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The Bayesian Sampler: Generic Bayesian Inference Causes Incoherence in
Human Probability Judgments

Jian-Qiao Zhu, Adam N. Sanborn, and Nick Chater
University of Warwick

Human probability judgments are systematically biased, in apparent tension with Bayesian models of
cognition. But perhaps the brain does not represent probabilities explicitly, but approximates probabilistic
calculations through a process of sampling, as used in computational probabilistic models in statistics.
Naïve probability estimates can be obtained by calculating the relative frequency of an event within a
sample, but these estimates tend to be extreme when the sample size is small. We propose instead that
people use a generic prior to improve the accuracy of their probability estimates based on samples, and
we call this model the Bayesian sampler. The Bayesian sampler trades off the coherence of probabilistic
judgments for improved accuracy, and provides a single framework for explaining phenomena associated
with diverse biases and heuristics such as conservatism and the conjunction fallacy. The approach turns
out to provide a rational reinterpretation of “noise” in an important recent model of probability judgment,
the probability theory plus noise model (Costello & Watts, 2014, 2016a, 2017; Costello & Watts, 2019;
Costello, Watts, & Fisher, 2018), making equivalent average predictions for simple events, conjunctions,
and disjunctions. The Bayesian sampler does, however, make distinct predictions for conditional
probabilities and distributions of probability estimates. We show in 2 new experiments that this model
better captures these mean judgments both qualitatively and quantitatively; which model best fits
individual distributions of responses depends on the assumed size of the cognitive sample.
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Human probability judgments appear to be systematically bi-
ased, apparently suggesting that human probabilistic reasoning is
not based on normative Bayesian principles, but instead on heu-
ristic approximations of various kinds (e.g., Gigerenzer &
Gaissmaier, 2011; Tversky & Kahneman, 1974). The large litera-
ture on the psychology of human probabilistic judgment has there-
fore emphasized human irrationality, demonstrating that these
judgments are incoherent, in the sense that they do not relate to one
another as required by probability theory.

Yet this research tradition appears to stand in sharp contrast with
the prevalence and usefulness of Bayesian models across the cogni-
tive and brain sciences, ranging over perception (Gershman, Vul, &
Tenenbaum, 2009; Knill & Richards, 1996; Yuille & Kersten, 2006),
language processing (Chater & Manning, 2006; Griffiths, Steyvers, &
Tenenbaum, 2007), categorization (Sanborn, Griffiths, & Navarro,
2010), intuitive physics (Battaglia, Hamrick, & Tenenbaum, 2013;

Sanborn, Mansinghka, & Griffiths, 2013), motor control (Wolpert,
2007), and social reasoning (Baker, Jara-Ettinger, Saxe, & Tenen-
baum, 2017). Indeed, the “new paradigm” in the psychology of
reasoning (Evans & Over, 2013; Oaksford & Chater, 2020) even
proposes that high-level explicit reasoning and argumentation is best
understood in probabilistic terms (Chater & Oaksford, 2008; Hahn &
Oaksford, 2007; Oaksford & Chater, 1994).

Thus, we are faced with an apparent paradox: How can Bayesian
models of cognition, and indeed reasoning, be so fruitful, when
what we might view as the “basic element” of such models, human
probability judgment, appears to be systematically biased?

In this article, we confront this apparent paradox head-on: We
develop a Bayesian model of probability judgment, which operates
not through the explicit symbolic calculation of probabilities, but
instead approximates probabilistic inference by drawing samples from
probability distributions. One of the major discoveries of computa-
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tional statistics in the last half century is that such sampling models
can often efficiently approximate complex probabilistic distributions
(MacKay, 2003; Metropolis, Rosenbluth, Rosenbluth, Teller, &
Teller, 1953; Robert & Casella, 2013), where symbolic computa-
tion is completely intractable (Aragones, Gilboa, Postlewaite, &
Schmeidler, 2005). Such methods are routinely used to approxi-
mate probabilistic calculations in Bayesian machine learning
(Craiu & Rosenthal, 2014; Ghahramani, 2015; Neal, 2011), arti-
ficial intelligence (Frey, Dayan, & Hinton, 1997), and cognitive
science (Chater & Manning, 2006; Chater & Oaksford, 2008;
Tenenbaum, Kemp, Griffiths, & Goodman, 2011).1 Indeed, such
models implement Bayesian inference without explicitly repre-
senting, or manipulating, probabilities (Dasgupta, Schulz, & Ger-
shman, 2017; Sanborn & Chater, 2016). Inevitably, because sam-
pling models are an approximation to “ideal” probabilistic
inference, they will systematically diverge from the norms of
probability theory. In this article, we show that these departures
from probability theory generate many of the biases observed in
human probability judgments. Thus, apparently paradoxically, a
Bayesian rational model can automatically generate many of the
systematic deviations from probability theory observed in experi-
mental data.

Rational Models of Probability Judgment
From Sampling

We start from the perspective that people, quite possibly im-
plicitly, have an internal Bayesian model of the tasks they engage
in. The appeal of such a model is that it carries over some of the
normative justification from work on Bayesian models, which
have been successful in cognitive domains as varied as perception,
language processing, categorization, intuitive physics, motor con-
trol, and reasoning (Baker et al., 2017; Battaglia et al., 2013;
Chater & Manning, 2006; Chater & Oaksford, 2008; Evans &
Over, 2013; Gershman et al., 2009; Griffiths et al., 2007; Hahn &
Oaksford, 2007; Knill & Richards, 1996; Oaksford & Chater,
1994; Sanborn et al., 2010; Sanborn et al., 2013; Wolpert, 2007;
Yuille & Kersten, 2006).

A serious challenge to Bayesian models is that Bayesian calcu-
lations (e.g., inferring and averaging over the posterior distribu-
tion) appear computationally daunting. We approach this challenge
by borrowing standard methods from computational Bayesian sta-
tistics mentioned above: The Bayesian calculations can be approx-
imated by sampling from the relevant posterior probability distri-
butions, rather than being computed directly. We have argued
elsewhere that this may be the most appropriate interpretation of
many Bayesian psychological models: The brain is a Bayesian
sampler, but does not represent, or calculate with, probabilities
(Sanborn & Chater, 2016).

How then do people estimate the probability of an event? Aside
from restricted domains with specially designed devices such as coins,
dice, and roulette wheels, analytic calculation is typically impossible.
We can, though, rely on the recall of past cases, or our ability to
imagine hypothetical cases through a process of mental simulation.
Suppose, for example, we attend an English village fair and wonder
how likely we are to knock a coconut off of a stick in a coconut shy
game with a single throw. We can recall past attempts at the coconut
shy, by ourselves and perhaps others; and/or we can attempt mentally
to simulate the process of knocking down the coconut, perhaps using

some kind of intuitive physical model (Battaglia et al., 2013; Ham-
rick, Smith, Griffiths, & Vul, 2015; Sanborn et al., 2013). Any given
“run” of such a simulation will produce a particular trajectory of the
ball, a collision (or not) with the coconut, and a final outcome (success
or failure). Different runs of the simulation will produce different
results. Thus, by running the simulation many times, we can accu-
mulate a sample of successes or failures, which may inform our
probability judgment.

These two sources of data, memory, and simulation, generate a
set of specific instances (whether observed or imagined); and
among these instances, the cognitive system can compare the
number of instances in which the event of interest occurs (a
coconut is successfully knocked down) and the number of in-
stances in which it does not (the coconuts remain in place). As long
as these specific instances are generated according to the proba-
bility of the internal Bayesian model, then sampling provides an
approximation to these often intractable calculations.

Empirical Evidence for the Role of Sampling in
Probability Judgment

Before we develop a specific account in more detail, note that
the sampling-based viewpoint gains credibility from links to ex-
isting theoretical accounts and empirical phenomena. For example,
Tversky and Kahneman (1973) suggest that one important heuris-
tic for judging probabilities is availability in memory: That is,
events or types whose instances come readily to mind will be
viewed as more probable than those which do not. They note, for
example, that people incorrectly judge that the likelihood that word
begins with a k is higher than that a word has k as its third letter,
because it is easier to retrieve words by their initial letter, rather
than its third letter. This perspective translates naturally into a
sampling framework: Any factors that impact our ability to draw
mental samples will influence probability judgments.

Differences in the ease of sampling is also one source of
conjunction fallacies (though we focus on another source below).
Tversky and Kahneman (1983) asked participants to estimate the
number of words in four pages of a novel that would fit the pattern
_ _ _ _ _ n _ or fit the pattern _ _ _ _ i n g. Participants both
estimated the number of _ _ _ _ i n g words to be higher and found
them easier to generate. That is, items which are more easily
mentally sampled are rated as more probable; and the richer cue
provides a better starting point for sampling. While arising natu-
rally from a sampling viewpoint, these results are, of course, in
contradiction to the laws of probability: all words that fit the _ _ _
_ i n g pattern also fit the _ _ _ _ _ n _ pattern, and hence cannot
be more frequent or probable.

The sampling viewpoint also provides a natural explanation of
some aspects of so-called “unpacking” effects. People judge the
probability of the “unpacked” description being a tax, corporate,
patent, or other type of lawyer as different from an equivalent,

1 Another family of approximation methods, known as variational Bayes
(Blei & Jordan, 2006; Blei, Kucukelbir, & McAuliffe, 2017), optimizes an
approximate, simplified model of the probability distribution of interest,
rather than working with a sample from that distribution. This approach
may also be the starting point for neuroscientific and psychological hy-
potheses, although we do not consider it further here (Dasgupta, Schulz,
Tenenbaum, & Gershman, 2019; Gershman & Beck, 2017; Ma, Beck,
Latham, & Pouget, 2006; Sanborn, 2017).
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being a lawyer. The explicitly mentioned “unpacked” elements
may provide a helpful cue to sampling and hence raising proba-
bility estimates. By contrast, if the unpacked elements are low
frequency, then the sampling process may be biased toward
searching for difficult-to-find items, thus lowering probability
estimates. Thus, by biasing the starting point of the sampling
process, probability judgments with unpacked description can be
enhanced or reduced, by comparison with the normal descriptions
(Dasgupta et al., 2017; Sanborn & Chater, 2016). This pattern of
data is observed empirically (Dasgupta et al., 2017; Sloman, Rot-
tenstreich, Wisniewski, Hadjichristidis, & Fox, 2004). We will
return to unpacking effects in the General Discussion.

Finally, the stochastic nature of sampling provides a straightfor-
ward explanation of the variability in human behavior, such as that
seen in probability matching experiments. As an example, experimen-
tal participants might be asked to make one of two responses, and
learn that one response is correct on 70% of trials. Despite the best
strategy being simply choosing the more probable response on every
trial, few participants follow this optimal maximizing strategy. In-
stead, participants often choose stochastically, with each response
made with a probability close to the probability that it is correct
(Vulkan, 2000). Sampling explains probability matching behavior by
assuming that, on each trial, a person samples a set of responses and
picks the most frequently occurring response in that set. If only a
single sample is drawn on each trial, then responses will be stochastic
and will be made according to the probability that they are correct
(Vul, Goodman, Griffiths, & Tenenbaum, 2014). Additionally, sam-
pling can also explain why experiments show that increased rewards
leads to more maximizing behavior (Shanks, Tunney, & McCarthy,
2002; Vulkan, 2000). If, as seems natural, participants draw a larger
set of samples when rewards are greater, then they will pick the better
response more often—indeed, if participants were to sample a nearly
infinite number of responses, then they will strictly maximize because
the better response would always outnumber the worse response (Vul
et al., 2014).

This initial survey indicates that the process of sampling may
play an important role in probability judgments; and understanding
the psychological processes of the sampling process are likely to
be of considerable psychological interest. In this article, however,
our focus is not on the process of sampling, but on the comple-
mentary, and neglected, question of how frequencies in a mental
sample are converted into probability judgments. We will see that
an analysis of this process provides a new mechanism through
which to explain the incoherence in probability judgments.

From Sample Frequencies to Probability Judgments

The question of how sample frequencies should be converted into
probability judgments seems almost trivial: Surely, we simply take the
relative frequencies (e.g., the number of throws on which we success-
fully knock the coconut off the stick divided by the total number of
throws), and identify these as the probabilities. Taken as a psycho-
logical proposal concerning how people form probability judgments,
we call this the relative frequency approach to probability judgment.

We first assume that if people are sampling, then they are
(within limits, as discussed below) generating a new set of random
examples each time they answer a question, which corresponds
with the common observation that human behavior is stochastic, in
psychology, economic, neuroscience, and other fields (Bhatia &

Loomes, 2017; Faisal, Selen, & Wolpert, 2008; Vulkan, 2000).
Let’s take the example of the coconut shy mentioned above, and
assume that a person asked to make a judgment first remembers or
simulates a single successful example in which they both hit the
coconut and successfully knocked the coconut off the stick:

Throw Hit coconut Knocked coconut off stick

1 Yes Yes

Based on this sample, a person could make any of a variety of
judgments using the relative frequencies. For example, they might
judge the probability of the simple event of the coconut being hit
(i.e., P̂RF�hit�), a judgment of the conjunction of the coconut being
hit and being knocked off (i.e., P̂RF�hit � knocked off�), and a
judgment of the conjunction of the coconut being hit but not being
knocked off (i.e., P̂RF�hit � ¬knocked off�),

P̂RF(hit) �
Nhit

Nthrown
� 1 (1)

P̂RF(hit � knocked off) �
Nhit and knocked off

Nthrown
� 1 (2)

P̂RF(hit � ¬ knocked off) �
Nhit and not knocked off

Nthrown
� 0 (3)

One rationale for the relative frequency approach is that, assum-
ing judgments are based on the same set of samples, relative
frequencies produces coherent judgments (e.g., P̂RF�hit� � P̂RF

�hit � knocked off� � P̂RF�hit � ¬knocked off� as required by
probability theory in Equations 1–3). Coherence is used to make
the normative argument for following the rules of probability
theory: beliefs that follow probability theory are coherent, and
those that do not are subject to exploitation (de Finetti, 1937). A
second rationale is that, under certain conditions (e.g., the samples
are independently drawn from fixed distribution), as the sample
size tends to infinity, these relative frequencies will, with high
probability, be close to the true probabilities. Indeed, this is the
justification for the frequentist interpretation of probability: that
probabilities are limiting frequencies (Von Mises, 1957).

However, for a sampling agent who draws a more realistic number
of samples, these strengths of relative frequency disappear. First,
because it is unrealistic to assume that people remember or simulate
the same set of examples each time they make a judgment, judgments
made via relative frequency will very likely be incoherent (e.g., if the
set of samples used to judge P̂RF�hit � knocked off� are different
from those drawn to judge P̂RF�hit � ¬knocked off�, then very often
the sum of these judgments will not equal P̂RF�hit�). While coherence
is important for the normative underpinning of probability theory, it is
less important for evaluating how a sampling agent converts samples
into probability estimates, as coherence is not generally achievable for
such an agent.

Second, and relatedly, using relative frequency with a realistic
number of samples will not result in estimates that are close to the
correct probabilities. One of the founders of probability theory,
Jacob Bernoulli, estimated that more than 25,000 samples are
needed for “moral certainty” about the underlying subjective prob-
ability of a binary event, where moral certainty means that, at least
1,000:1 odds, the underlying subjective probability falls within
0.02 of the estimated probability (Stigler, 1986).
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Considering a more psychologically plausible number of samples
may in fact lead to uncomfortably extreme judgments if relative
frequency is used. Suppose, for example, we return to the estimate
which is based only on one sample, P̂RF�hit � knocked off�. Accord-
ing to the relative frequency approach, we judge this probability to be
1: that the coconut will always be hit and will always be knocked off
of the stick. Additionally, according to this viewpoint, if we rely on
our memories alone, it is difficult to avoid the prediction that anything
that has never happened before will be judged to have a probability of
zero. For example, if I play the lottery with the same number each
week, it is overwhelmingly likely that I will encounter an unbroken
succession of losses; but I do not conclude that therefore I cannot
possibly win.

From a Bayesian standpoint, which we develop below, what is
missing in a relative frequency model is any way of integrating the
observed frequencies with prior assumptions about the behavior of
colliding objects or lotteries (e.g., that hitting the coconut will often,
but not always, cause it to be knocked off from the stick; that the prior
probability of winning a lottery is low but greater than zero, and so
on).

Bayesian Probability Judgments

How, then, might we develop a purely Bayesian approach to
making estimates from samples? First, we suppose that people
begin with a prior concerning the possible probabilities of knock-
ing down coconuts, winning lotteries, or other real-world events.
Following the standard Bayesian statistical practice, the natural
prior distribution for this unknown probability is so-called conju-
gate prior of the probabilistic process of interest—here, for a
pairwise judgment, this is the Beta distribution.

What makes the most appropriate generic prior Beta distribution
is a contentious topic. A common desideratum is that the prior
reflect “ignorance” or “lack of information”. As shown in Figure
1, a uniform distribution, Beta(1, 1), was suggested by Thomas
Bayes and later adopted by Pierre-Simon Laplace in his female
birthrate analysis (Bayes, 1763; Laplace, 2012), capturing the
intuition that there is no reason to consider the case p � p1 as more
likely than the case p � p2 for all possible values of p � [0, 1]. A
uniform probability density function (PDF) is consistent with the
no-preference principle on p. However, this no-preference princi-
ple does not generalize to natural monotonic transformations of p,
and the desire for invariance to transformation led to the develop-
ment of Jeffreys’ prior, which in this case is the Beta(0.5, 0.5)
distribution. Finally, on the extreme end, Haldane’s prior, ap-
proaching Beta(0, 0), represents the belief that it is equally likely
that the underlying probability is zero or one, and that it is not
in-between (Jaynes, 2003).

Though Bayes’, Jeffreys’, and Haldane’s prior each has their
own theoretical justifications, we can also empirically explore
what would be a good prior for probability estimates by looking at
how often different probabilities occur in natural language. To do
so, we used the data reported in Stewart, Chater, and Brown (2006)
which collected the frequencies of a range of probability-
describing phrases (e.g., “doubtful,” “fair chance,” “likely”) from
the British National Corpus (BNC) world edition (http://www
.natcorp.ox.ac.uk). These BNC frequencies were next adjusted so
that they reflected the number of times each phrase was used to
describe a probability. Finally, Stewart et al. (2006) asked partic-

ipants to report their probability judgments for each probability-
describing phrases. We used these data to plot a histogram of the
frequency of each numerical judgment in natural language in
Figure 1, and fit these data with a symmetric Beta distribution to
estimate the shape of the empirical prior. The maximum likelihood
distribution was a Beta(0.27, 0.27) distribution, which falls in the
range of theoretical distributions discussed above.2

For our analysis, we assume that, for simplicity, the prior is the
symmetric Beta distribution, Beta(�, �). This distribution has a
single free parameter, �, and assumes that there is no a priori
reason to expect a bias toward one or the other outcome of a
pairwise event. This prior is then continuously updated in the light
of samples, whether retrieved from memory or generated by sim-
ulation. So, for example, as the number of missed throws at the
coconut shy increases, the more we suspect that we have poor aim:
the posterior probability distribution of hitting the coconut shifts in
favor of lower probabilities of hitting the coconut. How do we then
convert this posterior distribution over these pairs of events into a
single judgment (note that this is a so-called second-order proba-
bility: a probability distribution over probabilities)? The natural
approach is to take the expected value of this distribution: roughly,
the average of all of the possible coconut-hitting accuracies, each
weighted by its posterior probability.

Fortunately for this Bayesian model, the expected value has a
simple form: It is the same as relative frequency after adding a
“pseudocount” of � to each of the two possible outcomes. If we
assume � � 1, we get the following estimates for our exam-
ple above when Nhit � Nhit and knocked off � Nthrown � 1 and
Nhit and not knocked off � 0 (see Appendix A for derivation of the
formulas):

P̂BS(hit) �
Nhit � �

Nthrown � 2�
� 2

3 (4)

P̂BS(hit � knocked off) �
Nhit and knocked off � �

Nthrown � 2�
� 2

3 (5)

P̂BS(hit � ¬ knocked off) �
Nhit and not knocked off � �

Nthrown � 2�
� 1

3 (6)

This set of judgments from the Bayesian reasoner is not coherent (e.g.,
P̂BS�hit� � P̂BS�hit � knocked off� � P̂BS�hit � ¬knocked off�), as it
is for relative frequency. However, as discussed above coherence is
inherently unlikely for a sampling agent: Different judgments will be
made from different set of samples. For the Bayesian reasoner, this
decrement in coherence leads to an improvement in a quantity we
believe to be more important to a sampling agent: accuracy. Indeed,
the Bayesian reasoner is defined in such a way that it will of course
be more accurate if the assumed value of � is correct. And, intuitively,
it seems useful to hedge estimates in just this way: having only seen
one example of a coconut being hit, it is more reasonable to estimate
that probability to be two thirds rather than one.

It is also important to note that the improvement in accuracy is
robust to variation in the prior belief of probabilities (i.e., �).
Relative frequency is in fact a special case of the Bayesian sam-
pler, assuming Haldane’s prior (i.e., � ¡ 0). This means that

2 Not all analyses of the probabilities of real-world events fall in this
range. Fennell and Baddeley (2012) analyzed blog posts and found that the
distribution of the probabilities of good and bad events occurring followed
a Beta distribution with parameter much greater than one.
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relative frequency is in fact a rather extreme assumption about
what the probabilities are: specifically the prior belief that the
underlying probability is either one or zero. If the true state of the
world is closer to the value of � assumed by the Bayesian sampler
than to zero, the Bayesian sampler will produce more accurate
estimates (see Appendix C for details).

A Bayesian Sampling Model of Conservatism in
Probability Judgments

We have outlined a generic Bayesian approach to probability
judgment; to make this model complete requires specifying only
the prior parameter, �, and the number of samples, N. But how
credible is this Bayesian approach as an account of human prob-
ability judgments? How much justification is there in saying that
many observed probabilistic biases can be viewed as “traces” of
the Bayesian sampling process that underpins human probabilistic
judgment?

Perhaps the most fundamental and important systematic bias in
probability judgment, which has been observed repeatedly, is
conservatism: People on average tend to avoid the extremes (i.e.,
values close to 0 or 1) in their probability estimates (Edwards,
1968; Erev, Wallsten, & Budescu, 1994; Fiedler, 1991; Hilbert,
2012; Kaufman, Lord, Reese, & Volkmann, 1949; Peterson &
Beach, 1967). Conservatism is widespread: It has both been dem-
onstrated in the aggregation of evidence (Peterson & Beach, 1967)
and in simple probability estimates (Erev et al., 1994), though we
will focus on the latter. Indeed, many have argued that there is a
cognitive mechanism that regresses people’s estimates toward .5
(Costello & Watts, 2014; Dougherty, Gettys, & Ogden, 1999; Erev
et al., 1994; Hilbert, 2012). Specifically, the closer the underlying
subjective probability of an event A, P(A), is to 0, the more likely
it is that the estimated probability, P̂�A�, is greater than P(A),
whereas the closer P(A) is to 1, the more likely it is that P̂�A� is less
than P(A).

Interesting, though, the systematic “bias” of conservatism fol-
lows directly from the Bayesian model we have outlined. As
described above, the Beta distribution prior over probabilities will
moderate extreme relative frequencies, for any prior with � � 0, as
can be seen from Equation 4. Indeed, from this point of view,
labeling conservatism as a “bias” is misleading. From the point of
view of frequentist statistics, it is the case that, where the under-
lying subjective probability is extreme (e.g., zero), then the Bayes-
ian approach will overestimate that probability given a sample. In
frequentist statistics, any difference between the expected value of
an estimate, and the true value, counts as a bias. But from a
Bayesian point of view, this phenomenon follows from adhering to
the laws of probability when using the same generic prior for each
judgment. After all, if the underlying subjective probability to be
estimated is zero, a rational updating model should overestimate
this probability from any finite sample—a rational Bayesian model
cannot rule out the possibility that the event has a positive possi-
bility, but simply has yet to occur by chance. So, from the present
Bayesian standpoint, some degree of conservatism is normatively
required and hence is not necessarily properly labeled as a bias at
all.

How conservative should people be? In our generic Bayesian
model, this depends on their prior distribution, characterized by the
value of the � parameter in the symmetrical Beta distribution.
Another potentially relevant factor, though, is the degree of cor-
relation between samples. While identical independent draws are
suggested by drawing from an urn with replacement, natural
sources of data typically have interdependencies at many scales
(Gilden, 2001; Gilden, Thornton, & Mallon, 1995). And indeed,
when people are sampling, not from observation, but from memory
or mental simulation, such interdependencies will be large and
unavoidable (Bousfield & Sedgewick, 1944; Zhu, Sanborn, &
Chater, 2018). To the extent that a person does not assume inde-
pendence, further conservatism is justified—if, for example, peo-
ple assume that events run in “streaks”, then observing an event

Figure 1. Illustrations of Bayes’ prior, Jeffreys’ prior, Haldane’s prior, and the symmetric Beta prior that best
fits empirical data on the real-world occurrence of probabilities. Empirical data are plotted as a histogram. See
the online article for the color version of this figure.
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occurring successively many times should be weaker evidence that
it is highly likely: after all, an opposite streak might be about to
start at any time. For now, we assume independence, but we will
return to the question of autocorrelated samples below.

To sum up, instead of conservatism being the result of noise (as
we shall see in the next section), we propose that it is a rational
adjustment for small sample sizes. While we assume that the
samples will generally reflect the underlying probabilities accu-
rately, a second stage corrects for the intrinsic uncertainty in the
probabilities as a result of having a limited number of samples.
This correction produces a “biased” estimate that is, on average,
more accurate than the uncorrected, unbiased estimate, but it
produces judgments that are incoherent on average as a byproduct.

Our approach falls into the class of rational process models, that
explain biases as the result of the algorithm used to perform
inference (Griffiths, Vul, & Sanborn, 2012; Sanborn & Chater,
2016; Sanborn et al., 2010). Recently, this approach has been
extended to derive biases from a rational use of time or limited
cognitive resources (Griffiths, Lieder, & Goodman, 2015; Lieder
& Griffiths, 2017). The Bayesian sampler is in the same spirit of
the resource-rational framework as it aims to produce the best
possible adjustment given a limited number of samples. In addi-
tion, it’s two-stage nature echoes work in computational neurosci-
ence that has posited that brain regions and even individual neu-
rons perform Bayesian inference on the input that they receive
(Deneve, 2008; Pfister, Dayan, & Lengyel, 2010).

The Probability Theory Plus Noise (PT�N) Model

There is, though, an alternative, and arguably simpler, model
of the mapping from frequencies to probability judgments to
consider—that probability regression does not arise from
Bayesian calculations, but simply from noise in the process of
storing and retrieving memories of past events. This “probabil-
ity theory plus noise” (PT�N) approach has been pursued by
Costello and Watts in an important recent series of papers
(Costello & Watts, 2014, 2016a, 2017; Costello et al., 2018;
Costello & Watts, 2019). The PT�N model suggests that, for
example, when recalling past throws at the coconut shy, our
memory is noisy: some failures will be misremembered as
successes; and some successes will be misremembered as fail-
ures. Indeed, their initial model (Costello & Watts, 2014) makes
the simplest possible assumption: that the probability of mis-
classification is a fixed constant, which is the same for both
positive and negative instances. If probability judgments were
determined purely by noise of this type, then each event A, and
its complements not-A, would be assigned a probability that is
pulled toward .5 (varying depending on the particular sample
drawn). That is, a mix of veridical and noisy memories will
“regress” observed relative frequencies toward .5, in proportion
to the level of noise.

According to PT�N model, many “rational” patterns in the data
on human probability judgments should remain intact. Misclassi-
fications can “flip” the classification of items in the mental sample;
but probabilities are still “read off” the relative frequencies of
items in this “modified” sample. These relative frequencies, all
derived from the same (albeit corrupted) mental sample, should
therefore obey the laws of probability in some cases. Using this
line of reasoning, Costello and Watts (2014) identified a number of

probabilistic identities that should be respected, even with “re-
gressed” probability judgments. For example, to choose a some-
what simpler case for illustration, P̂PT�N�A� � P̂PT�N�¬A� � 1 still
applies on average in the PT�N model: If A is a low probability
event, then there will be more switches from not-A to A than the
reverse. But each event is, nonetheless, either A or not-A, so that
the sum of the relative frequencies still equals 1, and indeed this
generally holds in human data (Tversky & Koehler, 1994; Wall-
sten, Budescu, & Zwick, 1993). In addition, there are several
identities involving conditional probabilities that should always be
respected by regressed probability estimates. However, Costello
and Watts (2014) also derive a number of other identities that
should not be preserved in the PT�N account. The predictions
from PT�N of both the identities that were expected to match
probability theory and those that were expected to deviate from
probability theory were verified in a series of experiments
(Costello & Watts, 2014, 2016a; Costello et al., 2018).

The PT�N model, at first glance, looks like a rival to a Bayes-
ian sampling account because it departs from rationality in the
light of putative mechanistic factors, concerning the noisiness of
memory. As we shall see, though, it turns out that a natural
Bayesian sampling model generates predictions for a wide range of
judgments that are, in expectation, identical to those of the PT�N
model. However, the two approaches diverge regarding condi-
tional probability judgments, and as a result, for the probabilistic
identities that involve conditional probability judgments. In the
next section, we consider how the PT�N model and the Bayesian
sampler capture key empirically observed probabilistic identities.
We then test the contrasting predictions of the two models in two
new experiments.

Capturing the Key Probabilistic Identities

Costello, Watts, and colleagues (Costello & Watts, 2014, 2016a;
Costello et al., 2018) developed a set of empirical probabilistic
identities that involve combinations of participants’ estimates of a
pair of binary events, A and B. Participants in these experiments
could be asked about of either single events (e.g., P(A)), conjunc-
tions of the events (e.g., P(A � B)), disjunctions of the events (e.g.,
P(A � B)), or one event conditioned on the other (e.g., P(A |B)). A
key feature of these empirical identities is that, according to
probability theory, they should all equal zero. This key feature
holds for relative frequency judgments as well—even if people are
drawing a new sample for each judgment and making their judg-
ment according to relative frequency, on average, all of the iden-
tities should equal zero.

Indeed, when measuring human probability judgments, some of
the identities (shown in Table 1) have been found to be equal to
zero, at least in aggregate. For example, Costello and Watts (2014)
considered:3

Ẑ1 � P̂(A) � P̂(B) � P̂(A � B) � P̂(A � B), (7)

and

Ẑ2 � P̂(A) � P̂( ¬ A � B) � P̂(B) � P̂(A � ¬ B). (8)

3 The identities Z1 and Z2 are given the same names in Costello and
Watts (2016a), but are denoted as X and Y, respectively, in Costello and
Watts (2014).

6 ZHU, SANBORN, AND CHATER



In human judgments, the two identities were found to be equal
to zero on average across events, though for individual pairs of
judged events Ẑ1 was found to deviate predictably from zero
(Costello & Watts, 2017). Stronger predictions, also confirmed
experimentally, were found for a series of identities involving only
simple events and conditional probabilities: in our terminology the
identities from Ẑ9 to Ẑ14 in Table 1. These identities were found to
be almost always equal to zero across many different pairs of
judged events (Costello & Watts, 2016a).

Many of other identities, by contrast, deviated reliably from
zero. For example, identities from Ẑ3 to Ẑ8 and from Ẑ15 to Ẑ18 from
Table 1 were all shown to be reliably different from zero, and in
a direction implicating conservatism as the cause (Costello &
Watts, 2014, 2016a; Costello et al., 2018). This is an illustration of
incoherence in average judgments—any probabilistic identities
that deviate from zero show that average judgments violate the
laws of probability and hence are incoherent.

PT�N is able to capture all of these results, at least when they
are addressed individually. As noted above, this model assumes
that people estimate the probability of some event A as in the
frequentist interpretation of probability theory. The memory re-
trieval process consists of the following steps: (a) drawing a set of
samples from memory, (b) counting the number of As, and (c)
dividing by the sample size. The critical mechanism proposed by
the PT�N model is that recalling samples from memory is per-
turbed by random noise, so that each flag is misread with a
probability of d (Costello & Watts, 2014, 2016a). That is, there is
a probability of d that an event A will be incorrectly counted as
event ¬A (or vice versa). Because the noise is applied to samples
at random, the probability of reading out event A will be:

P(read as A) � (1 � d)P(A) � d(1 � P(A))
�(1 � 2d)P(A) � d

(9)

which is the sum of (a) the probability of a sample originally
marked as A and not corrupted by the noise and (b) the probability
of a sample originally marked as ¬A but corrupted by the noise.
Average estimates will thus have mean value of

�[P̂PT�N(A)] � (1 � 2d)P(A) � d (10)

As seen in Figure 2 (left), the ��P̂PT�N�A�� predicted by the
PT�N model is a linear transformation of the underlying subjec-
tive probability P(A).

In a significant elaboration of the approach, the extended prob-
ability theory plus noise model, Costello and Watts (2016a, 2017)
described how the increased random error found empirically in
conjunctive (e.g., A � B) or disjunctive (e.g., A � B) events, can
explain above-chance rates of conjunction fallacies. The rate of
random error is enhanced from d (for single events) to d � �d (for
conjunctions and disjunctions). This assumption is justified on the
basis that combined variables (i.e., conjunctions and disjunctions)
will be noisier than individual variables (Costello & Watts, 2017).
This is also a necessary assumption for the PT�N model to predict
above-chance rates of conjunction fallacy. If the noise is higher for
conjunctions, then the mean estimates for a conjunction could be
higher than the mean estimates of the simple events because
conjunctions are more strongly regressed toward 0.5 (Costello &
Watts, 2017). Therefore, the expected value of probability esti-
mates for a conjunctive event A � B is:

�[P̂PT�N(A � B)] � (1 � 2[d � �d])P(A � B) � [d � �d]

(11)

Table 1
Probabilistic Identities and Their Predicted Values From Probability Theory

Identity name Identity calculation Predicted value

Ẑ1 P̂�A� � P̂�B� � P̂�A � B� � P̂�A � B� � 0

Ẑ2 P̂�A� � P̂�B � ¬A� � P̂�B� � P̂�A � ¬B� � 0

Ẑ3 P̂�A� � P̂�B � ¬A� � P̂�A � B� � 0

Ẑ4 P̂�B� � P̂�A � ¬B� � P̂�A � B� � 0

Ẑ5 P̂�A � ¬B� � P̂�A � B� � P̂�A� � 0

Ẑ6 P̂�B � ¬A� � P̂�A � B� � P̂�B� � 0

Ẑ7 P̂�A � ¬B� � P̂�B � ¬A� � P̂�A � B� � P̂�A � B� � 0

Ẑ8 P̂�A � ¬B� � P̂�B � ¬A� � 2P̂�A � B� � P̂�A� � P̂�B� � 0

Ẑ9 P̂�A�B�P̂�B� � P̂�B�A�P̂�A� � 0

Ẑ10 P̂�A�B�P̂�B� � P̂�A�¬B�P̂�¬B� � P̂�A� � 0

Ẑ11 P̂�B�A�P̂�A� � P̂�B�¬A�P̂�¬A� � P̂�B� � 0

Ẑ12 P̂�B�A�P̂�A� � P̂�A�¬B�P̂�¬B� � P̂�A� � 0

Ẑ13 P̂�A�B�P̂�B� � P̂�B�¬A�P̂�¬A� � P̂�B� � 0

Ẑ14 P̂�A�¬B�P̂�¬B� � P̂�B� � P̂�B�¬A�P̂�¬A� � P̂�A� � 0

Ẑ15 P̂�A � B� � P̂�A�B�P̂�B� � 0

Ẑ16 P̂�A � B� � P̂�B�A�P̂�A� � 0

Ẑ17 P̂�A � B� � P̂�A� � P̂�A�¬B�P̂�¬B� � 0

Ẑ18 P̂�A � B� � P̂�B� � P̂�B�¬A�P̂�¬A� � 0

Note. We have abbreviated the identities using P̂�¬A� and P̂�¬B� for 1 � P̂�A� and 1 � P̂�B�. This applies to
identities Z10, Z11, Z12, Z13, Z14, Z17, Z18, and did not affect any of the model predictions nor the direction of the
deviation of the identities in the empirical results reported later.
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Similarly, the expected value of probability estimates for a
disjunctive event A � B is:

�[P̂PT�N(A � B)] � (1 � 2[d � �d])P(A � B) � [d � �d]

(12)

If the increased error, �d, is equal to zero, then identities Ẑ1 and
Ẑ2 are predicted to have an expected value of zero: there is an equal
number of positive and negative terms, so that the average devi-
ations introduced by noise cancel out. The small empirical devia-
tions from zero are then accounted for by values of �d greater than
zero. Likewise, deviations of identities of Ẑ3 to Ẑ8 from zero are
predicted because there are more positive terms than negative
terms, so the aggregate deviations are greater than zero. Details of
these predictions, as well as model predictions for the other iden-
tities are given in Appendix D.

Second, to account for conditional probability estimations, the
PT�N model assumes that people: (a) draw a set of samples from
memory, (b) count the number of As that are also Bs, and (c) divide
by the sample size (i.e., the number of Bs). For conditional prob-
abilities, both events A and B are independently subject to noise d
(Costello & Watts, 2016a), so the expected value of a conditional
probability estimate is more complex than for simple events:

�[P̂PT�N(A�B)]

� (1 � 2d)2P(A � B) � d(1 � 2d)[P(A) � P(B)] � d2

(1 � 2d)P(B) � d (13)

Despite the apparent complexity of Equation 13, because con-
ditional probability estimates are the result of the constructing the
estimate from corrupted samples, it is possible to find probabilistic
identities for which PT�N and probability theory agree, on aver-
age. For example, in Ẑ9, multiplying the two expectations
��P̂PT�N�A�B����P̂PT�N�B�� cancels the denominator of the con-
ditional probability, as does ��P̂PT�N�B�A����P̂PT�N�A��. Because
the numerators of ��P̂PT�N�A�B�� and ��P̂PT�N�B�A�� are the
same, PT�N thus predicts that Ẑ9, on average, will be always
equal to 0, in line with probability theory. Similar reasoning means
that PT�N predicts that identities from Ẑ10 to Ẑ13 will always
agree with probability theory. However, other identities that in-
volve conditional probabilities from Ẑ14 to Ẑ18 do not have this
form so that, for these, PT�N can deviate from probability theory.
A summary of where PT�N matches and deviates from probabil-
ity theory is given in Table 2.

The Bayesian Sampler Captures Key Probabilistic
Identities

As we noted above, while a pure relative frequency model will
produce the correct probabilities from relative frequencies in the
limit, it can produce extreme conclusions where the number of
samples is small. Recall that drawing a single sample from the
posterior of the event can only lead to relative frequencies of either
zero or one. But, of course, it seems unreasonable to report that an
event has a probability of zero or one based on a single sample.

Figure 2. An illustration of model behaviors for PT�N (Left) and Bayesian sampler (Right), showing the
underlying subjective probability of a simple event A (x-axis) and the expected probability estimates (y-axis)
predicted by models. This link holds here when the Bayesian sampler uses a generic prior of Beta(1, 1). See the
online article for the color version of this figure.
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The Bayesian sampler moderates such extreme conclusions, lead-
ing to conservatism.

For simplicity, and paralleling model predictions with PT�N, we
use a symmetric Beta distribution, Beta(�, �), as the generic prior on
all probability estimates. The Beta distribution is a conjugate prior
probability distribution for the Bernoulli and binomial distributions. It
is defined on the interval [0, 1], which is, of course, also the interval
for probability estimates. This prior reflects the degree of belief placed
on every possible probability estimate, ranging from 0 to 1.

We now consider how people would respond to the incoming
samples from the underlying subjective probability P(A). Given N
samples collected, the Beta prior distribution should be updated in
light of these new samples according to Bayes’ rule. Formally, let
S(A) denote the number of samples of event A and F(A) denote the
number of samples not marked as event A. According to the Bayesian
sampler account, people will have a posterior probability for proba-
bility estimates that is distributed according to Beta(� � S(A), � �
F(A)). We assume that people then report the mean of their posterior
distribution as their probability estimate. For any x � Beta(a, b), we
have the mean of x: ��x� � a

a�b. Therefore, the probability estimate is
a simple linear transformation of the number of success,

P̂BS(A) � S(A)
N � 2�

�
�

N � 2�
, (14)

and the expected value of the probability estimate is:

�[P̂BS(A)] � N
N � 2�

P(A) �
�

N � 2�
. (15)

Interestingly, comparing Equation 10 and 15, we see that this
expected value is the same as the expected value from PT�N for
this event, as long as the following “bridge condition” holds:

d � �
N � 2�

, (16)

In fact, because the two parameters � and N are not individually
identifiable from the mean estimates, the mean predictions of the
Bayesian sampler can be rewritten in terms of d, and are identical
to those of PT�N. This bridge condition generalizes the relation-
ship between a Beta(1, 1) prior and d shown by Costello and Watts
(2019) to a much wider range of priors, demonstrating how � and
N trade off to produce various values of d.

Likewise, for conjunctive and disjunctive estimates, the Bayes-
ian sampler uses the same prior distribution. However, because
people have to evaluate two statements from every sample to
determine if a conjunction or disjunction is true, which seems

computationally more demanding, we allow for the possibility that
a fixed amount of sampling time results in fewer samples N= for
conjunctions and disjunctions, where N= � N,

�[P̂BS(A � B)] � N�
N� � 2�

P(A � B) �
�

N� � 2�
. (17)

�[P̂BS(A � B)] � N�
N� � 2�

P(A � B) �
�

N� � 2�
. (18)

Assuming that N= � N also allows the Bayesian sampler to
explain the empirical observation that estimates of conjunctions
and disjunctions are more variable than estimates of simple prob-
abilities (Costello & Watts, 2017; Howe & Costello, 2017; Zhao,
Shah, & Osherson, 2009). As PT�N allows for additional noise in
conjunctive and disjunctive estimates if �d � 0, and we again
arrive at equivalent mean predictions for the Bayesian sampler
assuming that as long as the following “bridge condition” holds:

d � �d �
�

N� � 2�
, (19)

Because these two parameters � and N= are also not individually
identifiable from the mean estimates, the mean predictions of the
Bayesian sampler are also identical to those of PT�N for con-
junctions and disjunctions.

PT�N and the Bayesian sampler make identical mean predic-
tions for simple events, conjunctions, and disjunctions, and so the
two model make identical predictions for many of the combined
probabilistic identities as well. Identities Ẑ1 to Ẑ8 are combinations
of simple events, conjunctions, and disjunctions, so the average
results of these identities that have been well captured by PT�N
are captured equally well by the Bayesian sampler.

Where Bayesian Sampler and PT�N Differ:
Conditional Probability Estimates

The Bayesian sampler and PT�N models do not make identical
predictions for every average estimate however: The two ap-
proaches make distinct predictions for average conditional prob-
ability estimates.4 PT�N has a constructive account of conditional

4 Here we consider the noisy frequentist approach to conditional prob-
ability estimates presented in Costello and Watts (2016a). It is, however,
possible to conceive of a different noise model which would predict mean
values equivalent to those of the Bayesian sampler. We explore this issue
further in the General Discussion.

Table 2
Model Agreement (on Average) With Probability Theory for Probabilistic Identities

Probability theory
Relative

frequency
PT�N

(�d � 0)
PT�N

(�d � 0)
Bayesian sampler

(N � N=)
Bayesian sampler

(N � N=)

Ẑ1 � 0 ✓ ✓ If P�A� � P�B� � 1 ✓ If P�A� � P�B� � 1

Ẑ2 � 0 ✓ ✓ If P�A� � P�B� ✓ If P�A� � P�B�
Ẑ3, Ẑ4, Ẑ5, Ẑ6, Ẑ7, Ẑ8 � 0 ✓ No No No No

Ẑ9 � 0 ✓ ✓ ✓ If A�B or P�A � ¬B� � P�¬A � B� If A�B or P�A � ¬B� � P�¬A � B�
Ẑ10, Ẑ11, Ẑ12, Ẑ13 � 0 ✓ ✓ ✓ If A�B or P�A � B� � P�¬A � ¬B� If A�B or P�A � B� � P�¬A � ¬B�
Ẑ14, Ẑ15, Ẑ16, Ẑ17, Ẑ18 � 0 ✓ No No No No

Note. A checkmark indicates that this model always agrees with probability theory for particular identities, and A�B denotes that A, B are independent.
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probabilities: for P̂PT�N�A�B�, both the event B that is conditioned
on and the event A under consideration are sampled, a noisy
process is applied to reading both variables, then the ratio is taken
of those read as both A and B over those read as B (Costello &
Watts, 2016a). The ratio of two noisy estimates will be noisier than
either estimate alone, implying that conditional probability esti-
mates will be relatively noisy.

The Bayesian sampler, however, takes a different approach to
conditional probability. Returning to the example of the coconut
shy, our simulated or remembered throws at the coconuts must be
conditioned on a range of variables: What are the sizes of the
coconuts, how firmly the coconuts are attached, who is throwing,
and so forth? Simulating from the joint distribution of all of these
conditioned variables and constructing a frequentist estimate
would be a very inefficient process: Of all the simulations run,
only a very few would actually apply to the estimates that need to
be made. By contrast, the Bayesian sampler assumes that condi-
tional probabilities are treated the same as any other kind of
probability, and because only one variable needs to be checked
when evaluating the samples, we make the simplifying assumption
that the same number of samples, N, is drawn as for simple events.
Therefore, the average predicted conditional probabilities of the
Bayesian sampler are the same as those for simple events, which
differs from the predictions of PT�N:

�[P̂BS(A�B)] � N
N � 2�

P(A�B) �
�

N � 2�
. (20)

Despite this difference, there are many situations in which the
conditional probability predictions of PT�N and the Bayesian
sampler are identical. If, for example, underlying subjective prob-
ability of event B is 1, then both PT�N and the Bayesian sampler
reduce to their average predictions for P(A), which are identical.
Also, if A and B are independent, then both PT�N and the
Bayesian sampler also reduce to their average prediction for P(A),
which are again identical (as shown in Appendix D).

However, when these conditions do not hold, the PT�N and
Bayesian sampler do make distinguishable predictions for the
probabilistic identities in which conditional probabilities are in-
volved (see Table 1: from Ẑ9 to Ẑ18). In particular, even if �d � 0,
the PT�N model predicts that the expected values of Ẑ9 to Ẑ13

should be strictly equal to 0 (Costello & Watts, 2016a), whereas
the Bayesian sampler predicts that these values can be different
from zero. Past empirical work has shown that for a range of
events these identities are very close to 0, but the pairs of events
were not chosen to distinguish the two models. It is possible that
the identities could deviate from 0 for events that have a high level
of dependence.

As shown in Table 2 and Appendix D, whether the Bayesian
sampler predicts that the expected values of these identities are
equal to, smaller than, or greater than zero depends on the under-
lying subjective probabilities themselves, and not on prior beliefs
(�) or the number of samples drawn (N). In particular, if there is
a strong positive correlation between A and B and both are low
probability events, then Ẑ10 to Ẑ13 should be positive. Conversely,
if there is a strong positive correlation between A and B and both
are high probability events, then Ẑ10 to Ẑ13 should be negative.
These predictions naturally lead to an empirical test of whether

PT�N or Bayesian sampler provides a better account of condi-
tional probability judgments.

Experiment 1

Here we use a standard paradigm developed by Costello and
Watts for eliciting probability judgments: estimating the chance of
particular weather events on a random day. Past work in this
paradigm has used a large number of pairs of weather events
involving descriptors such as cloudy, icy, warm, and so forth.
Instead of testing a wide range of pairs of events as in past work,
here we focus on two pairs of events that satisfy our desiderata for
testing the different accounts of conditional probability. For the
pair of positively correlated low-probability events, we selected
the weather descriptors “icy” and “frosty”. The pair of positively
correlated high-probability events was more challenging to find,
and we decided upon “normal” and “typical” as our weather
descriptors.

Method

Participants. Fifty-nine participants (7 males, 52 females,
aged between 17 and 31) were recruited through Student Research
Experience Subject Panel, University of Warwick, and completed
the 30-min experiment in exchange for course credit.

Procedure. Participants were instructed to estimate the prob-
ability of a series of weather-related queries, by typing in integers
in the range of [0, 100], which were framed as percentages instead
of probabilities. There were two pairs of weather descriptors: {icy,
frosty} and {normal, typical}. For each weather pair, we gave all
of the 20 possible unique probability queries (see horizontal axis of
Figure 3A), resulting in 40 unique queries in total. Each set of 40
queries formed a block and within each block their order of
appearance was shuffled randomly. Participants were asked to
complete three blocks, so that, for each unique query, participants
produced three repeated estimates in total.

We adopted very similar questions to those from the experi-
ments of Costello and Watts (2014, 2016a), asking people for their
estimated probability of weather events. For simple events, con-
junctions, disjunctions, and their negations, the query was pre-
sented in the format of “What is the probability that the weather
will be [some event] on a random day in England?” To decrease
chances of misinterpretation with events containing a single nega-
tion, the negative term in these conjunctive and disjunctive events
was always placed after the positive term: for instance, a weather
event was allowed to be “icy and not frosty” or “frosty and not
icy,” but was not allowed to be “not frosty and icy” nor “not icy
and frosty.” For conditional probabilities such as P(A |B), the query
was presented in the format of “If the weather in England is [B] on
a random day, what is the probability that weather will also be [A]
on that same day?”

Results and Discussion

Mean probability estimates. The mean probability estimates
across blocks and participants are shown as bars in Figure 3A1 and
3A2 for all 20 unique queries involving {icy, frosty} and all 20
unique queries involving {normal, typical}, respectively.

Probabilistic identities. All the combined probability identi-
ties should be zero if people’s probability judgments are fully
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Figure 3. Human probability estimates and model predictions. (A) Mean probability estimates and 95%
confidence intervals across participants. The overlaid dots are best-fitting model predictions generated by the
most general form of each model (red dot: the Bayesian sampler, green square: the relative frequency model,
and blue triangle: the probability theory plus noise model). (B) The mean of the probabilistic identities from Ẑ1

to Ẑ18 with 95% confidence intervals across participants. The overlaid dots are best-fitting model predictions for
models fit to the mean estimates in (A). See the online article for the color version of this figure.
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coherent. Because, on average, judgments made of samples via
relative frequency follow the laws of probability theory (i.e., an
unbiased estimate of underlying subjective probability), relative
frequency also predicts that expected values of all identities are
equal to zero (see Figure 3B green squares).

The mean values of the probabilistic identities (from Ẑ1 to Ẑ18:
see Table 1 for details) for both weather pairs are shown as bars in
Figure 3B1 and 3B2. Probabilistic identities were first computed
for each participant based on their average responses to the rele-
vant queries. The average for each identity is then the average
across participants for that identity.

In agreement with previous work, not all of the identities were
equal to zero; this indicates that people’s probability estimates are not
coherent. Whether samples are corrupted by noise (as in the PT�N
model) or tempered through Bayesian inference (as in the Bayes-
ian sampler), the predicted mean values of an identity can differ
from zero (see Appendix D for precise predictions). Here, we are
particularly interested in identities from Ẑ10 to Ẑ13, because PT�N
predicts an average result of zero (Costello & Watts, 2016a) while
the Bayesian sampler can predict nonzero results. For positively
correlated variables, the Bayesian sampler predicts positive results
for Ẑ10 to Ẑ13 when the described events are low probability (e.g.,
{icy, frosty} weather in England), and negative results when the
described events are high probability (e.g., {normal, typical}
weather in England).

Table 3 summarizes statistical tests of whether identities Ẑ10 to
Ẑ13 differ from zero. Overall, seven of eight identities are different
from zero using both frequentist and Bayesian statistical conven-
tions. In particular, all identities for {icy, frosty} are reliably
greater than zero and all except Ẑ11 for {normal, typical} are
reliably less than zero. These systematic deviations from zero
favor the Bayesian sampler, as they are predicted neither by the
PT�N or the relative frequency accounts.

Quantitative model comparisons. We also performed two
different types of quantitative comparison to see which model best
fits the data. For both types of comparison, we restrict the shape
parameter of symmetric Beta prior in the Bayesian sampler to be
noninformative, � � [0, 1], the noise parameter of PT�N, d, d �
�d � [0, 0.5], and the sample sizes for all models N, N=� [1, 250].
This effectively reduces the parametric space of Bayesian sampler
comparing to the PT�N model, because, according to the bridge
condition, the equivalent ‘noise’ level for the Bayesian sampler is
now �

N�2� � �0, 1
3�.

Because model predictions depend on the values of underlying
subjective probabilities, which are unobservable, we allowed these
probabilities to be free parameters for all models, using three free
parameters for each pair of weather events. For example, for our
task it is sufficient to know the subjective probabilities of icy and
frosty, pi,f, of not icy and frosty, p¬i,f, and of icy and not frosty
pi,¬f. The fourth probability parameter, the probability of not icy
and not frosty, is a function of the first three, p¬i,¬f � 1 	 pi,f 	
p¬i,f 	 pi,¬f. We can then calculate the subjective probability of
any query about a pair of events: for example, P(icy) � pi,f � pi,¬f

and P(icy | frosty) � pi,f/(pi,f � p¬i,f). This leads to a total of six free
parameters to describe the underlying subjective probability pa-
rameters of both {icy, frosty} and {normal, typical}.

Fitting the mean responses of individuals. For the first type
of quantitative comparison, we fit the five models (i.e., relative
frequency, and the simple and more complex versions of both the
Bayesian sampler and PT�N) to the means of all probability
queries at the individual level. We chose here to fit the models to
mean judgments rather than to each raw judgments to avoid having
to specify additional processes for each model, such as mechanism
for how participants round their probability estimates, as empiri-
cally participants often (but not always) round their estimates to
the nearest .05 or .10 (Budescu, Weinberg, & Wallsten, 1988;
Wallsten et al., 1993).

The best-fitted participants for each model are shown in Figure 4.
Relative frequency is, on average, equivalent to probability theory
and thereby has only the above-mentioned six free parameters
describing the underlying subjective probabilities. The simple ver-
sion of PT�N includes an additional parameter for the degree of
random noise, d (Costello & Watts, 2014, 2016a), while the more
complex version has additional noise, �d � 0, for conjunctions
and disjunctions (Costello & Watts, 2017). The simple version of
the Bayesian sampler includes two additional parameters: the �
parameter and the sample size N. The more complex version of the
Bayesian sampler also includes a smaller sample size, N= � N, for
conjunctions and disjunctions. Note that fitting to the mean prob-
ability estimates effectively removes one degree of freedom from
the Bayesian sampler because �, N, N= are not individually iden-
tifiable.

We fit the five candidate models to the data, using a differential
evolution algorithm (Storn & Price, 1997), minimizing the squared
error between the mean model predictions and the data. The mean
squared errors (MSEs) of each fitted model were then translated

Table 3
Summary of t-tests and Bayes Factors for Key Probabilistic Identities: Z10 to Z13 of
Experiment 1

{icy, frosty} {normal, typical}

Null hypothesis t(58) p Bayes factor t(58) p Bayes factor

Ẑ10 � 0 2.85 .006 5.52 	4.79 <.001 1552

Ẑ11 � 0 4.67 <.001 1051 	.533 .596 .163

Ẑ12 � 0 4.02 <.001 132 	3.91 <.001 97.8

Ẑ13 � 0 5.50 <.001 17777 	3.24 .002 14.6

Note. p values less than .05 and Bayes factors greater than 3 are highlighted, which respectively indicate
significant evidence against the null hypothesis and substantial evidence in favor of the alternative hypothesis
that an identity is different from zero. The Bayes factors were computed using a Jeffrey-Zellner-Siow prior with
the scale on effect size equaling the default value of .707 (Rouder, Speckman, Sun, Morey, & Iverson, 2009).
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into BIC values, and then BIC weights, which approximate the
posterior probability of each model assuming each model was
equally likely before the experiment (Kass & Raftery, 1995;
Wagenmakers & Farrell, 2004). BIC values and weights do in-
clude a complexity penalty for the number of parameters (e.g., the
one-parameter difference between the simple and more complex
versions of the Bayesian sampler), but are unable to correct for
differences in model complexity that arise from restrictions being
placed on a parameter (e.g., that the equivalent “noise” level for
the Bayesian sampler is more restricted than it is for PT�N). For
each individual, we average the BIC weights for the simple and
complex versions of the Bayesian sampler, and average the BIC
weights for the simple and complex versions of PT�N, to produce
a composite approximate posterior probability for each of these
models that effectively puts equal prior probability on the simple
and complex variants of each of these models. Looking at indi-
viduals, 67.80% (40 out of 59) participants were best explained by
the Bayesian sampler, the remaining 1.69% (1 out of 59) and
30.51% (18 out of 59) participants were best explained by the
relative frequency and PT�N models respectively (see Figure 4).
Of the 58 participants best explained by either the Bayesian
sampler or PT�N, there significantly more participants best ex-
plained by the Bayesian sampler than predicted by chance (two-
tailed binomial test, p � .005). We also calculated the protected
exceedance probability, a more sophisticated measure of whether
a model is fitting a preponderance of participants, which takes into
account the relative evidence for each model for each participant
(Rigoux, Stephan, Friston, & Daunizeau, 2014). The protected
exceedance probability, where closer to one indicates one model is
fitting more participants than the others, was .9994 for the Bayes-
ian sampler.

Figure 3 displays the mean model behavior based on the most
general form of models. The Bayesian sampler closely matched the
empirical mean judgments in almost all cases, with the exception
of the two questions about disjunctions that involved one negated
event, which we discuss further below.

Fitting the raw responses of individuals. Our second quan-
titative model comparison method contrasted the Bayesian sampler
and PT�N on the raw judgments of individual participants. Be-

cause relative frequency, the Bayesian sampler, and PT�N are all
discrete models that often predict that only a subset of responses
are made, the likelihood-based methods used in our first analysis
can no longer be used for raw responses they are not robust to
rounding or typing errors. We instead use Wasserstein distances,
commonly used in machine learning to compare discrete distribu-
tions (Frogner, Zhang, Mobahi, Araya, & Poggio, 2015), to quan-
tify the discrepancy between model predicted distributions and
individual judgments (see Appendix E for a detailed description of
the method).

There are advantages and disadvantages to fitting raw judg-
ments in this way. Disadvantages include the inability to determine
how much more likely one model is than another for an individual,
that we do not have a method for correcting for differences in
model complexity, and that this analysis is very computationally
expensive, particularly when computing PT�N’s prediction dis-
tribution for conditional probabilities. Because of the lack of
complexity penalty, we only compare the more complex Bayesian
sampler and more complex PT�N models as the simpler versions
will always perform less well. The advantages are, however, that
we can compare the predicted distributions of the model to the
data, and that the �, N, and N= parameters are all identifiable in raw
responses, so we can restrict these values explicitly. We enumer-
ated 35 prominent sample sizes in the range of [1,250], with
increased spacing between selected values at the larger sample
sizes because the differences between the predictions are smaller
for larger sample sizes. Then we minimized the Wasserstein dis-
tance for both the Bayesian sampler and PT�N models with the
sample size parameter fixed at the selected values. Finally, in
Figure 5A, we show the performance of the Bayesian sampler and
PT�N when the sample sizes were restricted to be less than or
equal to the value on the horizontal axis, meaning that increasing
the maximum sample size can only improve the fit, though indi-
viduals can of course be best fit with a smaller-than-maximum
number of samples. When the maximum sample size is more
restricted (N 	 17), the Bayesian sampler explains participants’
data better than PT�N, but the models perform very similarly
when sample sizes are fairly unrestricted. Similarly, for the more
restricted sample sizes, the Bayesian sampler better fit signifi-

Figure 4. Posterior probabilities of models for individual participants in Experiment 1. Each stacked bar
represents the split across models of the approximate posterior probabilities for one participant. 67.80%, 1.69%,
and 30.51% participants can be best described by the Bayesian sampler (combined over the two variants),
relative frequency, and PT�N models (combined over the two variants) respectively. See the online article for
the color version of this figure.
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cantly more participants than the PT�N model (two-tailed bino-
mial test when maximum sample size is 17, p � .004), while the
proportions of best-fitted participants for either model are nonsig-
nificant from 50% for larger sample sizes (two-tailed binomial test
when maximum sample size is 237, p � .435). In Figures 5B and
5C we show the best-fitting parameters for each model (without
restricting sample size), though should caution that one of the
implications of Figure 5A is that a range of parameter values may
fit almost equally well to the data.

This method provides a complementary view of the data to
the probabilistic identities and fits to the mean estimates for
each individual. Both of the other methods suggest that the
Bayesian sampler’s formulation of conditional probabilities is a
better model of the data. The fits to the raw estimates show the
Bayesian sampler performing better when sample sizes are
restricted to be small, but having performance indistinguishable
to that of PT�N when sample sizes were less restricted. As
the fits to the raw estimates take into account the predicted
response distribution in addition to the predicted mean re-
sponses, this could reflect a real advantage for the raw response
distributions predicted by PT�N which compensates for the
worse fit to the means. Alternatively, because a large number of
samples needed to be allowed to equate the two models’ per-
formance, PT�N’s equally good performance could also be an
artifact of fitting the models to responses that were rounded by
the participants. Rounding can both reduce the variability of
responses and bias the means (e.g., suppose that a participant
would have given responses evenly distributed between 65 and
70, but rounds and always respond with 70), and the two models

may well differ in their ability to cope with rounded data. A
large number of samples allows the Bayesian sampler to pro-
duce a consistent response, but causes its mean predictions to
converge with probability theory. PT�N, however, can produce
consistent responses that deviate from probability theory, and
so could potentially better match the results of rounded re-
sponses.

Excluding disjunctive responses. We chose to ask partici-
pants about highly correlated events in order to qualitatively dis-
tinguishing between the models, but it is possible that participants
treat these events differently than other pairs of events. As pointed
out by a reviewer, these events might have caused participants to
interpret some kinds of disjunctions differently than they normally
would. In particular, the or operation could be seen as providing
alternative labels of a single event in cases of synonymous labels.
For example, when people state that this curve is Gaussian or
bell-shaped, the bell-shaped description is actually intended to
provide a further explanation of the Gaussian, rather than being the
second argument to a disjunction. This kind of pragmatic inference
could potentially explain the mismatch of all of the models to the
disjunctions involving one negation, as shown in Figure 3. To
check whether this possibility influenced our conclusions, we
therefore performed a fit to the mean responses of individuals, but
excluding all eight disjunction queries. The fitting results without
disjunctions were similar to the fitting results from the whole
dataset: 62.71%, 3.39%, and 33.90% participants can be best
described by the Bayesian sampler, relative frequency, and PT�N
models respectively though the evidence for the best model is
weaker (two-tailed binomial test for whether the Bayesian sampler

A B
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Figure 5. (A) Minimized Wasserstein distances between model predicted distributions and individual judg-
ments of Experiment 1 vary with the maximum number of samples allowed for each individual for the Bayesian
sampler (red) and PT�N (blue). Error bars are 95% confidence interval across participants. The smaller the
Wasserstein distance, the better the model in explaining distributions of raw judgments. (B) Best-fitting model
parameters for the Bayesian Sampler with median values across participants are displayed in red. (C) Best-fitting
model parameters for the with median values across participants are displayed in red. See the online article for
the color version of this figure.
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best-fits more than half of participants, p � .033, and protected
exceedance probability of the Bayesian sampler was .9595). Re-
garding the qualitative model comparisons on the key probabilistic
identities, Ẑ10 to Ẑ13, these do not involve any disjunction judg-
ments (see Table 1), so these conclusions remain unaffected by this
concern.

Experiment 2

While the highly dependent events in Experiment 1 were
useful for performing qualitative tests between different formu-
lations of conditional probabilities, questions about the disjunc-
tive events seemed more open to misinterpretation, which are
not captured by any sampling-based model. Therefore, in order
to better generalize to the more commonly used probability
estimation tasks in which the two events are at most mildly
dependent, we compare the models in another experiment using
the same design, but with two weather-pairs that are less
strongly dependent.

Method

Participants. Another 84 participants (21 males, 62 females,
and 1 nondisclosed gender, aged between 17 and 29) were re-
cruited through Student Research Experience Subject Panel, Uni-
versity of Warwick, and completed the 30-min experiment in
exchange for course credit.

Procedure. The design was the same as in the first experi-
ment, except that participants were asked about three different
pairs of different weather events: {cold, rainy}, {windy, cloudy},
and {warm, snowy}. All of the 20 possible unique probability
queries was asked (see horizontal axes of Figure 6A). This results
in a total of 60 unique queries, which forms one block. Participants
were asked to complete three blocks and the queries within each
block were randomly shuffled.

Analysis. Chronologically this experiment was performed
first, before we understood either the desirability of highly depen-
dent events for distinguishing models, or that highly dependent
events might induce pragmatic reasoning. As a result, this exper-
iment includes both mildly and highly dependent events. In order
to complement the first experiment we report only the results for
the mildly dependent events {cold, rainy} and {windy, cloudy},
and do not analyze the data from the highly dependent events
{warm, snowy}.

Results and Discussion

Mean probability estimates. In Figure 6A1 and 6A2, the
mean probability estimates averaged across blocks and participants
for {cold, rainy} and {windy, cloudy} are displayed.

Probabilistic identities. The general patterns of mean proba-
bilistic identities are shown in Figure 6B1 and 6B2, and they
resemble the pattern we observed in Experiment 1. Not all prob-
abilistic identities were equal to zero; this once again replicates
previous results and indicates that people’s probability estimates
are incoherent. However, unlike in Experiment 1, there was evi-
dence that Ẑ10 to Ẑ13 were equal to zero for these mildly dependent
weather-pairs based on the Bayes factors (see Table 4), though the
results were nondiagnostic for Ẑ12 for {windy, cloudy}. This is the

predicted result from PT�N, and replicates the result for the key
identities for the event pair {windy, cloudy} in Costello and Watts
(2018). In contrast the Bayesian sampler does not predict that the
key identities will be exactly zero unless the events are perfectly
independent, but its predictions will be closer to zero for these
mildly dependent events than for the highly dependent events in
Experiment 1 (see Table 2). Looking at the values predicted for the
key identities from the quantitative fits of the Bayesian sampler
(see Figure 6B1 and 6B2), we can see very small negative predic-
tions for the key identities: all of the predicted mean deviations lie
within the 95% confidence intervals of data. Overall, for these
mildly dependent events, the identities Ẑ10 to Ẑ13 do not seem able
to distinguish between PT�N and the Bayesian sampler.

Quantitative model comparisons. We performed the same
two quantitative model comparisons as we did in Experiment 1.

Fitting the mean responses of individuals. Based on the
MSE fits to the mean responses of each individual, the Bayesian
sampler (combined over the two variants) best explained 61.90%
(52 of 84) of participants, whereas the PT�N model (combined
over the two variants) best explained the remaining participants
(see Figure 7). The proportion best fit by the Bayesian sampler was
significantly higher than chance (two-tailed binomial test, p �
.038). The protected exceedance probability (where closer to 1 is
better) was .9911 for the Bayesian sampler. This result suggests
that the event pairs {cold, rainy} and {windy, cloudy} were in fact
not treated as independent by participants, as this fit measure
distinguishes between the Bayesian sampler and PT�N, unlike the
results for the key probabilistic identities. The mean predictions
based on best-fitted models are shown in Figure 6, and here there
is a better fit to the empirical mean disjunctions that involved one
negative event than was evident in Experiment 1.

Fitting the raw responses of individuals. We also evaluated
model performances based on how accurately their predicted dis-
tributions of probability estimates describe distributions of raw
judgments for each individual. The general relationship between
the minimized Wasserstein distance and the maximum sample size
allowed for the models is similar to the one in Experiment 1: The
Bayesian sampler has a better fit when samples are relatively few,
while this advantage diminishes with more samples allowed (see
Figure 8A: two-tailed binomial test when maximum sample size is
17, p � .001). However, the individual level result is reversed
when more samples are allowed, the proportions of participants
best-fitted by the PT�N model is significantly greater than 50%
when N 
 24 (two-tailed binomial test when maximum sample
sizes is 24, p � .021). In Figures 8B and 8C, we show the best-fitting
parameters for each model, though we should stress again that a range
of parameter values may fit almost equally well to the data.

As in Experiment 1, the combination of results across the two
quantitative model comparison methods may indicate that PT�N
has a real advantage in predicting the distribution of responses but
a disadvantage in predicting the mean responses, and PT�N’s
advantage in predicting the distribution carries stronger weight in
this experiment in which the differences in the mean response
predictions are smaller (as the events are only mildly dependent).

General Discussion

We have argued that sampling can play a crucial role in forming
probability judgments, and indeed is key to explaining aspects of
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Figure 6. Human probability estimates and model predictions. (A) Mean probability estimates and 95%
confidence intervals across participants. The overlaid dots are best-fitting model predictions generated by the
most general form of each model (red dot: the Bayesian sampler, green square: the relative frequency model,
and blue triangle: the probability theory plus noise model). (B) The mean of the probabilistic identities from Ẑ1

to Ẑ18 with 95% confidence intervals across participants. The overlaid dots are best-fitting model predictions for
models fit to the mean estimates in (A). See the online article for the color version of this figure.
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well-known biases including some versions of the conjunction
fallacy and the unpacking effect, as well as probability matching
(Dasgupta et al., 2017; Sanborn & Chater, 2016; Vul et al., 2014).
But, as we noted above, this approach raises a neglected problem:
How should sample frequencies be converted into probability
ratings? Researchers have often implicitly assumed that probabil-
ities can be computed taking relative frequencies, but we have seen
that this gives inappropriately extreme results for small samples.

Here we provided a generic Bayesian account of how this
problem can be addressed. It turns out, unexpectedly, that the
approach perfectly mimics the predictions, in expectation, for
many judgments from a major recent theoretical account with
strong empirical corroboration: the probability theory plus noise
(PT�N) model (Costello & Watts, 2014, 2016a, 2017, 2019;
Costello et al., 2018). The general approach outlined here (whether
using the Bayesian sampler or PT�N) also captures a variety of
interesting further phenomena. We have noted, though, that PT�N
and the Bayesian sampler differ regarding the estimates of condi-
tional probabilities, and here our empirical data favored the Bayes-
ian sampler both qualitatively and quantitatively in the fits to the
means of individual participants, though the evidence was mixed
for quantitative fits to the distributions of responses, favoring the
Bayesian sampler if we assume the underlying samples are small,

but potentially favoring PT�N if large samples are assumed. In
this section, we consider what we have learned about the rational-
ity of behavior from the success of the Bayesian sampler, discuss
other approaches to explaining biases in probability estimates, and
outline how our approach could be extended and enhanced with
more realistic sampling algorithms.

How Rational Are Probability Estimates?

The unbiased estimates of probabilities produced by the relative
frequency approach are only reasonable, from a Bayesian perspec-
tive, in the limit of large samples. But unbiased estimates are
unappealing for small samples, for which they lead to unreason-
ably extreme estimates. More generally, minimizing bias (e.g., the
zero bias for the relative frequency approach) will often lead to a
dramatic increases in variance, and thereby a poor correspondence
with the underlying subjective probability parameters (see Appen-
dix C for details; Domingos, 2000; Gelman et al., 2013; Gigeren-
zer & Brighton, 2009). From a Bayesian perspective, this is be-
cause prior knowledge of probabilities is ignored, which is of
particular relevance when sample size is small. Thus, the Bayesian
sampler makes biased estimates (from the perspective of the fre-

Table 4
Summary of t-tests and Bayes Factors for Key Probabilistic Identities: Z10 to Z13 of
Experiment 2

{cold, rainy} {windy, cloudy}

Null hypothesis t(83) p Bayes factor t(83) p Bayes factor

Ẑ10 � 0 .240 .811 .124 	.298 .767 .126

Ẑ11 � 0 	.946 .347 .185 	1.42 .161 .314

Ẑ12 � 0 .073 .942 .121 	2.18 .032 .880

Ẑ13 � 0 	1.06 .291 .208 	.069 .945 .121

Note. p values less than .05 are highlighted, which indicate significant evidence against the null hypothesis.
The Bayes factors were computed using a Jeffrey-Zellner-Siow prior with the scale on effect size equaling the
default value of .707 (Rouder et al., 2009). No Bayes factor is greater than 3, suggesting no substantial evidence
in favor of the alternative hypothesis that an identity is different from zero.

Figure 7. Posterior probabilities of models in Experiment 2. Each stacked bar represents the split across models
of the approximate posterior probabilities for one participant. 61.90%, 0%, and 38.10% participants can be best
described by the Bayesian sampler (combined over the two variants), relative frequency, and PT�N models
(combined over the two variants) respectively. See the online article for the color version of this figure.
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quentist approach) that are more accurate because they incorporate
useful prior knowledge or partial knowledge about the estimate.

As a result, the Bayesian sampler will generally produce sets of
probabilistic judgments that are incoherent, and hence vulnerable
to exploitation by adversarial agents; by contrast, unbiased esti-
mates of probabilities will be coherent on average and less vul-
nerable to exploitation. The Bayesian sampler trades coherence for
increased accuracy, and for a sampling agent small deviations from
coherence may have minimal cost. The reason is that even for a
reasoner making unbiased estimates via relative frequency, it is
extremely unlikely that the same set of samples would come to
mind every time, so that even an individual set of judgments made
via relative frequencies is unlikely to be coherent. If sampling
underlies judgment, this makes coherence unachievable, and per-
haps helps explain why the brain sacrifices coherence on average
for improved accuracy (see Juslin, Nilsson, & Winman, 2009, for
a related argument).

It is tempting to take the success of the Bayesian sampler in
explaining people’s probability judgments as a sign that probabil-
ity judgments are indeed as rational as possible, assuming that
people are basing their estimates on samples. However, we must
inject a note of caution, as while we have shown that using a single
generic prior to smooth the generated samples when making a
probability estimate will improve that estimate overall, it is not
actually the best possible prior that can be used when it is clear
what is being judged. Indeed, as is critical to fit the empirical data,
this generic prior produces judgments that are on average incoher-
ent. More fundamentally, using the same Beta prior for judgments
of simple events, conjunctions, disjunctions, and conditional

events actually implies that across judgments people have incon-
sistent prior beliefs about the probabilities of events. For example,
if people have uniform priors (i.e., Beta(1, 1)) on the conjunctions
P(A � B) and P(A � ¬B), then they cannot consistently also have
a uniform prior on the simple event P(A), as the Bayesian sampler
would assume.5

A prior distribution that is similar to our Beta prior but results
from consistent beliefs about the probabilities of simple events,
conjunctions, disjunctions, and conditional events is the Dirichlet
prior, a generalization of the Beta prior. We give details of this
prior in the Appendix B, and note that not only does it imply
coherent beliefs about the underlying probabilities when making
these different kinds of judgments, average judgments based on the
posterior means are coherent as well. If an individual was using
this Dirichlet prior when making judgments in our task, then,
assuming the same number of samples for each judgment, all of
their probabilistic identities would be on average equal to zero.
This, of course, does not match the data obtained here, or in past
work with these probabilistic identities, and indeed would not
predict that people make any probabilistic reasoning fallacies at
above-chance rates, as has been observed for the conjunction
fallacy in particular (Tversky & Kahneman, 1983; Wedell &
Moro, 2008).

5 P(A) must be equal to P(A � B)�P(A � ¬B), but a random variable
that is the sum of two independent uniformly distributed random variables
is not itself uniformly distributed, e.g., the outcomes of an individual die
are uniformly distributed, but the sum of the outcomes of two dice is not.
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Figure 8. (A) Minimized Wasserstein distances between model predicted distributions and individual judg-
ments of Experiment 2 vary with the maximum number of samples allowed for each individual for the Bayesian
sampler (red) and PT�N (blue). Error bars are 95% confidence interval across participants. The smaller the
Wasserstein distance, the better the model in explaining distributions of raw judgments. (B) Best-fitting model
parameters for the Bayesian Sampler with median values across participants displayed in red lines.
(C) Best-fitting model parameters for the probability theory plus noise model with median values across
participants displayed in red lines. See the online article for the color version of this figure.
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The Dirichlet prior that leads to coherent probabilistic judg-
ments on average also does not require complex calculations to
employ (see Appendix B for details). Like the Beta prior, the
posterior mean of the Dirichlet prior is a linear function of
the counts, and the only change from the Beta prior is that the
coefficients in front of the � parameters change for each type of
judgment. We surmise that perhaps this is the reason that a
Dirichlet prior is not used: The real world events that we make
probability judgments about are generally not clear-cut. There are
always ambiguities about what is being judged: is success in
the coconut shy only knocking the coconut off of the stick, or does
the coconut also need to remain intact when it hits the ground?
These two different possibilities specify a simple and a conjunctive
event respectively, and with this Dirichlet prior, it would lead to
employing different formulas. As a result of these ambiguities, it
may be just simpler and more robust to employ the same Beta prior
for every judgment, even if it results in judgments that are on
average incoherent.

The success of the Bayesian sampler should also not be taken as
evidence that noise plays no role in probabilistic judgments, par-
ticularly given the success of PT�N at predicting distributions of
raw judgments when sample sizes were relatively unconstrained.
PT�N’s disadvantage in predicting mean conditional probabilities
are the result of a particular choice about how estimates of con-
ditional probabilities are made. There is likely to be a number of
ways in which PT�N could be changed to mimic the Bayesian
sampler more closely. For example, PT�N could be modified to
implement a subjective Bayesian approach to estimating condi-
tional probabilities, directly sampling examples according to the
conditional probabilities and then using a noisy counting process
as it does for simple events. The resulting model would, on
average, make the same predictions as the Bayesian sampler for
every type of probability judgment about a pair of binary events.
This version of PT�N would be indistinguishable from the Bayes-
ian sampler in our quantitative fits to the mean estimates of each
individual, and potentially could have an advantage in predicting
the distribution of raw estimates as well. If future work proves that
model most correct, our work in this case would serve as a
demonstration of the adaptive value of noisy recall for any level of
d, which generalizes the connection previously made between a
particular level of d and the uniform prior (Costello & Watts,
2019). This kind of noisy system could potentially arise as a result
of natural selection failing to suppress this kind of noise in the
brain because it serves to make estimates more accurate (cf. Wyart
& Koechlin, 2016).

Determining the degree to which judgments are hedged as the
result of an implicit or explicit prior or as the result of noise will
require a much more extensive investigation than the studies
outlined above. Moreover, the method we used to fit the distribu-
tions of raw judgments for each individual has a number of
weaknesses, and closer examination of the distributions of re-
sponses that each model predicts will be needed. There is at least
one key difference in the predicted distributions that will be
interesting to investigate. PT�N predicts that adding noise will
cause mean judgments to be pushed away from the boundaries
(i.e., 0 and 1), but that there will still be a number of extreme
estimates. The Bayesian sampler, by contrast, predicts very few
extreme judgments because both the mean and individual judg-
ments will be pushed away from the boundaries. One suggestive

observation is that people tend to avoid boundaries when using
Likert scales, a phenomenon that has been argued to arise because
people make estimates using the mean of posterior distribution
(Douven, 2017). This is qualitatively consistent with the Bayesian
sampler, though establishing whether the observed level of ex-
treme estimates implicates noise or adjustment due to use of a prior
will require careful quantitative modeling to determine key param-
eters such as sample size, which potentially could be assisted by
analyses of response times.

Other Accounts of Bias in Probability Estimates

The biases observed in probability estimates are biases of self-
consistency: If participants were able to make coherent estimates,
even if their estimates show no correspondence to real-life prob-
abilities, then the probabilistic identities in Table 1 would hold.
There have been many different accounts of why estimates are not
coherent, and performing formal model comparisons between the
Bayesian sampler and all of these alternative accounts is beyond
the scope of this current article, as many of the models are not
precisely defined for all of the different judgments we collected in
our experiment. Instead we review a selection of qualitative evi-
dence for and against prominent alternative approaches below.
Additionally, we take advantage of the equivalence in mean pre-
dictions between the Bayesian sampler and PT�N for most prob-
abilistic judgments, as Costello, Watts, and colleagues have al-
ready carefully compared PT�N against a wide variety of
alternatives (Costello & Watts, 2018; Costello et al., 2018).

One approach to probabilistic biases has argued that people do
follow the laws of probability theory, but that they are interpreting
the questions differently than the experimenter intended (Bovens
& Hartmann, 2003; Wolford, Taylor, & Beck, 1990). For example,
people who committed the conjunction fallacy may have confused
the conditional probability and its inverse; they were judging
P(X |A � B) versus P(X |A), rather than P(A � B |X) versus P(A |X)
(Wolford et al., 1990). However, participants make other judg-
ments that are incongruent with this explanation (Bar-Hillel,
1991). Along similar lines, Bovens and Hartmann (2003) sug-
gested that people may also consider source reliability in judging
probabilities: When a source provides a likely event (e.g., Linda is
a feminist), this will cause an increase in the perceived reliability
of the source. Therefore, when the source is perceived highly
reliable, it creates situations where the probability of two events
can be greater than the probability of constituent event. However,
subsequent empirical investigations did not find support for this
model’s predictions for conjunction fallacies (Jarvstad & Hahn,
2011).

Additionally, there are a variety of empirically successful mod-
els of probability judgments in the literature such as averaging,
confirmation, and the quantum probability model, which all as-
sume that people systematically deviate from the laws of proba-
bility theory when making probability judgments. Averaging ac-
counts of human probability judgments have primarily focused on
explaining estimates of conjunctions and/or disjunctions based on
known probability estimates for constituents and/or conditional
probabilities. The most successful averaging model, configural
weighted averaging, assumes that a person’s estimate of a con-
junction is the weighted sum of its constituents (e.g., Juslin et al.,
2009; Nilsson, Winman, Juslin, & Hansson, 2009), so as a result it
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predicts the conjunction fallacy always occurs at chance or above
chance rates. However, empirical observations show that the con-
junction fallacy can also occur at reliably below chance rates
(Costello & Watts, 2014; Fisk & Pidgeon, 1996; Wedell & Moro,
2008), which both PT�N and the Bayesian sampler can also
produce if the separation between the underlying subjective prob-
abilities of the conjunction and constituent events is large enough
(Costello & Watts, 2016b). Additionally, configural weighted av-
eraging has not yet been adapted to make predictions about con-
ditional probability judgments, so its explanatory scope is cur-
rently narrower than the Bayesian sampler.

The quantum probability model assumes that human probabi-
listic reasoning follows the laws of quantum probability when
estimating event probabilities for simple, conjunctions, disjunc-
tions, and conditionals (Busemeyer, Pothos, Franco, & Trueblood,
2011; Wang & Busemeyer, 2013). Quantum probability is equiv-
alent to standard probability theory when two events are “compat-
ible” (i.e., both events can be measured simultaneously). However,
when two events are incompatible (i.e., the order of measurement
matters), quantum probability can deviate from probability theory,
producing biases in probability judgments and order effects.
Costello et al. (2018) compared PT�N with the quantum proba-
bility model on a variety of identities (e.g., Ẑ5 and Ẑ6) and dem-
onstrated that PT�N better matched the data than the quantum
probability model. Because the Bayesian sampler and PT�N mod-
els make identical predictions regarding the mean values of some
of these identities (e.g., Ẑ5 and Ẑ6), the Bayesian sampler also
shares some of these empirical advantages over quantum proba-
bility. However, the Bayesian sampler as defined above does not
produce order effects, which are a key focus of the quantum
probability model (Wang, Solloway, Shiffrin, & Busemeyer,
2014). In the next section, we describe how using a more realistic
sampler can introduce order effects.

Finally, Tentori, Crupi, and Russo (2013) argued that the degree
of inductive confirmation between the constituents of a conjunc-
tion primarily determines whether people commit the conjunction
fallacy. However, the degree of inductive confirmation and the
empirical rate of conjunction fallacies have been found to be
negatively correlated, while the empirical rate was positively cor-
related with the difference in probability between the conjunction
and the constituent event as both PT�N (Costello & Watts, 2016a)
and the Bayesian sampler predict. A separate observation in favor
of the confirmation account is that, on average, people sometimes
judge both P(B |e � A) � P(C |e � A) and P(A � C |e) � P(A �
B |e) in accordance with confirmation, an ordering reversal which
is not possible to produce using a model that simply regresses both
types of judgments toward 0.5 (Crupi & Tentori, 2016; Tentori,
Crupi, & Russo, 2013). Costello and Watts (2016b) pointed out
that PT�N can match these results with the right parameters, but
because the Bayesian sampler simply regresses conditional prob-
ability judgments toward .5, the Bayesian sampler as defined
above cannot produce this result. Again, for the Bayesian sampler
to capture such ordering effects will require a richer model of the
sampling process, a topic to which we now turn.

Extensions to the Bayesian Sampler

The Bayesian sampler we defined above assumes a single pro-
cess in which people sample from their posterior distribution to

estimate any kind of probability. Of course, as we suggested in the
introduction, for cases involving coins, dice, roulette wheels, that
people may use a qualitative reasoning process to produce precise
estimates with less work than sampling would require (Kemp &
Eddy, 2017). Qualitative reasoning might also be used when
answering questions about events participants believe are identical,
as other researchers have found that for identical events (e.g.,
water and H2O) participants almost always produced the extreme
conditional probability estimates (e.g., P(water |H2O) � 1);
(Wolfe, Fisher, & Reyna, 2013; Wolfe & Reyna, 2010), and both
PT�N and the Bayesian sampler do not predict consistent extreme
responses except with extreme parameter values. Concerned about
the possibility that our empirical conclusions could have been
driven by participants using qualitative reasoning, we reanalyzed
our data by adopting the very conservative criterion of excluding
participants who produced any extreme responses, and having
done so we found qualitatively the same results (see Appendix F).
Nonetheless, determining exactly how any additional qualitative
processes would work (e.g., by modifying the prior used in the
Bayesian sampler, or as a separate process for producing an
estimate) and when they would be employed is an important task
for future work.

Qualitative reasoning may be a time and effort-saving process,
but even solely using a sampling process, there are ways to reduce
the amount of sampling required. Most saliently, amortization, the
process of reusing samples between similar queries in order to
avoid drawing a new set of samples, can be used to reduce effort
(Gershman & Goodman, 2014). Amortization has been explored in
other work on probability estimation by Dasgupta, Schulz, Good-
man, and Gershman (2018), but presents an interesting puzzle
when it comes to explaining the conjunction fallacy. In particular,
very high rates of conjunction fallacies have been demonstrated in
choice tasks where people choose whether the simple probability
or the conjunction is more likely. Indeed, these fallacy rates are
often considerably higher than the rates observed in estimation
tasks like those in our experiments (Tversky & Kahneman, 1983;
Wedell & Moro, 2008). This has been explained by the quantum
probability model as the result of order effects (Busemeyer et al.,
2011). If participants are able to reuse samples between queries,
why would conjunction fallacies occur at high rates (or at all) in a
choice task, in which participants could most easily reuse the same
set of samples between queries? The work of Dasgupta et al.
(2018) suggests an answer to this puzzle: Participants seem only
able to remember the summary statistics of samples between
queries rather than the samples themselves. This seems natural if
each sample is nearly the entire state of the brain (as argued in
Sanborn & Chater, 2016), with perhaps only a small part accumu-
lating the relevant summary statistics. If that were the case, then it
may be that sampling is done separately for both choice and
estimation. Of course that still leaves the issue of why the rates
would be higher for choice than for estimation if they are both
sampled separately, and here it may be that needing to provide a
precise numerical response, rather than make a choice, induces
participants to draw a larger sample.

Another potential development of the Bayesian sampler would
be to have an account of sample sizes, and in particular, how
sample sizes might differ depending on question complexity,
rather than merely having separate free parameters for samples for
different types of questions (e.g., conjunctions of one, two, and
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three events, etc.). A direction for future work is then to specify a
relationship between query complexity and sample size, and an
interesting way in which to do so would be to characterize the
“cost” of various cognitive operations such as generating a sample
and evaluating a property of a sample. These costs could reflect the
computational costs of sampling as well as the opportunity of cost
of continuing to sample instead of moving on to the next task. Vul,
Goodman, Griffiths, and Tenenbaum (2014) specified the cost of
each new sample to determine the best number of samples for a
task, and if we could specify each cognitive operation and its
respective cost, that would allow us to determine the optimal
samples size for answering queries of any complexity, using a
limited number of free parameters. Using a prior over probabili-
ties, as the Bayesian sampler does, also enables the use of more
sophisticated stopping strategies: Instead of stopping sampling at a
fixed sample size, the sampling process could be stopped adap-
tively once the expected cost of further sampling exceeds its
expected benefit (Zhu, Sanborn, & Chater, 2019). More generally,
costs could also be assigned to both qualitative reasoning pro-
cesses and to amortization in order to provide a basis for selecting
the process used for each query (Lieder & Griffiths, 2017).

Finally, in the Bayesian sampler and the extensions discuss
above, we have made the simplifying assumption that people draw
independent and identically distributed (i.i.d) samples from their
posterior distribution. But, as we touched on in the introduction,
this does not match the empirical data on how people generate
hypotheses. Instead, people generate correlated samples in which
the identity of the next sample depends on what was produced
earlier. For example, in animal naming tasks, participants who
were asked to freely recall animal names as they come to mind
produced sequential recollections in which neighboring items
tended to be semantically related (Bousfield & Sedgewick, 1944).
Similar results on the autocorrelation of mental samples have been
found in repeated temporal or spatial estimation tasks (Gilden et
al., 1995).

These results imply that people are instead using an algorithm
that generates autocorrelated samples such as Markov Chain
Monte Carlo (MCMC; Gershman et al., 2009; Lieder, Griffiths, &
Goodman, 2012; Metropolis et al., 1953) or more complex alter-
natives (Aitchison & Lengyel, 2016; Zhu et al., 2018). As noted in
the last section, rather than adjusting sample-based estimation
using Bayesian inference, the order effects predicted by quantum
probability and the ordering reversal found in Tentori et al. (2013)
would instead likely need to be explained by the ways in which a
realistic sampler differs from an i.i.d. sampler: where the process
starts and in the way that the sampling process is autocorrelated.
Using the properties of the autocorrelated sampler’s start position
have been used to explain many biases in probabilistic reasoning
(see Dasgupta et al., 2017; Lieder et al., 2012, for details). In our
work, if participants draw very few i.i.d. samples in answering
conjunctive and disjunctive queries, this might appear to yield the
implausible prediction that they would produce very few distinct
responses (a sample of N items can only yield N � 1 outcomes).
Two factors make this unlikely to be observed experimentally.
First, inevitably there will be noise in the process of translating the
results of sampling into (numerical) responses (the nature of this
noise will depend on the fine details of the experimental task).
Second, estimating, and taking account of, sample autocorrelation
would lead participants to reweight samples appropriately,6 intro-

ducing a further source of response variability. Furthermore, other
work has shown how reusing samples can explain other biases in
probabilistic judgment (Dasgupta et al., 2018), including how
PT�N could produce the order effects predicted by quantum
probability (Costello & Watts, 2018), which suggests how to
construct a more realistic Bayesian sampler.

The explanatory power of a more realistic Bayesian sampler can
be best illustrated through the “unpacking” effect. There are,
arguably, two types of unpacking effects: explicit and implicit. In
the explicit unpacking effect, participants are asked to judge each
unpacked descriptor separately, but in the implicit effect they make
a single judgment about the unpacked disjunction. For a descriptor
such as death from natural causes, participants in the explicit
unpacking task are asked to report multiple probability judgments
for unpacked descriptors such as (a) death from heart attack, (b)
death from cancer, and (c) death from other natural causes (e.g.,
Fox & Tversky, 1998; Tversky & Koehler, 1994). By contrast,
participants in the implicit unpacking task only report a single
probability judgment for the unpacked descriptor such as death
from heart attack, cancer, and other natural causes (Dasgupta et
al., 2017; Sloman et al., 2004). The explicit unpacking task almost
always produces a subadditivity effect (i.e., the sum of the prob-
ability judgments of the unpacked descriptors exceeds that of the
packed descriptor; Tversky & Koehler, 1994), whereas the implicit
unpacking task can produce both subadditive and superadditive
results, depending on whether the unpacked descriptor includes
high or low probability events (Dasgupta et al., 2017; Sloman et
al., 2004). These two types of unpacking effect seem neatly to
correspond to the two kinds of mechanisms in a more realistic
Bayesian sampler. The explicit unpacking effect can be explained
by PT�N, and thus a simple Bayesian sampler, because these
models autonomatically produce a subadditivity effect, as small
probabilities are overestimated (Costello & Watts, 2014). In con-
trast, PT�N does not produce an implicit unpacking effect, and
this has instead been explained by the starting point of a more
realistic sampling algorithm: If the sampler starts at a low-
probability example (e.g., superadditivity from an atypical unpack-
ing), a lower probability estimate is expected; the opposite is true
when the sampler starts at a high-probability example (e.g., sub-
additivity from a typical unpacking; Dasgupta et al., 2017; San-
born & Chater, 2016). Adapting the Bayesian sampler to use a
more realistic algorithm with a starting point, autocorrelated sam-
ples, and sample reuse, requires careful analysis and empirical

6 Autocorrelated samples contain less information than i.i.d samples, and
hence should be weighted differently comparing to i.i.d samples. Fortu-
nately, there is a way to do this if the amount of autocorrelation is known,
or can be approximated. The effective sample size can be calculated:

ESS � N

1 � 2�
k�1

�

�(k)

,

(21)

where N is the total number of samples and 
(k) is the degree of autocor-
relation at lag k. The autocorrelated samples can be thus reweighted by
ESS/N to be equivalent to i.i.d samples, and so will each be weighted less
than a single i.i.d. sample. Of course, the autocorrelation will not be known
perfectly if only a short sequence of samples is generated, but autocorre-
lation can be estimated over a lifetime of experience.
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corroboration, but could potentially provide a very powerful ex-
planation of human probabilistic biases.

Summary and Conclusions

We introduced the Bayesian sampler, which assumes probabi-
listic judgments are made by first generating samples from either
memory or an internal probabilistic model. However, instead of
naïvely estimating probabilities using the relative frequency of
samples, the Bayesian sampler uses a generic prior over probabil-
ities to improve the accuracy of these estimates. The Bayesian
sampler is a departure from exact Bayesian models, because it
assumes subjective probabilities are only accessible through sam-
ples, and cannot directly be introspected. Our approach thus is a
better match to the phenomenology of making probability esti-
mates, where it often feels that we can easily retrieve examples,
but are uncertain about our probabilistic estimates. By assuming
that people adjust for their degree of uncertainty correctly in the
light of a limited sample, we explain a variety of classic empirical
biases in probabilistic judgment.
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Appendix A

Detailed Derivations of Model Predictions

In this section, we provide the detailed derivations of the relative
frequency and Bayesian sampler models that appear in the main
text.

Relative Frequency Model

Independent and identically distributed samples are generated
according to the underlying subjective probability P(A), with the
number of those marked A (i.e., successes S(A)) distributed as

S(A) � Bin(N, P(A)), (22)

and conversely there are F(A) � N 	 S(A) samples marked ¬A.
Given S(A) of N samples are read as event A, the relative

frequency estimate of the occurrence of event A is

P̂RF(A) � S(A)
N � Bin(N, P(A))

N . (23)

As the mean of the binomially-distributed random variable S(A)
is NP(A), the mean estimate from relative frequency is thus be
equal to the underlying subjective probability: ��P̂RF�A�� � P�A�.

Similarly, applied to conjunctions, disjunctions, and conditional
probabilities, relative frequency predicts average estimates are
equal to their corresponding underlying subjective probabilities.
As a result, the relative frequency model, on average, is equivalent
to the predictions of probability theory.

Bayesian Sampler

The Bayesian sampler puts a prior distribution over the possible
probabilities, and here we assume a symmetric Beta distribution
prior: Beta(�, �). Given S(A) samples indicating event A and F(A)
indicating event ¬A, both distributed as they are for relative

frequency, the Bayesian sampler’s posterior distribution over prob-
abilities is Beta(� � S(A), � � F(A)). The mean of the posterior
minimizes squared error assuming the prior is correct, and we use
this as the Bayesian sampler’s probability estimate

P̂BS(A) �
S(A) � �
N � 2�

�
Bin(N, P(A)) � �

N � 2�
. (24)

Following the formalization of Equation 24, we can compute the
expected value and variance of probability estimates of the Bayes-
ian sampler

�[P̂BS(A)] � N
N � 2�

P(A) �
�

N � 2�
, (25)

�[P̂BS(A)] � NP(A)(1 � P(A))
(N � 2�)2 . (26)

Alternatively, the median of the posterior, which minimizes
absolute errors, or the mode of the posterior, which gives the most
likely response, could be used as the estimate. The average re-
sponse based on the median can be approximated by replacing � in
Equation 25 by � 	 1/3, and the average response based on the
mode can be approximated by replacing � in Equation 25 by � 	
1. Neither of these alternative statistics are distinguishable from
the mean of the posterior in our analyses of mean responses,
though as they do tend to imply higher values of � when fitting the
same data, they may be less plausible when � is restricted.

The probability estimates of conjunctions, disjunctions, and
conditional probabilities use the same mechanism as is used for
simple events. However, we assume conjunctions and disjunctions
require evaluating two variables from each sample, and that this
additional cognitive cost results in fewer samples N= � N drawn
for each conjunction and disjunction.

(Appendices continue)
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Appendix B

Coherent (On Average) Bayesian Probability Estimates

The Bayesian sampler assumes a Beta(�, �) prior and that each
judgment is the mean of the posterior. This model produces judg-
ments that are incoherent in the same way in which human prob-
ability estimates are incoherent.

However, using a prior does not necessarily result in incoherent
estimates. For a 2 � 2 contingency table that describes the four
possible outcomes of two binary variables, there is at least one
prior that produces coherent estimates: the symmetric Dirichlet
distribution, Dirichlet (�, �, �, �). This prior has a single free
parameter, �, and assumes there is no a priori reason to expect any
of the outcomes to be more likely than any other (Agresti &
Hitchcock, 2005):

(P̂(A � B), P̂( ¬ A � B), P̂(A � ¬ B), P̂( ¬ A � ¬ B))

� Dirichlet(�, �, �, �) (27)

Two properties of the Dirichlet distribution allow us to calculate
the distributions of simple events, conjunctions, and disjunctions.
The aggregation property of the Dirichlet distribution means
that the sum of the elements of a Dirichlet distribution are also
Dirichlet distributed, with parameters equal to the sum of their
corresponding parameters. In addition, for two elements the
Dirichlet distribution simplifies to a Beta distribution. As a results,
for simple events,

(P̂(A � B) � P̂(A � ¬ B), P̂( ¬ A � B) � P̂( ¬ A � ¬ B))

� Dirichlet(2�, 2�) (28)

P̂(A) � Beta(2�, 2�) (29)

Likewise, all four conjunctions have a Beta(�, 3�) prior, and all
four disjunctions, which are each the sum of three elements of the
2 � 2 contingency table, have a Beta(3�, �) prior.

To derive the distributions of conditional events, we first note
that a property of the Dirichlet distribution is that it can be
constructed from the draws of independent Gamma distributions,
which are then divided by the total sum of the draws. Let us
consider four independently distributed Gamma random variables:

x1 � Gamma(�, 1), . . . , x4 � Gamma(�, 1), (30)

and their sum, which is Gamma distributed with shape parameter
equal to the individual shape parameter multiplied by the number
of summed Gamma distributions:

X � �
i�1

4

xi � Gamma(4�, 1). (31)

As �x1

X ,
x2

X ,
x3

X ,
x4

X� is distributed as Dirichlet(�, �, �, �), we can
simply assume that P̂�A � B� � x1 ⁄X, P̂�¬A � B� � x2 ⁄X,
P̂�A � ¬B� � x3 ⁄X, and P̂�¬A � ¬B� � x4 ⁄X.

Conditional events are ratios, for example P̂�A�B� � P̂�A � B�
⁄ P̂�B�. We can thus write this conditional probability as

x1⁄X

x1⁄X � x2⁄X
�

x1

x1 � x2
. As this is a Gamma random variable divided by the sum of itself

and another Gamma random variable, we know that this conditional
probability is also Dirichlet (more specifically Beta) distributed:

x1

x1 � x2
� Beta(�, �). (32)

Thus, the priors over conditional probability estimates follow
Beta(�, �) distributions.

Unlike our generic prior, however, this set of estimates pro-
duced using the Dirichlet prior are coherent, at least assuming that
all of the estimates are made using the same sample. This is a result
of each cell of the 2 � 2 contingency table being incremented by
a pseudocount of �; the resulting estimates are coherent because
relative frequencies are coherent.

(Appendices continue)
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Appendix C

Robustness of the Accuracy Improvements of the Bayesian Sampler

As discussed in the main text, the relative frequency model
produces unbiased probability estimates, whereas the Bayesian
sampler produces biased estimates that are more accurate, in terms
of squared error, when the prior is correct. But does this hold for
a misspecified prior? To investigate this, we conducted a simula-
tion in which we compared the probability estimates predicted by
the relative frequency and Bayesian sampler models, using several
possible distributions of the underlying subjective probabilities
(Figure C1 horizontal axis). For this simulation, we repeatedly
drew probabilities from the true distribution, ptrue � Beta(�true,
�true) and for each underlying subjective probability drew a fixed
set of samples N, and then had both models estimate the underlying
subjective probability from the samples. As a measure of perfor-
mance, we computed the mean squared errors (MSE) between ptrue

and estimates produced by each model, where smaller MSEs
indicate greater accuracy.

In Figure C1, we subtracted the MSE of the relative frequency
model from the MSE of the Bayesian sampler model to quantify
how much more accurate the Bayesian sampler was. It is clear to
see that for a small number of samples (e.g., N � 1, 2, 3, 4), the
Bayesian sampler improves the accuracy of the estimates (provid-
ing the generic prior is close to the true distribution) compared to
relative frequency. For large number of samples (e.g., N � 10),
both models produce similar levels of accuracy. In addition, the
estimates from the Bayesian sampler are increasingly advanta-
geous as the value of �true increases. This is because the estimates
of the relative frequency model are equivalent to an estimate from
the Bayesian sampler using Haldane’s prior, Beta(0, 0).

(Appendices continue)

Figure C1. The degree of improvement in the probability estimate (vertical axis) of the Bayesian sampler
compared with relative frequency. The horizontal axis depicts the underlying subjective probability distributions,
arranged from Beta(0.1, 0.1; most left) to Beta(10, 10; most right). For the Bayesian sampler, a Beta(1, 1) prior
was used throughout this figure. See the online article for the color version of this figure.
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Appendix D

Mean Predictions of the Models for the Probabilistic Identities

In Appendix D we present the predicted average values of each
probabilistic identity for two versions of the Bayesian sampler
(BS) and two versions of probability theory plus noise (PT�N).
One version of the PT�N model, PT�N (�d � 0), used a single
level of random noise, d, across all probability judgments, while
the other version, PT�N (�d � 0), assumed that conjunctions and

disjunctions were subject to additional noise �d. Similarly, one
version of the Bayesian sampler, BS (N � N=), assumed a fixed
number of samples N across all probability judgments, while the
other version, BS (N � N=), assumed that fewer samples N= were
drawn for conjunctions and disjunctions. Bridge conditions were
used to make model predictions comparable.

Table D1
Predicted Average Values of Probabilistic Identities for the Bayesian Sampler (BS) and Probability Theory Plus Noise (PT�N)

Mean identity Model Prediction

��Ẑ1� BS (N � N�) 0

BS (N  N�) 2�d�P�A � B� � P�A�B�� � 2�d
PT�N (�d � 0) 0
PT�N (�d  0) 2�d�P�A � B� � P�A�B�� � 2�d

��Ẑ2� BS (N � N�) 0
BS (N  N� ) 2�d�P�A� � P�B��
PT�N (�d � 0) 0
PT�N (�d  0) 2�d�P�A� � P�B��

��Ẑ3� BS (N � N�) d
BS (N  N�) 2�dP�A� � d
PT�N (�d � 0) d
PT�N (�d  0) 2�dP�A� � d

��Ẑ4� BS (N � N�) d
BS (N  N�) 2�dP�B� � d
PT�N (�d � 0) d
PT�N (�d  0) 2�dP�B� � d

��Ẑ5� BS (N � N�) d
BS (N  N�) 2�d�1 � P�A�� � d
PT�N (�d � 0) d
PT�N (�d  0) 2�d�1 � P�A�� � d

��Ẑ6� BS (N � N�) d
BS (N  N�) 2�d�1 � P�B�� � d
PT�N (�d � 0) d
PT�N (�d  0) 2�d�1 � P�B�� � d

��Ẑ7� BS (N � N�) 2d
BS (N  N�) 2d � 2�d
PT�N (�d � 0) 2d
PT�N (�d  0) 2d � 2�d

��Ẑ8� BS (N � N�) 2d
BS (N  N�) �2�d�P�A� � P�B�� � 2d � 4�d
PT�N (�d � 0) 2d
PT�N (�d  0) �2�d�P�A� � P�B�� � 2d � 4�d

��Ẑ9� BS (N � N�) d�1 � 2d��P�B� � P�A�B� � P�A� � P�B�A��
BS (N  N�) d�1 � 2d��P�B� � P�A�B� � P�A� � P�B�A��
PT�N (�d � 0) 0
PT�N (�d  0) 0

��Ẑ10� BS (N � N�) d�1 � 2d��P�A�B� � P�A�¬B� � 2P�A��
BS (N  N�) d�1 � 2d��P�A�B� � P�A�¬B� � 2P�A��
PT�N (�d � 0) 0
PT�N (�d  0) 0

(Appendices continue)
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Table D1 (continued)

Mean identity Model Prediction

��Ẑ11� BS (N � N�) d�1 � 2d��P�B�A� � P�B�¬A� � 2P�B��
BS (N  N�) d�1 � 2d��P�B�A� � P�B�¬A� � 2P�B��
PT�N (�d � 0) 0
PT�N (�d  0) 0

��Ẑ12� BS (N � N�) d�1 � 2d��P�B�A� � P�¬B� � P�A�¬B� � P�A� � 1�
BS (N  N�) d�1 � 2d��P�B�A� � P�¬B� � P�A�¬B� � P�A� � 1�
PT�N (�d � 0) 0
PT�N (�d  0) 0

��Ẑ13� BS (N � N�) d�1 � 2d��P�A�B� � P�¬A� � P�B�¬A� � P�B� � 1�
BS (N  N�) d�1 � 2d��P�A�B� � P�¬A� � P�B�¬A� � P�B� � 1�
PT�N (�d � 0) 0
PT�N (�d  0) 0

��Ẑ14� BS (N � N�) �1 � 2d�2�P�A � ¬B� � P�¬A � B�� � d�1 � 2d��P�A�¬B� � P�¬B�
� P�¬A� � P�B�¬A�� � �1 � 2d��P�B� � P�A��

BS (N  N�) �1 � 2d�2�P�A � ¬B� � P�¬A � B�� � d�1 � 2d��P�A�¬B� � P�¬B�
� P�¬A� � P�B�¬A�� � �1 � 2d��P�B� � P�A��

PT�N (�d � 0) �1 � 2d�2�P�A � ¬B� � P�¬A � B�� � d�1 � 2d��P�A� � P�¬B� � P�¬A�
� P�B�� � �1 � 2d��P�B� � P�A��

PT�N (�d  0) �1 � 2d�2�P�A � ¬B� � P�¬A � B�� � d�1 � 2d��P�A� � P�¬B� � P�¬A�
� P�B�� � �1 � 2d��P�B� � P�A��

��Ẑ15� BS (N � N�) d�1 � 2d��2P�A � B� � P�A�B� � P�B�� � d�1 � d�
BS (N  N�) �2d � 2�d � 4d2�P�A � B� � d�1 � 2d��P�A�B� � P�B�� � d2 � d � �d
PT�N (�d � 0) d�1 � 2d��2P�A � B� � P�A� � P�B�� � d�1 � d�
PT�N (�d  0) �2d � 2�d � 4d2�P�A � B� � d�1 � 2d��P�A� � P�B�� � d2 � d � �d

��Ẑ16� BS (N � N�) d�1 � 2d��2P�A � B� � P�A� � P�B�A�� � d�1 � d�
BS (N  N�) �2d � 2�d � 4d2�P�A � B� � d�1 � 2d��P�B�A� � P�A�� � d2 � d � �d
PT�N (�d � 0) d�1 � 2d��2P�A � B� � P�A� � P�B�� � d�1 � d�
PT�N (�d  0) �2d � 2�d � 4d2�P�A � B� � d�1 � 2d��P�B� � P�A�� � d2 � d � �d

��Ẑ17� BS (N � N�) �1 � 2d��P�A � B� � P�A�� � �1 � 2d�2P�A � ¬B� � d�1 � 2d��P�A�¬B� � P�¬B�� � d2

BS (N  N�) �2 � 6d � 2�d � 4d2�P�A � B� � d�1 � 2d��P�A�¬B� � P�¬B��
� �1 � 2d�P�A� � d2 � �d

PT�N (�d � 0) �1 � 2d��P�A � B� � P�A�� � �1 � 2d�2P�A � ¬B� � d�1 � 2d��P�A� � P�¬B�� � d2

PT�N (�d  0) �2 � 6d � 2�d � 4d2�P�A � B� � d�1 � 2d��P�A� � P�¬B�� � �1 � 2d�P�A� � d2 � �d
��Ẑ18� BS (N � N�) �1 � 2d��P�A � B� � P�B�� � �1 � 2d�2P�B � ¬A� � d�1 � 2d��P�B�¬A�

� P�¬A�� � d2

BS (N  N�) �2 � 6d � 2�d � 4d2�P�A � B� � d�1 � 2d��P�B�¬A� � P�¬A��
� �1 � 2d�P�B� � d2 � �d

PT�N (�d � 0) �1 � 2d��P�A � B� � P�B�� � �1 � 2d�2P�B � ¬A� � d�1 � 2d��P�B�
� P�¬A�� � d2

PT�N (�d  0) �2 � 6d � 2�d � 4d2�P�A � B� � d�1 � 2d��P�B� � P�¬A��
� �1 � 2d�P�B� � d2 � �d

Note. For presentation purposes, the bridge conditions between the Bayesian sampler and PT�N models were applied: d �
�

N�2�
and d � �d �

�
N��2�

. Equivalently, �d �
�N�N���

�N�2���N��2��
.

29THE BAYESIAN SAMPLER



Appendix E

Fitting Models to Distributions of Raw Judgments of Individuals

In the main text, we fit the mean judgments rather than individ-
ual judgments to avoid having to specify additional processes, such
as how participants round their estimates. This is a particularly
thorny technical challenge for fitting the models considered in this
article as they all make discrete and often sparse predictions. For
example, the Bayesian sampler with N � 1 and � � 1 predicts
every response will be either one third or two third. Even if these
probability estimates were merely rounded to the nearest 0.05, the
log-likelihood of the data under these parameters becomes nega-
tive infinity. It is however worth addressing this challenge, as the
models do make different predictions for individual judgments,
and some parameters in the Bayesian sampler are only identifiable
when fit to individual judgments.

To quantify the degree of fit between individual model predic-
tions and individual judgments, we abandoned measures of like-

lihood and adopted a commonly-used statistical distance for two
discrete distributions: Wasserstein distance (e.g., Frogner et al.,
2015). Intuitively, Wasserstein distance (informally known as
“earth mover’s distance”) can be thought of as minimal amount of
effort needed to change one discrete distribution (which to assist
this intuition can be thought of as a pile of dirt) into another
discrete distribution (or another pile of dirt). The smaller the
Wasserstein distance between model and data, the better the model
matches the empirical distribution. More formally, the Wasserstein
distance between distributions u and v is defined as:

W1(u, v) � �x�0

1
�U�1(x) � V�1(x)�dx (33)

where U and V are respective cumulative density functions (CDFs)
of u and v. In our case, CDFs of probability estimates are restricted
to lie within the interval [0, 1].

Appendix F

Reanalyzing Results Excluding Participants Potentially Using Qualitative Reasoning

In the main text, we compared computational models based on
sampling: the relative frequency, PT�N, and Bayesian sampler
models. It is, however, possible that some participants may have
adopted qualitative reasoning strategies in estimating probabilities,
which is beyond the scope of any of these sampling-based models.
One qualitative reasoning strategy, which is particularly applicable
in judging the highly dependent events of Experiment 1, is to treat
the pairs of events as identical. For example, when event A and B
are treated as identical, judging P(A � ¬B) would be seen as
equivalent of judging P(A � ¬A) and for each question the answer
would be 0. Thus, in our experiments, judged probability estimates
of zero or one could be a sign that qualitative reasoning was used,
though of course individual probability judgments of zero or one
could be produced by a sampling-based model. Thus as a very
conservative criterion for excluding qualitative reasoning, we re-
analyzed the data excluding participants who produced any prob-
ability estimates of zero or one (i.e., responses of zero or 100)
during their experimental session.

Under this exclusion rule, 19 (out of 59) participants were
removed in Experiment 1, whereas 11 (out of 84) participants were
removed in Experiment 2. The overall fitting and statistical results
are similar before and after exclusion. For the 40 participants who

remained in the Experiment 1, 60%, 2.5%, and 37.5% were best-
fitted by the Bayesian sampler, relative frequency, and PT�N
models respectively (two-tailed binomial test for whether the
Bayesian sampler best-fits more than half of participants, p � .199,
and protected exceedance probability for the Bayesian sampler
was .9201). For the key identities Z10 to Z13, six out of eight were
different from zero (with both p � .05 and Bayes factor � 3) in the
direction predicted the Bayesian sampler after exclusion.

For the 73 participants remained in the Experiment 2,
76.71%, 0%, and 38.36% participants were best-fitted by the
Bayesian sampler, relative frequency, and PT�N models re-
spectively (two-tailed binomial test for whether the Bayesian
sampler best-fits more than half of participants, p � .001, and
protected exceedance probability for the Bayesian sampler was
.9898). All of the key identities of Experiment 2 remained
indistinguishable from zero (with both p � .05 and Bayes
factor � 3) after exclusion.
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