chemical influence, there
are also some physical consequences of higher moisture levels in fuel—this effect is typically observed
if no extra Cl was added to the fuel [28,54,67]. Results of laboratory-scale incinerator tests document
that higher moisture content can even slightly enhance Pb volatility due to prolongation of the
devolatization process and due to longer time needed for reaching the desired temperature (or at the
limited time available during laboratory combustion tests) [28]. According to Durlak et al. [54], if the
incineration temperature is not controlled properly, increasing H,O levels can lead to a decrease in
temperature (shifting equilibrium PbO-PbCl, towards PbCl,(g), thereby increasing Pb volatility).

Therefore, the effect of H,O is not straightforward, and the overall influence depends (at least)
on Cl content and the temperature (or dwell time at laboratory experiments). Meanwhile, the effect
of Cl increasing Pb volatility is much stronger than that of moisture that only slightly hinders this
(prevailing) inevitable effect [41].

In any case, as most of these interesting results were obtained either from equilibrium calculations
or laboratory-scale horizontal tube incinerators, pilot-scale or full-scale experimental data are needed
to observe the complex effect of aforementioned parameters under real full-scale conditions.

7. Effect of Atmosphere

It is generally accepted that increasing O, concentration shifts the equilibrium from PbCl,
toward PbO, which typically results in decreased volatility [70]. For efficient CO, retention, oxy-fuel
combustion is widely used. So there is a need to elucidate the behavior of Pb (and other HMs) under
the CO,/O, atmosphere as well, because there are only a few studies focused upon the comparison of
traditional N»/O; and oxy-fuel CO,/O, atmospheres (in this context).

Li et al. [71] observed that the volatility of Pb in our 21%0,/79%CO, atmosphere was moderately
restrained, while Jerzak [72] observed an increase in the mole fractions of Pb species in the gaseous phase
if air was changed to a 30% O/70% CO, atmosphere. Zheng and Furimsky [73] predicted the behavior
of Pb in an oxy-fuel and air combustion, concluding no noticeable differences. Oboirien et al. [74]
compared relative enrichment in ash (vs. coal mineral matter) at 900 and 1000 °C for two coals under air
and oxy-fuel atmospheres—the different effect of N»/O, and CO,/O, was observed. In air, in the case of
both studied coals, Pb exhibited lower volatility at 900 °C and a higher volatility at 1000 °C (evaluated
as enrichment in ash vs. coal mineral matter). In CO,/O, atmospheres, one coal exhibited high
volatility at both temperatures, whereas Pb in the other was not volatile even at 1000 °C. The latter coal
(with non-volatile Pb) contained higher CaO, Al,O3, HyO and Pb concentrations and more inertinite
(Cl content was not reported). So it can be suspected that some of these species might retain Pb in a
CO,/O, atmosphere. Meanwhile, according to Wang and Tomita [75], during both combustion and
pyrolysis atmospheres, Pb volatility depends also on heating rate.

8. Effect of Sulfur and Phosphorus

Effect of S. Yao and Naruse [55] reported the occurrence of lead(Il) sulfate (PbSO4) within the
optimal temperature range of 500-1100 K (if the temperature further increased, the fraction of PbSO4
decreased rapidly). According to Zhao et al. [76,77], Cenni et al. [78] or Lundholm et al. [79], PbSO4
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was a dominant form at temperatures below 730 °C (the melting point of PbSO; is higher than 886 °C).
At lower temperatures, Pb can create also 4PbO.PbSO,, which is stable up to ca. 800-850 °C.

The formation of these (condensed) species can be propitious for decreasing Pb emissions at lower
temperatures (e.g., in fluidized-bed combustion). At pulverized-fuel combustion, the combustion
temperature exceeds the optimal thermal-stability range of these species.

Luan et al. [80] compared the binding energies of Pb-sulfide, -chloride, -sulfate and —phosphate,
concluding that lead’s chloride and sulfide could be easily formed, while its sulfate and phosphate
exhibited quite high binding energy values. However, in addition to the propitious effect of S on Pb
volatilization (via sulfide formation), there is still an effect of oxygen. Excess oxygen can interact with
S, forming SO,, and it can also oxidize sulfides to sulfates, thereby decreasing their volatility [81].
Moreover, namely during fluidized-bed combustion, an excess of Ca-bearing desulfurization additives
(whose amount is much higher than that of Pb) can compete with Pb during the interaction with S.

Effect of P. Not only S- but also P-species can possibly stabilize the emission of Pb (and some
other HMs) through the formation of phosphates [40,76]. Rio et al. [40] document a decrease of Pb
emissions via waste modification by phosphoric acid (H3zPOj,) prior to combustion which decreased
Pb volatility at 600 °C from 25% to ca. 18-19%, and at 850 °C from 50% to 20%. If P was included
in equilibrium calculations, Pb3(POy), was predicted in the temperature range of 400-1100 °C [82].
Due to high binding energy [80] for the reaction between Pb and phosphate and typically low P levels
in most coals [22], prior-to combustion treatment (with extra added P) should be a better alternative to
provide noticeable retention results.

9. Conclusions

The review paper is focused to the behavior of Pb during coal combustion with particular attention
paid on decreasing its emissions. It summarizes and discusses the effect of dominant parameters
affecting its redistribution among coal combustion streams. As gaseous emissions can pass through
the precipitator quite easily, special attention was paid to Pb distribution between condensed and
volatilized phases.

In coal, prevailing sulfidic Pb association facilitates its volatilization during the combustion [83],
even at lower combustion temperatures (e.g., during fluidized-bed combustion). Moreover, some
waste materials co-combusted with coal might contain Pb concentrations comparable or even higher
than those in coal, such as tires (20 ppm) [84], pickling sludge (33 ppm) [85], or waste-activated sludge
from municipal wastewater treatment (138 ppm) [86]. Then, the creation of condensed species would
be propitious for its retention in bottom ash or fly ash (preventing passing through the particulate
control device in gaseous form). However, formation of the condensed species can be hindered namely
by the presence of organic and inorganic chlorides. NaCl (or KCl) are typically present in most coals;
higher levels of FeClz can be expected namely in sewage sludge [87,88]. In addition to the Cl present
in the organic matter of coal, organic Cl present in PVC is contained, e.g., in refuse-derived fuel that
can be co-combusted with coal or (along with NaCl from food residues) in municipal solid waste.

PVC releases HCl first at lower temperatures and chlorinates Pb indirectly, thereby decreasing its
volatilization temperature and increasing its volatility. In contrast, NaCl chlorination mechanism is
direct (requiring some other components—H,O, 5iO,, Al;,O3, etc. [31]). Other inorganic chlorides (like
MgCl,, CaCl, or FeCls) increase the Pb volatility through indirect volatilization, releasing HCl or Cly,
and exhibiting a more significant increase of Pb volatility in comparison with NaCl [44—46]. Therefore,
in the case of pure coal combustion, where Cl is present predominantly in the form of NaCl (or KCl),
increase or Pb volatility is expected to be lower than in the case of co-combustion with (Cl-containing)
wastes, namely plastics (PVC) or sewage sludge (FeCl3), where indirect chlorination can increase Pb
volatility more efficiently.

Optimal retention of Pb differs in dependence on individual conditions, e.g., on concentration of
Cl available for the interaction, temperature, presence of interacting species, etc.
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Coal is co-combusted with wastes typically in fluidized-bed power stations where Ca-bearing
desulfurization additives are added to the combustion chamber for the desulfurization of flue gas.

As CaO has the ability to retain HCI originated from the low-temperature decomposition of
PVC, it can mitigate the increase of Pb volatility by PVC. However, this effect was observed only
below ca. 700 °C; at higher temperatures it does not work, and CaCl, can even release chlorine back,
enhancing Pb volatility. The effect of (a real) organically-bound Cl is suspected to be similar. Since the
combustion temperature in the fluidized-bed chamber is higher than 700 °C (ca. 850 °C), from this
perspective, injection of CaO into the flue gas stream could be more beneficial. The effect of CaO
on NaCl-chlorinated Pb was not observed. Chlorination of Pb can be moderately mitigated by the
presence of moisture, but temperatures higher than the fluidized-bed combustion temperature (850 °C)
are recommended in this case (ca. 950 °C). Creation of PbSQOy is also possible, but due to the huge
amount of calcareous desulfurization additives, this effect is suspected to be quite low.

Good retention results were observed if kaolinite was used as a Pb adsorbent. However, optimal
capture efficiency can be achieved at higher temperatures (t > 1000 °C, optimally ca. 1200 °C) and if Pb
is dominantly present in its PbO form (i.e., if there is a low/negligible Cl effect). Therefore, this is more
feasible at pulverized-fuel combustion, because the fluidized-bed combustion temperature is below
this range (ca. 850 °C), and due to an addition of wastes, the CI content could be quite high in the
fluidized-bed power station.

Release of Pb in emissions is not the only challenge attracting researchers” attention in the field of
coal combustion. There are also other heavy metals whose emissions are to be mitigated. The influence
of the factors discussed in this paper could be expected as well (even if their significance might be
quite variable, for individual metals, such as: Cd, Cr, Cu, Ni, Zn, etc.).

Herein, Pb behavior and volatility was discussed, with particular attention paid on decreasing
its (gaseous) emissions. Despite the fact that it was not the objective of this paper, it should be
mentioned that the distribution of Pb changed by the aforementioned factors might result in changed
concentrations and occurrence modes in solid coal combustion products, which consecutively affects
their future fate (landfilling, industrial utilization, environmental toxicity, etc.)

Particular attention is currently being paid (e.g.,) to an abatement of CO, emissions (e.g., oxy-fuel
combustion [71]), to decreasing fouling/slagging by staged coal combustion [89], or mitigating NO
emissions using low-NO burners [90]. As these modern combustion technologies provide promising
results for wider industrial utilization, detailed elucidation of heavy metals behavior also under these
conditions would be beneficial.
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