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!  for both models. The APE model has an additional 
parameter ! .
β = 2, γ = .98

g + = .1
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Reward magnitude manipulation. (A) An illustration of  the 
experimental procedure of  the monkey study reported in Blanchard et 
al. (2015). On each trial, monkeys were presented with two offers in 
sequence, each followed by a dark screen period (order is 
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±
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Abstract 
Understanding the algorithmic nature of  mental processes is of  vital 

importance to psychology, neuroscience, and artificial intelligence. In 

response to a rapidly changing world and computational demanding 

cognitive tasks, evolution may have endowed us with brains that are 

approximating rational solutions, such that our performance is close to 

optimal. This thesis suggests one instance of  the approximation algorithms, 

sample-based approximation, to be implemented by the brain to tackle 

complex cognitive tasks. Knowing that certain types of  sampling is used to 

generate mental samples, the brain could also actively correct for the 

uncertainty comes along with the sampling process. This correction process 

for samples left traces in human probability estimates, suggesting a more 

rational account of  sample-based estimations. In addition, these mental 

samples can come from both observed experiences (memory) and 

synthesised experiences (imagination). Each source of  mental samples has 

unique role in learning tasks and the classical error-correction principle of  

learning can be generalised when mental-sampling processes are considered.  
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Chapter 1  

Why Sampling? 
“The first thoughts and attempts I made to practice [the Monte Carlo method] were 

suggested by a question which occurred to me in 1946 as I was convalescing from an 

illness and playing solitaires. The question was what are the chances that a Canfield 

solitaire laid out with 52 cards will come out successfully? After spending a lot of  time 

trying to estimate them by pure combinatorial calculations, I wondered whether a more 

practice method than ‘abstract thinking’ might not be to lay it out say one hundred times 

and simply observe and count the number of  successful plays” (Stan Ulam, 1983) 

1.1 Intuitions for Sampling 
	 The spirit of  sampling is captured by Stan Ulam’s interest in 

estimating the probability of  winning in solitaire — from the simple to the 

sublime. When the analytical solution is difficult to obtain, numerical 

approximations are often treated as desirable alternatives. Another classic 

example that demonstrates the power of  sampling is the calculation of  the 

value of  !  (the ratio of  a circle’s circumference to its diameter). The sample-

based approximation to !  takes three simple steps. First, we inscribe a circle 

within a square. Second, randomly scatter a number of  points over the 

square. Third, count up the number of  points bounded inside the circle. 

Given that the ratio of  areas of  circle and square is ! , the value of  !  can 

be approximated from number of  points inside the circle and the total 

number of  points:  

!                           (1.1) 

	 As illustrated in the Figure 1, on average, the sample-based 

approximation improves in accuracy to the true value of  !  as more samples 

are generated.  

π

π

π /4 π

π ≈ 4 × no. of points within circle
total no. of points

π
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	 Indeed, the history of  scientific development resembles an ever-

lasting sample-based approximation to truth. Generations of  scientists are 

constantly drawing samples from nature, through experimentation, in order 

to perform better estimates on the probabilities of  possible theoretical 

models. Though the number of  samples or experiments is always finite, by 

continually sampling, we slowly build up a picture of  all of  the probabilities. 

 

Figure 1. Approximating the value of  !  through sampling. Points that placed 

inside the circle are marked as red and those outside are blue. The accuracy 

of  sample-based approximation increases as more samples are scattered in 

the square, on average. 

1.2 A Rational Model of  Sampling Brain 
	 Similar challenges, at least in principle, are also imposed on the 

brain: the world is a highly uncertain place, and we want our brain to be 

able to generate good estimates of  these uncertainties. In fact, there are 

many sources of  uncertainty the brain has to deal with, including the 

sensory system, the motor apparatus, one’s own knowledge, and the data-

generation process from the world. To process noisy data efficiently to make 

judgments and guide choices, the brain must represent and use information 
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about uncertainty in its computations. One normative and ecologically 

rational method is for the brain to adopt a Bayesian approach because it 

provides an optimal way of  reasoning about these uncertainties — the 

Bayesian brain hypothesis (Knill & Pouget, 2004; Doya, Ishii, Pouget, & Rao, 

2007; Friston, 2012; Sanborn & Chater, 2016). Indeed, over the past few 

decades, Bayesian approach has spawned an enormous range of  

applications in cognitive science from perception (Knill & Richards, 1996; 

Yuille & Kersten, 2006; Gershman, Vul, & Tenenbaum, 2009; Shams & 

Beierholm, 2010), memory (Anderson & Milson, 1989; Gershman, 2017), 

intuitive physics (Sanborn, Mansinghka, & Griffiths, 2013; Battaglia, 

Hamrick, & Tenenbaum, 2013), and animal learning (Courville, Daw, & 

Touretzky, 2006; Gershman, Blei, & Niv, 2010). Moreover, a growing body 

of  neuroscience evidence suggests a complementary explanation of  Bayesian 

models of  cognition in that the brain could encode information 

probabilistically with neural computations that follows Bayes rule (e.g., Knill 

& Pouget, 2004; Berkes, Orban, Langyel, & Fiser, 2011; Savin & Deneve, 

2014).   

	 Yet, the large literature on judgment and decision-making has 

emphasised irrationality and identified an array of  replicable systematic 

biases in cognition (e.g., Peterson & Beech, 1967; Tversky & Kahneman, 

1973; 1974; 1983; Gigerenzer & Gaissmaier, 2011; Hilbert, 2012). This 

research tradition apparently argues against normative Bayesian principles 

and advocates heuristic approximations of  various kinds (e.g., Gigerenzer, 

2001; Ariely, 2009; Marcus, 2009; McRaney, 2011), downplaying any 

systematic coherence in how the brain deals with uncertainty.   

	 In addition, many everyday cognitive tasks, such as recognising a cat 

from a photo or identifying your mother’s voice from phone calls, may look 

too trivial to be solved by a Bayesian approach. Consider, however, the sheer 

number of  pixels or speech waves the brain has to process, and even worse, 

the vast space of  alternative explanations for those input data (e.g., it could 

be that a dog was in the photo or your aunt was calling) that the brain has to 

take into account. From this perspective, most cognitive tasks are too 

computationally difficult to be able to be solved through exact Bayesian 
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inferences. Indeed, the computational problem faced by agents attempting to 

be rational (including Bayesian inference) is generally intractable (Aragones, 

Gilboa, Postlewaite, & Schmeidler, 2005; Sanborn & Chater, 2016; Bossaerts 

& Murawski, 2017; Lieder, Griffiths, & Hsu, 2018). 

	 Thus, we are faced with an apparent paradox: how can Bayesian 

models of  cognition be so useful, when (a) some basic elements of  such 

models appear to be systematically biased and (b) there is a pervasive 

tractability problem across any application of  rational models.    

	 To reconcile the Bayesian models of  cognition and the daunting 

intractability of  these models in exact inference, the brain has to perform 

some approximation algorithms. In particular, I suggest that the brain may 

adopt sample-based approximation that removes the computations of  

representing a full probability distribution, instead approximating the 

distribution with a set of  samples; we call the samples employed by the brain 

to conduct inference as mental samples. Just like the samples used to 

approximate ! , mental samples are also stochastic and reasonably easy to 

generate, and in the limit, an infinite number of  mental samples will 

produce the same answers as exact Bayesian inference. The approach that 

uses sampling to approximate Bayesian inference is known as a Bayesian 

sampling model (Sanborn & Chater, 2016).  

	 Recent theoretical developments within the Bayesian sampling 

framework have identified many sampling algorithms, which have 

algorithmic limitations that can naturally lead to a number of  systematic 

biases (Lieder, Griffiths, & Goodman, 2012; Sanborn & Chater, 2016; Vul, 

Goodman, Griffiths, & Tenenbaum, 2016; Dasgupta, Schulz, & Gershman, 

2017; Zhu, Sanborn, & Chater, 2018). This suggests that the Bayesian 

sampling framework may resolve both the tractability issue of  computations 

and the deviation from rationality. For example, if  a local sampling 

algorithm is used by the brain, the resultant sample-based estimations are 

naturally biased toward the starting point of  the algorithm, constituting an 

anchoring effect (Tversky & Kahneman, 1974; Lieder et al., 2012; Lieder, 

Griffiths, Huys, & Goodman, 2018). Many systematic biases of  cognition 

can already be accommodated by Bayesian sampling models such as the 

π
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anchoring effect, availability bias, unpacking effect, conjunction fallacy, 

subadditivity, and superadditivity (e.g., Lieder et al., 2012; Sanborn & 

Chater, 2016; Lieder, Griffiths, & Hsu, 2018; Dasgupta, Schulz, Goodman, 

& Gershman, 2018). Furthermore, this Bayesian sampling approach has also 

been implemented in spiking neural networks — as in the neural sampling 

hypothesis (Moreno-Bote, Knill, & Pouget, 2011; Berkes et al., 2011; Orban, 

Berkes, Fiser, & Lengyel, 2016; Hennequin, Vogels, & Gerstner, 2014; 

Buesing, Bill, Nessler, & Maass, 2011; Savin, Dayan, & Lengyel, 2014; Savin 

& Deneve, 2014; Haefner, Berkes, & Fiser, 2016), suggesting a promising 

direction that bridges computational, algorithmic, and implementational 

levels of  analysis of  cognition (Marr, 1982).  

	 Starting from the principle that the brain is approximating rational 

solutions (possibly with sampling), a rich web of  theoretical insights can be 

derived. I first study the question: “where to sample?” (Chapter 2). Specifically, 

by assuming a mental representation of  some cognitive task, where should 

the mind generate the next sample? Bayesian sampling accounts have to deal 

with the following two phenomena: both distances (Bousfield & Sedgewick, 

1944; Rhodes & Turvey, 2007; Zhu et al., 2018) and autocorrelations 

(Gilden, Thornton, & Mallon, 1995; Farrell, Wagenmakers, & Ratcliff, 2006; 

Van Orden, Holden, & Turvey, 2005) of  mental samples are scale-free. 

These spatiotemporal patterns of  mental samples shed light on the 

algorithmic nature of  the possible sample-generating processes employed by 

the brain. I will perform an evaluation for three candidate sampling 

algorithms: direct sampling, Markov chain Monte Carlo (MCMC), and 

Metropolis-coupled Markov chain Monte Carlo (! ). While the first two 

sampling algorithms have previously been proposed as mechanistic models 

of  cognition (e.g., Vul et al., 2014; Sanborn & Chater, 2016; Dasgupta et al., 

2017), they cannot reproduce either observed spatiotemporal pattern. The 

!  algorithm, one of  the first sampling algorithms that was designed to 

better explore multimodal representations, is able to capture these patterns. 

This result suggests that the brain may employ sampling algorithms that can 

search multimodal representations effectively.  

MC3

MC3
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	 When the brain has collected a set of  mental samples, the next 

question would be “how to make an estimate based on samples?” (Chapter 3). 

Given the fact that the mental samples are inherently stochastic (to different 

degrees for different sampling algorithms), the brain should not trust these 

mental samples equally, and, if  possible, should take into account the 

stochasticity. The optimal way to temper these intrinsic uncertainties of  

mental samples is, again, Bayesian inference (e.g., Bayesian Monte Carlo: 

Ghahramani & Rasmussen, 2003). As a proof-of-concept, I made simplifying 

assumptions such that the brain performs exact Bayesian inference on 

mental samples that are generated through direct sampling from the target 

distribution. This additional Bayesian inference on mental samples will alter 

the sample-based estimations. For example, in estimating probabilities of  

event A, the relative frequency of  samples has no way of  integrating the 

observed frequencies with prior knowledge about the behaviour of  event A. 

From a Bayesian sampling perspective, agents should always bring in their 

prior assumption of  how likely the event A was to occur. Indeed, the sample-

based estimations improve accuracy when this additional Bayesian inference 

on mental samples is performed. By considering the possibility that the brain 

corrects for mental samples, I explore the consequence of  this idea and 

gauge how well it explain human probability estimates. 

1.3 Sample from Memory and Simulation 
	 There are two fertile sources of  data generating mental samples: 

memory (observed) and simulation (imagined). Throughout this thesis, I 

adopt restricted definitions such that samples from memory are observed 

experiences in the past and those from simulation are synthesised 

experiences for possible futures. Though both remembered old experiences 

and imagined experiences help us to make “discoveries” in the absence of  

new experience, they are now distinguishable concepts with distinct 

temporal tags. An informative arena to investigate the role of  mental 

sampling from past and future is the animal learning literature where 
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animals’ value estimates are constantly updated in response to streams of  

experiences. In Chapter 4 and Chapter 5, I endeavour to continue the 

theoretical journey regarding “what is learning?” with mental sampling. 

	 Despite ambiguity in the definition of  learning, experimental 

paradigms such as classical conditioning (e.g., Pavlov, 1927; Kamin, 1969; 

Lubow, 1973) and instrumental conditioning (e.g., Thorndike, 1911; Skinner, 

1963; Mackintosh, 1983) offer a broad agreement with regard to an 

operational definition of  learning: a relatively permanent change of  behaviour 

resulting from experiences (Thorpe, 1956). It allows a formal quantitative 

measurement of  learning as experience-induced behavioural changes. In this 

way, other antecedents of  behavioural changes are explicitly excluded such 

as changes in motivational state (e.g., hunger or thirst) and developmental 

trajectory. While a robust empirical description of  learning, the mechanisms 

constituting this learning (i.e., the processes underlying the observable 

behaviour changes with experience) remain outside the scope of  this 

operational definition. 

	 The contemporary view on classical and instrumental conditioning is 

dominated by the error-correction principle of  learning, as manifested in the 

Rescorla-Wagner model (Rescorla & Wagner, 1972) and the temporal-

difference model (TD model: Sutton & Barto, 1990). According to these 

models, learning occurs whenever there is a discrepancy between delivery of  

reinforcement and the animal’s expectation (i.e., guess about the 

reinforcement).  Over time, animals attempt to minimise these prediction 

errors. Both the Rescorla-Wagner and TD models operationalise the error-

correction principle; however, the TD model further generalises the trial-

level Rescorla-Wagner model to real-time, and animals are assumed to learn 

a guess from another guess (Sutton & Barto, 1990; Sutton & Barto, 2018). 

The prediction error for the TD model is thus defined as discrepancy 

between two temporally-separated guesses. 	  

	 I will show that the classical error-correction learning rule can be 

dramatically improved by incorporating additional sampling mechanisms. 

Reusing mental samples drawn from remembered past conditioning trials 

can augment the standard model based on error-correction learning rules in 
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classical conditioning (Chapter 4). Typically, training data for a learning 

agent is limited to the real experiences and interactions with the 

environment. This is, however, a limited view on what can be treated as 

training data for learning agents; old experiences need not to be forgotten 

and may enhance the performance of  learning if  appropriately re-used. As I 

will show, this mechanism of  reusing mental samples from memory can 

rectify a number of  important failures of  the basic Rescorla-Wagner model 

(see Miller, Barnet, & Grahame, 1995 for a review of  failures and successes 

of  the Rescorla-Wagner model). Indeed, even when past trial memories were 

reused at random, the random replay model generalises the Rescorla-Wagner 

model to spontaneous recovery, latent inhibition, retrospective revaluation 

effects, and the facilitatory effects of  hippocampal lesion (Ludvig, Zhu, 

Mirian, Kehoe, & Sutton, under review).  

	 A further application of  mental sampling to animal learning will be 

discussed with a subset of  experiments using instrumental conditioning — 

those showing how animals will sometimes engage in suboptimal choice 

when faced with cues for rewards (e.g., Wyckoff, 1952; Prokasy, 1956; 

Dinsmoor, 1983; Spetch, Belke, Barnet, Dunn, & Pierce, 1990; Stagner & 

Zentall, 2010; Bromberg-Martin & Hikosaka, 2011; Blanchard, Hayden, & 

Bromberg-Martin, 2015; Iigaya, Story, Kurth-Nelson, Dolan, & Dayan, 

2016; Bennett, Bode, Brydevall, Warren, & Murawski, 2016; Zhu, Xiang, 

Ludvig, 2017; Rodriguez-Cabrero, Zhu, & Ludvig, in press). Like other 

instrumental learning procedures, animals can choose what to learn; the 

exploration and exploitation dilemma is present (Daw et al., 2006; Cohen, 

McClure, & Angela, 2007; Hills et al., 2015; Sutton & Barto, 2018). The 

suboptimal choice paradigm, however, stresses the informativeness of  

conditioned stimuli. Rewards are delivered stochastically to the animals, but 

there are sometimes cues that predict the arrival of  these rewards. Often, in 

this type of  experiment, animals have to choose between an informative 

option and a non-informative option. The sub-optimality comes from cases 

when animals favour the less-rewarding but more informative option, 

suggesting a strong desire for information even at the expense of  primary 

rewards (e.g., food and water). The sub-optimal choice experiments have 
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long been used to study preference for information and, more broadly, 

curiosity (when information provided by the informative option are non-

instrumental in the sense that it cannot alter the eventualities or their 

chances).  

	 This information-induced sub-optimality challenges the standard TD 

model or any other value maximisation accounts based on primary rewards 

(Bromberg-Martin & Hikosaka, 2009; Beierholm & Dayan, 2010; Iigaya et 

al., 2016; Zhu, Xiang, & Ludvig, 2017). A number of  significant revision 

and refinements has been made to the TD model make it more compatible 

with the observed sub-optimality in animals, including additional attention 

mechanisms (Beierholm & Dayan, 2010), an information bonus (Bromberg-

Martin & Hikosaka, 2011; Bennett et al., 2016), or the addition of  

anticipatory utility (Iigaya et al., 2016). As we shall see later, these 

modifications of  the standard TD model not sufficient for a comprehensive 

explanation of  the information-induced sub-optimality. Alternatively, in 

Chapter 5, I suggest an anticipatory sampling mechanism that may unify 

five distinct empirical challenges from the sub-optimal choice literature: cue-

outcome contingency, uncertainty resolution, delay to outcomes, reward 

magnitudes, and the impact of  negative outcomes (e.g., Stagner & Zentall, 

2010; Kendall, 1974; 1975; Green & Rachlin, 1977; Bromberg-Martin & 

Hikosaka, 2009; 2011; Iigaya et al., 2010; Blanchard et al., 2015; Zhu et al., 

2017).  

	 According to our model, to choose among options, animals are 

assumed to execute forward samplings of  the future prospects of  choosing 

any option (Zhu et al., 2017). The proposed anticipatory sampling 

mechanism requires animals to anticipate future episodes, and these samples 

from this imagined future should inform animals about the prospects of  

their actions. To elicit a choice, animals not only rely on the learnt value 

estimates of  options, but also the difference between the current value 

estimates of  options and the potential future prospects of  choosing these 

options. This difference, named anticipated prediction errors, contains critical 

information on whether animals’ well-being will be improved or 

deteriorated, according to their own beliefs. The model treats these 
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anticipated prediction errors as rewarding or punishing, just like primary 

rewards. In this way, many sub-optimal choices can be reinterpreted as a 

consequence of  animals’ sampling bias in their imaginative simulation to 

pursue certain future paths. These anticipated prediction errors quantify 

how much reward animals expect to receive along imagined paths and 

provide useful signals to guide decision making. 
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Chapter 2  

Where to Sample? 

2.1 Introduction  
	 Suppose that I already have a mental representation of  some 

cognitive task (we shall return to specific tasks below) from which I wish to 

draw samples in order to better guide my upcoming decisions, how should I 

explore my mental representation efficiently? In this chapter, we suggest a 

mechanistic model whose process of  sampling matches the spatio-temporal 

properties of  human mental sampling.  

	 As noted in Chapter 1, in many complex cognitive domains, such as 

vision, motor control, language, categorisation or common-sense reasoning, 

human behaviour is consistent with the predictions of  Bayesian models (e.g., 

Battaglia et al., 2013; Sanborn et al., 2013; Chater & Manning, 2006; 

Anderson, 1991; Tenenbaum, Kemp, Griffiths, & Goodman, 2011; Kemp & 

Tenenbaum, 2009; Wolpert, 2007; Yuille & Kersten, 2006). Bayes’ theorem 

prescribes a simple normative method for combining prior beliefs with new 

information to make inferences about the world. Intuitively, the Bayesian 

approach gives a formal framework for finding the best action under 

uncertainty, by assigning each possible state of  the world a possibility and 

using the laws of  probability to calculate the best action. However, the sheer 

number of  hypotheses that must be evaluated suggests that individuals are 

performing some kind of  approximate inference, such as sampling (Vul et 

al., 2014; Sanborn & Chater, 2016). To illustrate, suppose a Bayesian brain 

must represent all possible probabilities and make exact calculations on 

them, the number of  real numbers required to encode the joint probability 

distribution over n binary variables grows exponentially with ! , quickly 

surpassing the capacity of  any physical system including the brain. Yet, the 

brain often must represent and process exactly such vast data spaces in daily 

2n
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cognitive tasks, such as images or speech recognition, resolving an effectively 

infinite hypothesis spaces of  possible scenes or sentences. It is clear that the 

exact representation of  probabilities and explicit computation of  law of  

probabilities (e.g., conditionalisation and marginalisation) for Bayesian 

computational models is impossible.  

	 How, then, can a Bayesian model of  cognition possibly work if  it 

does not explicitly represent probabilities? Using sampling to approximate 

Bayesian models of  complex problems makes many difficult computations 

easy: instead of  integrating over vast hypothesis spaces, samples of  

hypotheses can be drawn from the posterior distribution. This makes 

sampling free from requiring knowledge of  whole distribution. The 

computational cost of  sample-based approximations only scales with the 

number of  samples rather than with the size of  hypothesis space, though 

using a small number of  samples results in biased inference. Using a number 

of  samples much smaller than the number of  hypotheses makes the 

computation feasible, though it may introduce biases. 

	 Interestingly, the biases in inference that are introduced by using a 

small number of  samples match some of  the biases observed in human 

behaviour. For example, probability matching (Vul et al., 2014; Wozny, 

Beierholm, & Shams, 2010), anchoring effects (Lieder et al., 2012), and 

many reasoning fallacies (Dasgupta et al., 2017; Sanborn & Chater, 2016) 

can all be explained in this way.  

	 Yet, there is as of  now no consensus on the exact nature of  the 

algorithm used to sample from human mental representations. Previous 

work has posited that people either use direct sampling or Markov Chain 

Monte Carlo (MCMC) to sample from their posterior distribution over 

hypotheses (Vul et al., 2014; Lieder et al., 2012; Dasgupta et al., 2017; 

Sanborn & Chater, 2016). In this chapter, we demonstrate that these 

algorithms cannot explain two key empirical effects that have been found in 

a wide variety of  cognitive tasks. In particular, these algorithms do not 

produce distances between samples that follow a Lévy flight distribution, and 

separately they do not produce autocorrelations in the samples that follow 

1/f scaling. A further issue is that mental representations have been shown to 
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be “patchy” or multimodal — there are high probability regions separated 

by large regions of  low probability — and MCMC is ill suited for 

multimodal distributions. We therefore evaluate one of  the first algorithms 

developed for sampling from multimodal probability distribution, 

Metropolis-coupled MCMC ( ! ), and demonstrate that it produces both 

key empirical phenomena. Previously Lévy flight distributions and 1/f 

scaling have been separately explained as the result of  efficient search and as 

a signal of  self-organising behaviour respectively (Viswanathan, Buldyrev, 

Havlin, Da Luz, Raposo, & Stanley, 1999; Van Orden, Holden, & Turvey, 

2003). Here we provide the first account to explain both phenomena as the 

result of  the same purposeful mental activity.  

2.2 Distances between mental samples: Lévy flights 
	 In the real world, resources are rarely distributed uniformly in the 

environment. Food, water, and other critical resources often occur in 

spatially isolated patches with large gaps in between. As a result, humans’ 

and other animals’ foraging behaviours should be adapted to such patchy 

environments. In fact, foraging behaviour has been observed to produce 

Lévy flights, which is a class of  random walk whose step lengths follow a 

heavy-tailed power-law distribution (Shlesinger, Zaslavsky, & Frisch, 1995). 

In the Lévy flight distribution, the probability of  executing a jump of  length 

l is given by: 

!                                          (2.1) 

where ! , and the values !  do not correspond to a normalisable 

probability distribution. Examples of  mobility patterns following the Lévy 

flight distribution have been recorded in albatrosses (Viswanathan, 

Afanasyev, Buldyrev, Murphy, Prince, & Stanley, 1996), marine predators 

(Sims et al., 2008), monkeys (Ramos-Fernandez, Mateos, Miramontes, 

Cocho, Larralde, & Ayala-Orozco, 2004), and humans (Gonzalez, Hidalgo, 

& Barabasi, 2008).  

MC3

P(l ) ∼ l−μ

1 < μ ≤ 3 μ ≤ 1
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	 Lévy flights are advantageous in patchy environments where 

resources are sparsely and randomly distributed because the probability of  

returning to a previously visited target site is smaller than in a standard 

random walk. In the same patchy environment, Lévy flights can visit more 

new target sites than a random walk does (Berkolaiko, Havlin, Larralde, & 

Weiss, 1996). More formally, it has been proven that, in foraging, the optimal 

exponent is !  regardless of  the dimensionality of  the space if  the 

following three criteria are satisfied: (a) the target sites are sparse, (b) they can 

be visited any number of  times, and (c) the forager can only detect and 

remember nearby target sites (Viswanathan et al., 1999). 

	 It has long been known that mental representations of  concepts are 

also patchy (Bousfield & Sedgewick, 1944) and remarkably the distance 

between mental samples also follows a Lévy-flight distribution. For example, 

in a semantic fluency task (e.g., asking participants to name as many distinct 

animals as they can), the retrieved animals tend to form clusters (e.g., pets, 

water animals, African animals) (Troyer, Moscovitch, & Winocur, 1997). This 

same task has also been found to produce a Lévy-flight distribution of  inter-

response intervals (IRI) (Rhodes & Turvey, 2007).  

2.2.1 New Experiment on Distances between Mental Samples 
	 As we are interested in mental sampling, which can retrieve the same 

item multiple times, rather than destructive foraging, where an item once 

found is used up, we conducted a new memory retrieval experiment. Ten 

native English speakers (6 Female and 4 Male, and aged 19-25 years) were 

recruited from the SONA system of  Warwick University (Coventry, UK). 

The task lasted about 60 minutes or until the participants typed 1024 words. 

Participants sat in a soundproof  cubicle for this task and were paid 6 GBP 

for completing the experiment.  

	 The following instructions appeared on the screen before the task 

began: 

μ = 2
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	 Participants were also told to press ENTER when they finished 

typing an animal name. The inter-response interval (IRI) was the duration 

between last ENTER pressed and the next key response. 

	 Participants showed power-law scaling of  their IRI, replicating the 

main finding of  Rhodes and Turvey (2007) (see Figure 3A). IRIs can be 

considered a rough measure of  the distance between mental samples, 

assuming that generating a sample takes a fixed amount of  time, that there 

are unreported samples generated between each reported sample, and that 

the sampler has traveled further the more unreported samples that are 

generated. As further support, we used a standard technique from 

computational linguistic to measure the distances between mental samples, 

again finding Lévy flight distributions for these distances (see Appendix 

section 2.7.3) 

2.3 Autocorrelations of  mental samples: 1/f  noise 
	 Separate from investigations into the distances between mental 

samples, a number of  studies have reported that many cognitive activities 

contain long-range, slowly decaying autocorrelations in time. These 

autocorrelations tend to follow a 1/f scaling law (Kello, Brown, Ferrer-i-

Cancho, Holden, Linkenkaer-Hansen, Rhodes, & Van Orden, 2010):  
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Hello and Welcome! 

In this free association experiment, you are asked to type animal names 
as they come to mind. You will be shown the animal name you most 
recently reported on the screen and when you think of  a different 
animal name, please type it into the computer. 

We are interested in the free association of  animal names, so we would 
like you to report what new animal you are thinking of  whenever the 
animal you are thinking of  changes. 

It is okay to type in an animal name that you previously reported. Please 
let the experimenter know if  you have any question before you begin. 

Press any key when you are ready to continue.



!                                                  (2.2) 

where !  is the autocorrelation function of  temporal lag k. The same 

phenomenon is often expressed in the frequency domain: 

!                                                  (2.3) 

where f is frequency, !  is spectral power resulting from a Fourier analysis, 

and !  is considered 1/f  scaling. 

	 1/f  noise is also known as pink or flicker noise, which varies in 

predictability intermediately between white noise (no serial correlation, 

! ) and brown noise (no correlation between increments, 

! ). Note that Lévy flights (i.e., randomly selecting a flight direction 

and then executing a flight distance that has power-law scaling as in 

Equation 2.1) are random walks and so produce !  noise instead of  1/f  

noise.  

	 1/f -like autocorrelations in human cognition were first reported in 

time-estimation and spatial-interval-estimation tasks in which participants 

were asked to repeatedly estimate a pre-determined time interval of  1 

second or spatial interval of  1 inch (Gilden, Thornton, & Mallon, 1995). 

Subsequent studies have shown 1/f scaling laws in the response times of  

mental rotation, lexical decision, serial visual search, and parallel visual 

search (Gilden, 1997), as well as the time to switch between different 

percepts when looking at a distal stimulus such as a Necker cube (Gao et al., 

2006). 

Table 1. 

Empirical evidence for Lévy flights and 1/f  noise in human mental samples 

C(k) ∼ k−α

C(k)

S( f ) ∼ f −α

S( f )
α ∈ [0.5,1.5]

S( f ) ∼ 1/f 0

S( f ) ∼ 1/f 2

1/f 2

Effect Papers Experiments Main findings

Lévy flights Rhodes & Turvey 
(2007)

Memory retrieval task

Zhu et al. (2018) Memory retrieval task

Power-law exponents 
distance: !μ ∈ [0.76,1.28]

Power-law exponents IRI: 
!μ ∈ [0.77,2.39]

Power-law exponents IRI: 
!μ ∈ [1.37,1.98]
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2.4 Mental Sampling Algorithms 
	 If  we have a mental representation, which is likely to be patchy for 

most real-world cognitive tasks, the empirical data suggest that our brain 

should generate samples in a manner that follows a Lévy flight distribution 

in distances and 1/f noise in time. Given that, we now investigate which 

sampling algorithms can capture both these aspects of  human cognition.  

	 We consider three possible sampling algorithms that might be 

employed in human cognition: Direct Sampling (DS), Random walk 

Metropolis (RwM), and Metropolis-coupled MCMC ( ! ). We define DS 

as independently drawing samples in accord with the posterior probability 

distribution. Implementing DS in the brain requires perfect representations 

of  target distribution, be it one-dimensional or multi-dimensional. 

Consequently, DS is the most efficient algorithm for sampling of  the three. 

However, DS can only be applied to relatively simple tasks. Knowing the 

target distribution often requires calculating intractable normalising 

constants that scale exponentially with the dimensionality of  the hypothesis 

space (MacKay, 2003; Chater, Tenenbaum, & Yuille, 2006). DS has been 

used to explain biases in human cognition such as probability matching (Vul 

et al., 2014).  

	 MCMC algorithms bypass the problem of  the normalising constant 

by simulating a Markov chain that transitions between states according only 

1/f  noise Gilden et al. (1995) Time interval 
estimation

Spatial interval 
estimation

Gilden (1997) Mental rotation

Lexical decision

Serial search

Parallel search

Power spectra slope: 
!α ∈ [0.90,1.20]

RT power spectra slope: 
!α = 0.9

RT power spectra slope: 
!α = 0.7

RT power spectra slope: 
!α = 0.7

Power spectra slope: !α = 1

RT power spectra slope: 
!α = 0.7

MC3
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to the ratio of  the probability of  hypotheses (Metropolis et al., 1953). We 

define RwM as a classical Metropolis-Hastings MCMC algorithm, which 

can be thought of  as a random walker exploring the probability landscape 

of  hypotheses, preferentially climbing the peaks of  the posterior probability 

distribution (Metropolis et al., 1953; Hastings, 1970). The pseudo-code for 

RwM can be found below. Implementing RwM in the brain is relatively easy 

because it only needs the local information of  target distribution. However, 

with a limited number of  samples, RwM is very unlikely to reach modes in 

the probability distribution that are separated by large regions of  low 

probability. This leads to biased approximations of  the posterior distribution 

(Swendsen & Wang, 1986; Sanborn & Chater, 2016). Random walks have 

been used to model clustered responses in memory retrieval (Abbott, 

Austerweil, & Griffiths, 2012), and RwM in particular has been used to 

model multistable perceptions (Gershman, Vul, & Tenenbaum, 2012), the 

anchoring effect (Lieder et al., 2012), and various reasoning biases (Dasgupta 

et al., 2017; Sanborn & Chater, 2016). RwM, however, will struggle with 

multimodal probability distributions regardless of  dimensionality. 

	  

	 Our third algorithm is ! , also known as parallel tempering or 

replica-exchange MCMC, was one of  the first algorithms to successfully 

tackle the problem of  multimodality (Geyer, 1991). !  involves running M 

Markov chains in parallel, each at a different temperature: ! . In 

general, ! , and !  is the temperature of  the interest 

where the target distribution is unchanged. The purpose of  the heated 

MC3

MC3

T1, T2, . . . , TM

1 = T1 < T2 < . . . < TM T1
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Algorithm Random walk Metropolis

1:

2: for t=2 to L do

3:

4:

5:

6: end for

        if !  then !  else !  end ifu < A xt = x′� xt = xt−1

Choose a starting point ! .x1

        Sample ! , and compute !u ∼ U [0,1] A = min{1, π (x′�)
π (xt−1) }

        Draw a candidate sample !x′� ∼ N (xt−1, σ )



chains is to traverse valleys in the probability landscape and to propose 

moves to far-away peaks (by sampling from heated target distributions: ! ), 

while the colder chains make the local steps that explore the current 

probability peak or patch. !  decides whether to swap the states between 

two randomly chosen chains in every iteration (Geyer, 1991). In particular, 

the swapping of  chain i and j is accepted or rejected according to a 

Metropolis rule; hence the name Metropolis-coupled MCMC. 

!                            (2.4) 

	 The coupling induces dependence among the chains, so each chain is 

no longer Markovian. The stationary distribution of  the entire set of  chains 

is thus ! , but we only use samples from the cold chain (! ) to 

approximate the posterior distribution (Geyer, 1991). Pseudo-code for !  

is presented below. Note that !  can reduce to RwM when the number of  

parallel chains ! . 

π1/T

MC3

Aswap = min{1,
π (xj)1/Tiπ (xi)1/Tj

π (xi)1/Tiπ (xj)1/Tj
}

M

∏
i= 1

π1/Ti T = 1

MC3

MC3

M = 1

Algorithm Metropolis-coupled Markov chain Monte Carlo

1:

2: for t=2 to L do

3:     for m=1 to M do                                                                               

4:

5:

6:

7:     end for

8:

9:         Randomly select two chains i,j without repetition

10:

11:

12:     end repeat

13: end for

    repeat !  times⌊M /2⌋

Choose a starting point ! .x1

        if !  then !  else !  end ifu < Am x m
t = x′� x m

t = xm
t−1

        Sample ! , and compute !u ∼ U [0,1] Am = min{1,[ π (x′�)
π (xm

t−1) ]1/Tm}

        if !  then swap(! ) end ifu < Aswap x i
t , x j

t

        Draw a candidate sample !x′� ∼ N (xm
t−1, σ )

        Sample ! , and compute !u ∼ U [0,1] Aswap = min{1,
π (x j

t )1/Tiπ (x i
t )1/Tj

π (x it )1/Tiπ (x j
t )1/Tj

}
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2.5 Algorithm Selection  1

	 In this section, we evaluate whether the two key empirical effects of  

Lévy flights and 1/f  autocorrelations can be produced by mental sampling 

algorithms.  

2.5.1 Producing Lévy flights with Sampling Algorithms 
	 To simulate the sampling algorithms, we use a spatial representation 

of  semantics (rather than graph structure used in semantic networks), and 

we justify this choice in the Appendix section 2.7.2. For generality, we first 

focus on simulating patchy environments without making detailed 

assumptions about any one participant’s semantic space. In particular, we 

created a series of  2D environments using !  Gaussian mixtures 

where the means are uniformly generated from !  for both dimensions, 

where !  and the covariant matrix is fixed as the identity matrix for all 

mixtures. This procedure will produce patchy environments (for example the 

top panel of  Figure 2). We ran DS, RwM, and !  on this multimodal 

probability landscape, and the first 100 positions for each algorithm can be 

found in the top panel of  Figure 2. The empirical flight distances were 

obtained by calculating the Euclidean distance between two consecutive 

positions of  the sampler. For ! , only the positions of  the cold chain 

(! ) were used.  

Nmode = 15
[−r, r]

r = 9

MC3

MC3

T = 1

 Relevant code for this section can be found at Open Science Framework: https://osf.io/1

26xb5
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Figure 2. An example of  searching behaviours in a 2D patchy environment. 

Each patch could represent a cluster of  animal names (with two principal 

components ! ). Data points in lower panels represent binned histogram 

in log-log plot. Repeated simulation of  samplers in different environments 

can be found in Figure 3. (Left Panel) Simulation result for DS. The top 

panel shows the trajectory of  the first 100 positions (red dots). The bottom 

panel shows the log-log plot of  flight distance distribution. The raw 

histogram of  flight distance is also included in the bottom panel. The power-

law exponent is fitted using the LBN method, which corrects for irregular 

spacing of  points (Rhodes & Turvey, 2007). (Middle Panel) Same results 

from the RwM sampler. The Gaussian proposal distribution was an identity 

covariance matrix. (Right Panel) Same result for the !  sampler with 8 

parallel chains; only the positions of  the cold chain are displayed here. The 

Gaussian proposal distributions for all 8 chains had the same identity 

covariance matrix. For all three samplers considered here, only the first 1024 

samples were used in order to match the length of  human experiments. 

	 Power-law distributions should produce straight lines in a log-log 

plot. To estimate power-law exponents of  flight distance, we used the 

normalised logarithmic binning (LBN) method as it has higher accuracy 

x1, x2

MC3
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than other methods (Rhodes & Turvey, 2007; Viswanathan et al., 1999). In 

the LBN, flight distances are grouped into logarithmically-increasing sized 

bins and the geometric midpoints are used for plotting the data. Figure 1 

(bottom) shows that only !  can reproduce the distributional property of  

flight distance as a Lévy flight with an estimated power-law exponent 

! . Both DS (! ) and RwM (! ) produced values outside 

the range of  power-law exponents found in human data. Indeed, RwM 

produces a highly non-linear log-log plot, differing in form as well as 

exponent from a Lévy flight. In the Appendix section 2.7.4, we support this 

result by showing how sampling from a low-dimensional semantic space 

representation of  animal names with !  can produce Lévy flight 

exponents similar to those of  produced by participants for distances. 

MC3

̂μ = 1.14 ̂μ = − .26 ̂μ = .04

MC3
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Figure 3. (A) Animal naming task as non-destructive mental foraging (10 

participants). The estimated power-law exponents for the IRIs are 

! . (B) Estimated power-law exponents for flight distance 

distributions for the three sampling algorithms across different patchy 

environments, manipulating the spatial sparsity of  the Gaussian mixtures. 

The dashed lines show the range of  power-law exponents suggested by our 

human data. Only !  falls in this range. (C) KL divergence of  mode 

visitation from the true distribution for the three sampling algorithms. Red 

denotes RwM, black denotes ! , and blue denotes DS. The patchy 

environments are the same for all three algorithms. The quicker the sampler 

approaches zero KL divergence, the better the sampler is searching the 

patchy environment. The solid lines are medians of  the dashed lines. (D) 

Simulated standard MCMC with power-law proposal distribution. The solid 

μ ∈ [.77,2.39]

MC3

MC3
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line shows the median in estimated power-law exponent. The dashed lines 

show the range of  human data. 

	 Note that only one run of  all three samplers in a patchy environment 

is shown in Figure 2. We also demonstrate the same samplers in different 

patchy environments with different spatial sparsities where the impact of  

spatial sparsity on the estimated power-law exponents was investigated (see 

Figure 3B). In these simulations, the same number of  Gaussian mixtures was 

used but the range !  was varied: with higher ! , the patchy environment was 

more likely to be sparse. The spatial sparsity was formally defined as the 

mean distance between Gaussian modes. With small or moderate spatial 

sparsity we found a positive relationship between spatial sparsity and the 

estimated power-law exponents for both DS and !  (Figure 3B). In this 

range, only !  produced power-law exponents in the range reported in 

our mental foraging task unlike DS and RwM. For both local sampling 

algorithms (RwM and ! ), once spatial sparsity was too great, only a 

single mode was explored and no large jumps were made. 

	 We then varied the values of  hyperparameters and tested whether 

this result is robust. In particular, we sampled 4 different values respectively 

for temperature spacing {.5, 3, 7, 10} and the number of  parallel chains {2, 

4, 6, 10}, resulting in 16 combinations of  hyperparameters. Intuitively, 

larger temperature spacing, more parallel chains, and greater step size 

should lead to more explorative behaviour of  the sampler, and vice versa. 

Hence, for a certain environmental structure, !  could tune these 

hyperparameters to balance between explorative and exploitative searches. 

For searches in the semantic space of  animal names, we ran !  repeatedly 

10 times, and the mean of  these power-law exponents was considered. 

62.5% of  hyperparameters reproduced Lévy flights. 

	 We also checked whether !  really is more suitable to explore 

patchy mental representations than RwM. In our simulated patchy 

environments, which used Gaussian mixtures with identity covariance 

matrix, an optimal sampling algorithm should visit each mode equally often, 

r r

MC3

MC3

MC3

MC3

MC3

MC3

THE SAMPLING BRAIN !24



hence will thus produce a uniform distribution of  visit frequencies over all 

the modes. To this end, the effectiveness of  exploring such a mental 

representation can be examined by computing a Kullback-Leibler 

divergence (KL) (MacKay, 2003) between a uniform distribution over all 

modes and the relative frequency of  how often an algorithm visited each 

mode: 

	 !                          (2.5) 

where U is a discrete uniform distribution, !  is the number of  identical 

Gaussian mixtures, and !  is the empirical frequency of  visited modes up to 

time t. Samples were assigned to the closest mode when determining these 

empirical frequencies. The faster the KL divergence for an algorithm 

reaches zero, the more effective the algorithm is at exploring the underlying 

environment, and the DS algorithm serves as a benchmark for the other two 

algorithms. As shown in Figure 3C, !  catches up to DS, while RwM lags 

far behind in exploring this patchy environment.  

	 We checked whether the negative results for RwM were due to the 

choice of  proposal distribution, by changing the Gaussian proposal 

distribution to a Lévy flight proposal distribution which has a higher 

probability of  larger steps. Using a Lévy flight proposal distribution will 

straightforwardly produce power-law flight distance if  the posterior 

distribution is uniform over the entire space (i.e., every proposal will be 

accepted). However, in a patchy environment, a Lévy flight proposal 

distribution will not typically produce a Lévy flight distribution of  distances 

between samples that has estimated power-law exponents in the range of  

human data, as also can be seen in Figure 3D using different spatial 

sparsities. The reason for this is that the long jumps in the proposal 

distribution are unlikely to be successful: long jumps of  ten propose new 

states that lie in regions of  nearly zero posterior probability. 

DKL(H1:t | |U ) =
Nmode

∑
i= 1

H1:t log H1:t
1/Nmode

Nmode

H1:t

MC3

THE SAMPLING BRAIN !25



2.5.2 Producing 1/f noise with Sampling Algorithms  
	 To study the serial correlation of  mental samples, different 

experimental designs were used. A typical interval estimation task requires 

participants to repeatedly produce an estimate of  the same target interval 

(Gilden et al., 1995; Gilden, 1997). For instance, participants were first given 

an example of  a target interval (e.g., 1-second time interval or 1-inch spatial 

interval) and then repeatedly attempted to reproduce this target without 

feedback for up to 1000 trials. The time series produced by participants 

showed 1/f noise with an exponent close to 1. However, the log-log plot of  

the human data is typically flattens out for the highest frequencies (Gilden et 

al., 1995). This effect has been explained as the result of  two processes: 

fractional Brownian motion combined with white noise due to motor errors 

at the highest frequencies (Gilden et al., 1995). 

	 We investigated how well our three sampling algorithms can explain 

the autocorrelations in this temporal estimation task (Figure 4A: Gilden et 

al., 1995). Gaussian distributions were used as target distribution for all  

three sampling algorithms because the distribution of  responses produced by 

participants was indistinguishable from a Gaussian (Gilden et al., 1995). For 

temporal estimation, it is known that the Gaussian distributions of  responses 

have a scalar property that resembles Weber’s law: the ratio of  the mean to 

the standard deviation is constant (Rakitin, Gibbon, Penney, Malapani, 

Hinton, & Meck, 1998; Gibbon, 1977). For these simulations, we set this 

ratio between the mean and the standard deviation equal to 8 (Rakitin et al., 

1998). 
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Figure 4. (A) Estimates of  time duration show 1/f noise. The target durations 

for participants to estimate are shown next to scatterplots, and the target 

duration ranged from 10s (top) to 0.3s (bottom). Best fit power-law exponents 

to the power spectra are ! , and this is also the range shown in 

dashed lines in Figure 4C. Figure was adapted from Gilden et al. (1995). (B) 

Power spectra produced by DS (left), RwM (middle), and !  (right). Only 

!  with 8 parallel chains can generate 1/f noise. For all the sampling 

algorithms, the first 1024 samples were used. (C) Estimated power-law 

exponent in power spectra are related to the ratio between Gaussian width 

and proposal step size. The power-law exponents for power spectra (! ) were 

fitted following methods suggested by (Gilden et al., 1995; Gilden, 1997). 

The dashed lines show the range of  !  suggested by Gilden et al. (1995). 

Error bars indicate ! SEM. When the ratio is low the acceptance rate of  

proposed sample should be low; it is the opposite case for the high ratio. The 

asymptotic behaviours of  !  are 1/f noise, of  RwM are brown noise, and 

of  DS are white noise. 

α ∈ [0.90,1.20]

MC3

MC3

α̂

1/f α

±

MC3
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	 We then ran the sampling algorithms on the target durations tested 

by Gilden et al. (1995). Unlike in the simulations of  distances between 

samples above, the time estimates produced by participants are estimates so 

we can directly compare them to the samples produced by the algorithms. 

RwM and !  were initiated at the mode of  the Gaussian distribution, and 

there was no burn-in period in our simulations. As in Gilden et al. (1995), for 

all three algorithms we added Gaussian motor noise to each sample to fit the 

upswing in the plot at higher frequencies. As each trial in the experiment 

started immediately as the previous trial ended, this resulted in the recorded 

estimate being equal to the sample plus the motor noise, but minus the 

motor noise from the previous trial, producing high frequency 

autocorrelations. Our motor noise had a constant standard deviation of  0.1. 

Overall, the results show that only !  produces 1/f noise (! ), 

whereas DS tends to produce white noise (! ) and RwM is closest to 

Brown noise (! : ! ).  

	 RwM tends to generate Brown noise because, if  every proposed 

sample is accepted, then the algorithm reduces to a first-order autoregressive 

process (i.e., AR(1)). This can be seen numerically by running the sampling 

algorithms using different ratios of  the target distribution and proposal 

distribution standard deviations (Figure 4C). To see this relationship more 

clearly, in Figure 4C we did not add any motor noise. When the Gaussian 

width (! ) of  the target distribution becomes much greater than the width 

of  the Gaussian proposal distribution (! ), RwM produces Brown noise. 

In contrast, !  has a tendency to produce 1/f noise when the acceptance 

rate is high (Figure 4C black line). It has been shown that the sum of  as few 

as three AR(1) processes with widely distributed autoregressive coefficients 

produces an approximation to 1/f noise (Ward, 2002). As the higher-

temperature chains can be thought of  as very roughly similar to AR(1) 

processes with lower autoregressive coefficients, this may explain why the 

asymptotic behaviour of  the !  is 1/f noise. 

	 Note that, from an effective sample size perspective, DS is clearly the 

best among three sampling algorithms. The cognitive emission of  1/f noise 

MC3

MC3 α̂ ∈ [0.5,1.5]
α̂ ∈ [0,0.5]

1/f 2 α̂ ∈ [1.5,2]

σtarg et

σproposal

MC3

MC3
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is very suboptimal from a statistical standpoint as it produces a smaller 

effective sample size than the independent samples drawn using DS or the 

mild autocorrelations found in RwM. However, our sampling account 

provides a reason for why the mind would produce 1/f noise: these long-

range autocorrelations need to be tolerated in order to retain the possibility 

of  generating samples from far-reaching modes. 

	 We did a similar robustness check for hyperparameters settings using 

the same 16 combinations as above. For search in representation of  temporal 

interval, only the 10s target interval was considered as it shows least 

influence of  motor noise in the power spectra (Figure 4A). Looking across 

both applications, 43.75% parameters reproduced 1/f noise. Combined, 

18.75% parameters reproduced both Lévy flights in the animal name 

example and 1/f noise in the target duration example. 

2.6 Discussion 
	 Lévy flight are advantageous in a patchy world and have been 

observed in many foraging task with humans and other animals. A random 

walk with Gaussian steps does not produce the occasional long-distance 

jump as a Lévy light does. However, the swapping scheme between parallel 

chains of  !  enables it to produce Lévy-like scaling in the flight distance 

distribution. Additionally, !  produces the long-range slowly-decaying 

autocorrelations of  1/f scaling. This long-range dependence rules out any 

sampling algorithm that draws independent samples from the posterior 

distribution, such as DS, because the sample sequence would have no serial 

correlation (i.e., white noise). It also rules out RwM because the current 

sample solely depends on the previous sample. Both of  these results suggest 

that the algorithms people use to sample mental representations are more 

complex than DS or RwM, and, like ! , are instead adapted to sampling 

from multimodal distributions. 

	 However, if  people are adapted to multimodal distributions, their 

behaviour appears not to change even when they are actually sampling from 

MC3

MC3

MC3
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a unimodal distribution. In Gilden’s experiments, the overall distribution of  

estimated intervals (i.e., ignoring serial order) was not multimodal, instead it 

was indistinguishable from a Gaussian distribution (Gilden et al., 1995). 

Assuming that the posterior distribution in the hypothesis space is also 

unimodal then it is somewhat inefficient to use !  rather than simple 

MCMC. Potentially, the brain is hardwired to use particular algorithms, or it 

is slow to adapt to unimodal representations because it is very difficult to 

know that a distribution is unimodal rather than just a single mode in a 

patchy space. Of  course, it could be that even if  !  is always used, that the 

number of  chains or temperature parameters are adapted to the task at 

hand. In additional, it may be that a cognitive load manipulation would 

reduce the number of  available chains and thus reduce exploration, which is 

an interesting prediction to test in future work. 

	 Previous explanations of  scale-free phenomenon in human cognition 

such as self-organised criticality argue that 1/f noise is generated from the 

interactions of  many simple processes that produce such hallmarks of  

complexity (Van Orden, Holden, & Turvey, 2003). Other explanations 

assume that it is due to a mixture of  scaled processes like noise in attention 

or noise in our ability to perform cognitive tasks (Wagenmakers, Farrell, & 

Ratcliff, 2004). These approaches argue that 1/f noise is a general property 

of  cognition and do not tie it to other empirical effects. Our explanation of  

this scale-free process is more mechanistic, assuming that they reflect the 

cognitive need to gather vital information resources from multimodal 

probability distributions. While autocorrelations make samplers less effective 

when sampling from simple distributions, they may need to be tolerated in 

multimodal distributions in order to sample other isolated modes. 

2.6.1 Neural Sampling Hypothesis  
	 An avenue for future work is to consider how !  might be 

implemented in the brain. Researchers have proposed a variety of  

mechanisms for how sampling algorithms could be implemented in the 

brain, and these mechanisms can account for many neural response 

properties including firing rate statistics in cortical neurons (e.g., Hoyer & 

MC3
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Hyvarinen, 2003; Orban et al., 2016; Aitchison & Lengyel, 2016). We are 

not aware of  any implementations of  !  in particular, but other work has 

proposed how multiple chains could be implemented in neural hardware 

(Savin & Deneve, 2014). Adapting this existing multiple-chain scheme to 

implement !  would require: (a) running the different chains at different 

temperatures, (b) tracking the cold chain for the output samples, and (c) 

implementing a mechanism for switching states (or equivalently switching 

temperatures) between chains. 

2.6.2 External Search 
	 While we have evaluated !  for internal sampling, it is interesting 

to consider whether it might describe some aspects of  external search as 

well. Eye movements of  searching objects in natural images have also been 

shown to produce both Lévy flight and 1/f noise (Rhodes, Kello, & Kerster, 

2011). For example, participants in this type of  task were asked to count the 

number of  sheep in a photo and recored eye movements, which shows both 

Lévy flight and 1/f noise. Certainly, the areas of  interest (e.g., locations of  

sheep) in natural images are multimodal. How to map internal sampling 

mechanism to external search behaviours remain open to future research.  

2.6.3 Concluding Remarks 
	 Of  course, we do not claim that !  is the only sampling algorithm 

that is able to produce both 1/f noise and Lévy flights. It is possible that 

other algorithms that deal better with multimodality than MCMC, such as 

running a single chain at different temperatures (Neal, 1996; Savin, Dayan, 

& Lengyel, 2014) or Hamiltonian Monte Carlo (Aitchison & Lengyel, 2016; 

Duane, Kennedy, Pendleton, & Roweth, 1987), could produce similar results. 

Future work will further explore which algorithms can match these key 

human data. 

	 The sampling process articulated in the !  algorithm suggests a 

more sophisticated search strategy in mental representations beyond simple 

local search (such as MCMC). The behavioural outputs of  the !  
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sampling process exhibit Lévy-flight distribution in distances and 1/f noise in 

time. This result indicates that the mind may well-adapted to multimodal 

representations and actively looks out for opportunities for long-distance 

jumps in order to reach far-away modes. To be able to execute long jumps 

(and potentially not sacrifice too many benefits of  a local search strategy — 

i.e., only relative frequency is sufficient to search locally), the !  algorithm 

envisions a coordinated system among many samplers that have distinct 

search behaviours quantified by the temperature: high temperature samplers 

tend to be more explorative and the opposite case is true for low temperature 

samplers. The information is then shared among these samplers to 

collectively produce a picture of  mental representations. In the next chapter, 

we will further discuss how to utilise the knowledge of  how mental samples 

are generated to achieve better estimates of  the statistics of  these samples. 

2.7 Appendix 
2.7.1 Lévy flights do not generate 1/f noise 
	 In a Lévy flight, the direction of  the flight is selected at random but 

the flight distance is distributed according to a power law (Schlesinger, 

Zaslavsky, & Frisch, 1995; Viswanathan et al., 1996). In a one-dimensional 

space, whether to move to the left or right is selected with equal probability, 

then the flight distance is selected according to: 

 !                                             (2.6) 

where !  is the uniform distribution on [0,1]. This procedure guarantees that 

the distribution of  flight distances follows a power law with exponent ! . 
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Figure S1. Autocorrelations produced by a Lévy flight. (Left) The trace plot 

of  the first 1024 locations of  the Lévy flight. (Right) The power spectra of  

the locations. 

	 In Figure S1, we simulated a Lévy flight and applied the same power 

spectra analysis on the trace plot that we did in the main text. Lévy flights 

produce independent increments so the location only depends on the 

previous location, and indeed the simulated Lévy flight produced !  noise 

(with estimated power-law exponent ! ). 

2.7.2 Justifying a Semantic Space 
	 Semantic representations are generally modelled with either a 

semantic space or a semantic network, and the algorithm that fits human 

data best can depend on the choice of  representation (Abbott et al., 2012; 

Hills, Jones, & Todd, 2012). To test which representation is better to use for 

testing whether sampling algorithms can produce Lévy flights, we recruited 

two additional participants to complete a memory-retrieval task similar to 

the animal-naming task. However, in this task participants were allowed to 

report any noun as it came to mind, and not just animal names. Sampling 

algorithms using a semantic network should almost always predict IRI=1 in 

this case, since almost all the nodes in the network can be a legal response. 

However, a semantic space could still potentially produce power-law 

distributions of  IRIs: under the simple assumption that the sampler reports 

the nearest noun, there can be many samples generated before the nearest 

noun changes. 

1/f 2

α̂ = 2.02
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	 Figure S2 shows that our two pilot participants produced power-law 

IRIs instead of  constant IRIs. This relationships does not seem to hold for 

all of  the IRIs, as the solid lines do not fit the data perfectly well, but we are 

most concerned with whether the longer IRIs follow a power-law 

distribution. When restricting our analysis to IRI>2s, the data do follow a 

power-law distribution as the dotted line fits the data well. This justifies our 

choice of  a semantic space for this analysis. 

 

Figure S2. Histogram of  IRIs (log-log plot) for two participants in noun-recall 

task. The estimated power-law exponents for the tail distribution are 

!  (participant 1) and !  (participant 2). 

2.7.3. Measuring Sample Distances in the Animal Naming Task 
	 To more directly investigate whether distances in a semantic space 

can be a good approximation of  IRI, we mapped the animal names that our 

participants produced into a 300-dimensional Word2Vec semantic space 

(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). We first found the 

closest word (using the Ratcliff/Obershelp pattern-matching algorithm as 

implemented in the difflib,SequenceMatcher function in Python) within the 

Word2Vec dictionary for each participant response, as well as the animal 

terms identified by (Troyer et al., 1997). This resulted in 326 animal names 

with Word2Vec representations. 

̂μ = 1.60 ̂μ = 2.21
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Figure S3. (A) 2D semantic space of  all animal names. Each dot denotes one 

animal name. The contour represents a Gaussian mixture model on these 

animal names. (B) Histogram of  flight distances for 10 participants from the 

animal naming task. The estimated power-law exponent ! . 

Median correlation coefficient between the flight distance and IRIs is 0.19. 

(C) Running three sampling algorithms on the Gaussian mixture model 

from B. As shown above, only the !  can replicate the power-law scaling 

of  flight distance in the semantic space. 

	 We assume that the representation of  animals lies within some kind 

of  manifold within the more general Word2Vec space, so in order to better 

represent the distances between animal names, we applied t-SNE to reduce 

the dimensionality of  the space of  the 326 animal names while respecting 

the manifold structure (Maaten & Hinton, 2008). The perplexity parameter 

̂μ ∈ [0.76,1.28]

MC3
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for t-SNE was set at 33 because this is the median category size of  animal 

names suggested by (Troyer et al., 1997). The resultant 2D semantic space 

was shown in Figure S3A. 

	 Using this 2D representation, we calculated the distances between 

successively reported animal names for all 10 participants, and found that 

the median correlations coefficient between the flight distances and IRIs was 

0.19, better than the median correlation coefficients we found for the 3D 

(0.04) or 4D (0.04) representations. Analysing the distribution of  distances 

between successive samples, we found they approximately have a power-law 

scaling. As a result, we chose to run our samplers in a 2D semantic space 

above. 

2.7.4 Sampling in a Semantic Space 
	 Using the low-dimensional representations we found in the previous 

section, we used a Dirchlet process Gaussian mixture model with the default 

parameters (Pedregosa et al., 2011) to infer the probability distribution of  

animal names. The model found eight effective Gaussian components, and 

the mixture distribution is plotted as contours in Figure S3C. Our three 

candidate sampling algorithms were run on the same mixture distribution, 

and the resulting power-law exponents were estimated. Only !  produced 

exponents with the same sign as the human data. 

MC3
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Chapter 3 

From Sample to Estimate 
“The mind, like the sense of  sight, has its illusions; and just as touch corrects those of  the 

latter, so thought and calculations correct the former.” (Pierre-Simon Laplace, 1825). 

3.1 Introduction  
	 The previous chapter lays out how the process of  sampling could 

play an important role in human judgments. In this chapter, however, our 

focus is not on the process of  sampling, but on the complementary, and 

neglected, question of  how frequencies in a mental sample are converted 

into probability estimates. We will see that an analysis of  this process 

provides a distinct mechanism through which to explain apparent biases in 

probability judgments.  

	 It is well known that human probability judgments are biased, 

apparently suggesting that human probabilistic reasoning is not based on 

normative Bayesian principles, but instead on heuristic approximations of  

various kinds (e.g., Tversky & Kahneman, 1974; Gigerenzer & Gaissmaier, 

2011). The large literature on the psychology of  human probabilistic 

judgment has therefore emphasised human irrationality and downplayed 

any systematic coherence in how the brain deals with uncertainty.  

	 Yet this research tradition, which can be traced back to Laplace’s 

chapter “Des illusions dans l’estimation des probabilites” (“On illusions in 

the estimation of  probabilities,” in the 1995 translation by Andrew Dale 

from which we take all our quotes ) in early 1800s and later cognitive 2

psychology and behavioural economics literature (e.g., Peterson & Beech,  

1967; Kahneman, 2011; Todd & Gigerenzer, 2000), appears to stand in 

sharp contrast with the prevalence and usefulness of  Bayesian models across 

 Laplace’s first complete presentation of  the material for this chapter came in the 4th 2

edition of  his book, the Essai Philosophique sur les Probabilites, from 1819 (Stigler, 2005)

THE SAMPLING BRAIN !37



the cognitive and brain sciences, ranging over perception (Knill & Richards, 

1996; Yuille & Kersten, 2006; Gershman, Vul, & Tenenbaum, 2009), 

language processing (Chater & Manning, 2006; Griffiths, Steyvers, & 

Tenenbaum, 2007), categorisation (Sanborn et al., 2010), naive physics 

(Sanborn et al., 2013; Battaglia et al., 2013), motor control (Wolpert, 2007), 

social reasoning (Baker, Saxe, & Tenenbaum, 2011; Baker, Jara-Ettinger, 

Saxe, & Tenenbaum, 2017), and animal learning (Courville, Daw, & 

Touretzy, 2006; Gershman, Blei, & Niv, 2010; Legge, Madan, Spetch, & 

Ludvig, 2016). Indeed, the “new paradigm” in the psychology of  reasoning 

(Evans & Over, 2013) even proposes that high-level explicit reasoning and 

argumentation is best understood in probabilistic terms (e.g., Oaksford & 

Chater, 1994; Hahn & Oaksford, 2007; Chater & Oaksford, 2008). 

	 Thus, we are faced with an apparent paradox: how can Bayesian 

models of  cognition, and indeed reasoning, be so fruitful, when what we 

might view as the “basic element” of  such models, human probability 

judgment, appears to be systematically biased? 

	 In this chapter, we confront this apparent paradox head-on: we 

develop a Bayesian rational model of  probability judgment, which estimates 

probabilities from experience. This Bayesian model operates not through the 

explicit symbolic calculation of  probabilities, but approximates probabilistic 

inference by drawing samples from probability distributions. As discussed in 

Chapter 1, one of  the major discoveries of  computational statistics in the last 

half  century is that such sampling models can efficiently approximate 

complex probabilistic distributions (Metropolis et al., 1953; MacKay, 1998; 

Robert & Casella, 2013), where symbolic computation is completely 

intractable (Aragones et al., 2005). Indeed, such methods are routinely used 

to approximate probabilistic calculations in Bayesian machine learning 

(Neal, 2011; Rosenthal, 2011; Ghahramani, 2015), artificial intelligence 

(Russell & Norvig, 2016; Korb & Nicholson, 2010), and cognitive science 
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(Chater, Tenenbaum, & Yuille, 2006; Tenenbaum, Kemp, Griffiths, & 

Goodman, 2011) .  3

	 Sample-based approximation can implement Bayesian inference 

without explicitly representing, or manipulating, probabilities (Sanborn & 

Chater, 2016; Dasgupta, Schulz, & Gershman, 2017). Inevitably, however, as 

sampling models are an approximation to “ideal” probabilistic inference, 

they will systematically diverge from the norms of  probability theory. We 

show that these departures from probability theory, given algorithmic details 

of  sampling, generate many of  the biases observed in human probability 

judgments. Thus, apparently paradoxically, a Bayesian rational model can 

automatically generate many of  the systematic deviations from probability 

theory observed in experimental data. 

3.2 A Rational Model of  Probability Judgments 
from Sampling 

	 How do people estimate the probability of  an event? Aside from 

restricted domains with specially designed devices such as coins, dice, and 

roulette wheels, analytic calculation is typically impossible. People can, 

though, rely on the recall of  past cases; or our ability to imagine, through a 

process of  mental simulation, hypothetical cases. Suppose, for example, we 

wonder how likely we are to knock down a coconut at a coconut shy — a 

popular fairground game, where the goal is to throw a ball and knock over a 

precariously balanced coconut. We can recall past attempts at coconut shy 

events, by ourselves and perhaps others; and/or we can attempt to mentally 

simulate the process of  knocking down the coconut, perhaps using some 

kind of  naive physical model (e.g., Sanborn et al., 2013; Battaglia et al., 

 Another family of  approximation methods, known as variational Bayes (Blei & Jordan, 3

2006; Blei, Kucukelbir, & McAuliffe, 2017), optimises an approximate, simplified model of  
the probability distribution of  interest, rather than working with a sample from that 

distribution. This approach may also be the starting point for neuroscientific and 
psychological hypotheses, although we do not consider it further here (Ma, Beck, Latham, & 

Pouget, 2006; Gershman & Beck, 2017)
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2013; Hamrick, Smith, Griffiths, & Vul, 2015). Any given “run” of  such a 

simulation will produce a particular trajectory of  the ball, collision with the 

coconut, and final outcome (success or failure). And different runs of   the 

simulation will produce different results; so, by running the simulation many 

times, we can accumulate a sample of  successes or failures, which may 

inform our probability judgments.  

	 Both sources of  data, memory and simulation , generate a set of  4

specific instances (whether observed or imagined); and among these 

instances, the cognitive system can compare the number of  instances in 

which the event of  interest occurs (a coconut is successfully knocked down) 

and the number of  instances for which it does not (the coconuts remain in 

place). 

3.3 Empirical Evidence for the Role of  Sampling 
in Probability Judgment 

	 Before we develop a specific account in more detail, note that the 

sampling-based viewpoint gains credibility from links to existing theoretical 

accounts and empirical phenomena. For example, Tversky & Kahneman 

(1973) suggests that one important heuristic for judging probabilities is 

availability in memory: that is, events or types whose instances come readily 

to mind will be viewed as more probable than those which do not. They 

note, for example, that people incorrectly judge that the likelihood that 

words begin with a k to be higher than that the likelihood that a word has k 

as the third letter, because it is easier to retrieve words by their initial letter, 

rather than their third letter. This perspective translates naturally into a 

sampling framework: any factors that impact our ability to draw mental 

samples will influence probability judgments (as demonstrated in previous 

chapters). 

 We will explore sampling from memory and simulations in more details in the following 4

chapters.
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	 Differences in the ease of  sampling is also one source of  conjunction 

fallacies. Tversky & Kahneman (1983) asked participants to estimate the 

number of  words in four pages of  a novel that would fit the pattern _ _ _ _ _ 

n _ or fit the pattern _ _ _ _ i n g. Participants both estimated the number of  

_ _ _ _ i n g words to be higher and found them easier to generate. That is, 

items which are more easily mentally sampled are rated as more probable: 

and the richer cue here provides a better starting point for sampling. While 

arising naturally from a sampling viewpoint, these results are, of  course, in 

contradiction to the laws of  probability: all words that fit the _ _ _ _ i n g 

pattern also fit _ _ _ _ _ n _ pattern, and hence cannot be more frequent or 

probable (Sanborn & Chater, 2016; Lieder, Griffiths, & Goodman, 2012). 

	 The sampling viewpoint also provides a natural explanation for some 

aspects of  certain types of  “unpacking” effects (Dasgupta et al., 2017). 

People judge the probability of  the “unpacked” description being a tax, 

corporate, patent, or other type of  lawyer as different from an equivalent, being a 

lawyer. If  the explicitly mentioned “unpacked” elements are “likely” 

components, this should provide a helpful cue to sampling; on the other 

hand, if  the unpacked elements are “unlikely” then the sampling process is 

biased towards searching for difficult-to-find items. Thus, by biasing the 

starting point of  a sampling process, probability judgments with unpacked 

description should be enhanced or reduced, by comparison with the normal 

description (Sanbon & Chater, 2016; Dasgupta et al., 2017). This pattern of  

data is observed empirically (Sloman, Rottenstreich, Wisniewski, 

Hadjichristidis, & Fox, 2004; Dasgupta et al., 2017).  

	 An indirect, but suggestive, further line of  evidence comes from 

studies of  the impact of  “representativeness” (Tversky & Kahneman, 1972). 

Consider a category with many elements, only a small subset of  which can 

be sampled from memory, or through mental simulation. Suppose a person 

is asked how likely it is that a particular item is generated from that category. 

Almost certainly that target item will not have been generated in the sample; 

the participant may naturally rely on the similarity of  the target item with 

items in the sample: is the target ‘like’ the sampled items or not? So, for 

example, when considering the probability that a sequence HHHHHH has 
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been generated from flips of  a fair coin, this sequence will be viewed as less 

likely than more irregular sequences, because it is more uniform than and 

thereby dissimilar to, typical sequences (Tversky & Kahneman, 1973). 

3.4 From Sample Frequencies to Probability 
Judgments 

	 The next question, although less studied, is how sample frequencies 

should be converted into probability judgments. Perhaps, the problem may 

seem almost trivial: surely, we can simply take the relative frequencies (e.g., 

of  successful throws at the coconut in comparison with all throws), and 

identify these as the probabilities. 

	 Such approach is potentially justifiable because, under certain 

conditions (e.g., the samples are independently drawn from a fixed 

distribution) as the sample size tends to infinity, these relative frequencies 

will, with high probability, be close to the true probability. Indeed, this is the 

rationale for the frequentist interpretation of  probability: that probabilities 

are limiting frequencies (e.g., von Mises, 1957). Taken as a psychological 

proposal concerning how people form probability judgments, we call this the 

relative frequency approach to probability judgment. 

	 This approach, while simple, leads to some unappealing 

consequences. Suppose, for example, that we have just one sample: perhaps 

we have flipped a coin once, and it landed Heads. According to the relative 

frequency approach, we will judge the probability of  the coin falling Heads 

to be: 

!                         (3.1) 

and Tails to be: 

! .                       (3.2) 

PRF(Heads) = No. of Heads
No. of total flips

= 1
1 = 1

PRF(Tails) = No. of Tails
No. of total flips

= 0
1 = 0
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	 Indeed, according to this viewpoint, it is difficult to avoid the 

prediction that anything that has never happened before will be judged to 

have a probability of  0. For example, if  I play the lottery with the same 

number each week, it is overwhelmingly likely that I will encounter an 

unbroken succession of  losses, but I do not conclude that the particular 

number therefore cannot possibly win. 

	 From a Bayesian viewpoint, which we will develop below, what is 

missing in a relative frequency model is any way of  integrating the observed 

frequencies with my prior assumption about the behaviour of  coins or 

lotteries (e.g., that coins are mostly, but not always, fair; that the prior 

probability of  winning a lottery is very low, and so on).  

3.5 A Bayesian Sampling Model of  Conservatism 
in Probability Judgment 

	 How, then, might we develop a purely Bayesian approach? First, we 

suppose that people begin with a prior concerning the possible bias of  the 

coin, lottery, or real-world event. Following standard Bayesian statistical 

practice, the natural prior distribution for the bias parameter is the so-called 

conjugate prior of  the probabilistic process of  interest — here, flipping a 

coin; as discussed further below, this is the Beta distribution. Moreover, 

symmetry considerations (e.g., the fact that there is no a priori reason to 

expect a bias toward Heads rather than Tails), requires that the conjugate 

prior be a symmetric Beta distribution: ! , which has a single free 

parameter, ! . This prior is then continuously updated in the light of  the 

data: that is, on instances we are able to sample, whether retrieved from 

memory or generated by simulation. So, for example, as the number of  

successive Heads we observe increases, the more we suspect that the coin has 

a bias towards Heads: the posterior probability distribution of  possible biases 

shifts in favour of  biases that favour Heads. How do we then convert this 

posterior distribution over biases (note that this is a so-called second-order 

probability: a probability distribution over probabilities)? The natural 

Beta(β, β )
β
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approach is to take the expected value of  this distribution : roughly, the 5

average of  the biases, weighted by their posterior probabilities. 

	 We have outlined a simple Bayesian approach to probability 

judgment; to make this model complete requires specifying one parameter, 

! . We will call this the “standard Bayesian model”. But how credible is this 

Bayesian approach as an account of  human probability judgments? On the 

face of  it, this approach seems to have two powerful arguments in its favour; 

but also two apparently equally powerful arguments against. 

	 On the positive side, the first argument for the appeal of  the model is 

that it is normatively justified. Thus, the question of  why people should 

follow this model in forming probability judgments then has a clear answer: 

people should do this because it is the right solution to the problem. The 

second argument is by analogy with the apparent success of  Bayesian 

models in other cognitive domains. Probabilistic methods have been 

successful at modelling human data in domains as varied as perception, 

categorisation, motor control, reading, language processing, naive physics, 

folk psychology, and reasoning (e.g., Chater, Tenenbaum, & Yuille, 2006; 

Oaksford & Chater, 2007; Tenenbaum, Kemp, Griffiths, & Goodman, 2011; 

Sanborn & Chater, 2016; Gershman & Beck, 2017). Indeed, the problem of  

probability judgment seems a particularly simple and direct application of  

the Bayesian approach. The failure of  a Bayesian model in this simple case 

might even cast doubt on the credibility of  far more complex Bayesian 

models in these other domains. 

	 On the negative side, though, there are two apparently serious 

challenges for this approach. The first is that, as noted above, the Bayesian 

calculations (e.g., inferring and averaging over the posterior distribution) 

appear computationally daunting. We approach this challenge by borrowing 

standard methods from computational statistics mentioned above: the 

Bayesian calculations can be approximated by sampling from the relevant 

posterior probability distributions, rather than being computed directly. We 

β

 The mean of  posterior minimises squared errors (L2-norm); alternatively, one may use the 5

median of  posterior, which minimises absolute deviations (L1-norm).
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have argued elsewhere that this may be the most appropriate interpretation 

of  many Bayesian psychological models: that the brain is a Bayesian sampler, 

but does not represent or calculate with probabilities (Sanborn & Chater, 

2016). 

	 The second challenge appears more difficult. A Bayesian account, 

with the firm normative basis outlined above, seems ill-suited to explain the 

systematic biases observed when people generate probability judgments. As 

we have indicated, the key contribution of  this thesis is to argue that many 

of  these biases in judgment and choice arise naturally, and indeed, inevitably 

from the sampling approximation. Indeed, from this viewpoint, many 

observed probabilistic biases can be viewed as “traces” of  the sampling 

process that underpins human probabilistic judgments. But how far is this 

perspective really justified? 

	 Perhaps the most fundamental and important systematic bias in 

probability judgment, which has been observed repeatedly, is conservatism: 

people tend to avoid the extremes (i.e., values close to 0 or 1) in their 

probability estimates (Peterson & Beech, 1967; Edwards, 1968; Kaufman, 

Lord, Reese, & Volkmann, 1949; Fiedler, 2000; Hilbert, 2012). Conservatism 

is widespread: it has both been demonstrated in the aggregation of  evidence 

(Peterson & Beech, 1967) and in simple probability estimates (Erev, Wallsten, 

& Budescu, 1994). Many have argued that there is a cognitive mechanism 

that regresses people’s estimates toward .5 (Erev et al., 1994; Dougherty, 

Gettys, & Ogden, 1999; Hilbert, 2012; Costello & Watts, 2014). Specifically, 

the closer the true probability of  an event A, ! , is to 0, the more likely it 

is that the estimated probability, ! , is greater than ! , whereas the 

closer !  to 1, the more likely it is that !  is less than ! . 

	 Interesting, though, the systematic “bias” of  conservatism is 

generated directly by the standard Bayesian model we have outlined (see 

Section 3.2). As described above, the Beta distribution prior over 

probabilities will moderate extreme relative frequencies. From this point of  

view, labelling conservatism as a “bias” is misleading. From the point of  view 

of  frequentist statistics, it is the case that, where the true probability is 

extreme, for example, 0, then the standard Bayesian approach will 

P(A)
̂P(A) P(A)

P(A) ̂P(A) P(A)
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overestimate that probability given a sample. In frequentist statistics, any 

difference between the expected value of  an estimate, and the true value, 

counts as a bias. But from a Bayesian perspective, this phenomenon follows  

from adhering to the laws of  probability. After all, when the true probability to 

be estimated is 0, a rational updating model will inevitably overestimate this 

probability from any finite sample (on average) — after all, a rational 

Bayesian model cannot rule out the possibility that the event has a positive 

probability, but simply has yet to occur by chance. Therefore, from the 

present Bayesian standpoint, some degree of  conservatism is normatively 

required and hence is not necessarily properly labelled as a bias at all. 

	 How conservative should people be? In our model, this depends on 

their prior distribution, characterised by the value of  the !  parameter in the 

symmetrical Beta distribution. Another potentially relevant factor, though, is 

the degree of  correlation between samples (as we have discussed in Chapter 

2). While identical independent draws are suggested by drawing from an urn 

with replacement (as in Edward’s famous urn experiment), natural sources 

of  data typically have interdependencies at many scales (Gilden et al., 1995; 

Gilden, 2001). And indeed, when people are sampling, not from observation, 

but from memory or mental simulation, such interdependencies will be large 

and unavoidable (Bousfield & Sedgewick, 1944; Zhu et al., 2018). To the 

extent that a person does not assume independence, further conservatism is 

justified — if, for example, people assume that events run in “streaks” then 

observing an event occurring successively many times should be weaker 

evidence that it is unlikely: after all, an opposite streak might be about to 

start at any time. For now, we assume independence, but we will return to 

the question of  correlations in later sections. 

	 Instead of  conservatism being the result of  noise as suggested by 

Costello & Watts (2014), we propose that it is a rational adjustment for small 

samples drawn from a person’s belief  distribution. While we assume that 

samples drawn will generally reflect the underlying probabilities accurately, 

the second stage corrects for the intrinsic uncertainty in the probabilities as a 

result of  having a limited number of  samples. This correction produces a 

β
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biased estimate that is on average more accurate than the uncorrected, 

unbiased estimate. 

	 It is worth noting that our approach falls into the class of  rational 

process models, which explain biases as the result of  the approximation 

algorithm used to perform inference (Griffiths, Vul, & Sanborn, 2012; 

Sanborn et al., 2010; Sanborn & Chater, 2016). Recently, this approach has 

been extended to derive biases from a rational use of  time or limited 

cognitive resources (Griffiths, Lieder, & Goodman, 2015; Lieder, Griffiths, & 

Hsu, 2017). A Bayesian sampling model is in the same spirit of  the resource-

rational framework as it aims to produce the best possible adjustments given 

a limited number of  samples. In addition, its two-stage nature echoes work 

in neuroscience that has posited that brain regions and even neurons 

perform inference on the input that they receive (Pfister, Dayan, & Lengyel, 

2010; Deneve, 2008). 

3.6 Probability Theory plus Noise (PTN) Model 
	 There is, though, an alternative, and arguably simpler, model of  the 

mapping from frequencies to probability judgments to consider — that 

probability regression does not arise from potentially elaborate Bayesian 

calculations, but simply from noise in the process of  storing and retrieving 

memories of  past events. This “Probability Theory plus Noise” (PTN) 

approach has been pursued by Costello and Watts, in an important recent 

series of  papers (Costello & Watts, 2014; 2017; Costello et al., 2018). The 

PTN model suggests that, for example, when recalling past throws at the 

coconut shy, our memory is noisy: some failures will be mis-remembered as 

successes; and some successes will be misremembered as failures. Their 

initial model (Costello & Watts, 2014) makes the simplest possible 

assumption: that the probability of  misclassification is a fixed constant, 

which is the same for both positive and negative instances. If  probability 

judgments were determined purely by noise of  this type, then each event A, 

and its complement not-A, would be assigned a probability close to .5 
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(varying depending on the particular sample drawn); and hence a mix of  

veridical and noisy memories will “regress” observed relative frequencies 

towards .5, in proportion to the level of  noise.  

	 According to the PTN model, many “rational” patterns in the data 

on human probability judgment should remain intact. Misclassifications can 

“flip” the classification of  items in the mental sample, but probabilities are 

still “read off ” of  the relative frequencies of  items in this 

“modified”/“corrupted” sample. These relative frequencies, all derived from 

the same, albeit corrupted, mental sample should therefore obey the laws of  

probability. Using this line of  reasoning, Costello and Watts identify a 

number of  probabilistic identities that should be respected, even with 

“regressed” probability judgments. For example, to choose a somewhat 

simpler case for illustration, !  still applies in the PTN 

model: if  A is a low probability event, then there will be more switches from 

not-A to A than the reverse. But each event is, nonetheless, either A or not-

A, so the sum of  the relative frequencies should still be 1. Costello & Watts 

also derive a number of  more complex identities that should not be 

preserved in the PTN account. They have verified the predictions of  the 

PTN account in a series of  experiments (Costello & Watts, 2018; Costello, 

Watts, & Fisher, 2018). 

	 The PTN model, at first glance, looks like a rival to a rational 

Bayesian account — which departs from rationality in the light of  putative 

mechanistic factors, concerning the noisiness of  memory. As we shall see, 

though, it turns out that a natural Bayesian sampling model generates 

predictions that are, in expectation, identical to those of  the PTN model. 

Moreover, the two approaches diverge regarding the variability of  

probability judgments, yielding empirical predictions that can be tested 

experimentally.  

P(A) + P(¬A) = 1
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3.7 Conservatism: Capturing the Key Identities  
	 The identities in Costello, Watts, and colleagues (2014; 2016; 2018) 

all involve participants’ estimates of  either single events or combinations of  

two events. In these experiments, for any pair of  event A and B, participants 

were asked to estimate ! , ! , ! , and ! . Based on each 

participant’s probability estimates, we can examine a number of  identities 

that add or subtract these estimates, introduced by Costello, Watts, and 

colleagues. What all of  these identities have in common is that if  

participants are making estimates consistent with probability theory, the 

result of  these identities should be indistinguishable from 0. For example, 

Costello & Watts (2014) introduce: 

 !                       (3.3) 

and  

! .                (3.4) 

	 As required by the probability theory, both !  and !  

should equal to 0 for all events A and B. Table 2 summarises a set of  

identities that have tested in experiments (Costello & Watts, 2014; Costello et 

al., 2018). Crucially, all of  these identities were found to be reliably different 

than 0, and in such a direction as to implicate conservatism as the cause. 

Table 2. 

Summary of  combined probability expressions tested by Costello & Watts 

(2014) and Costello et al. (2018) 

P(A) P(B ) P(A ∩ B ) P(A ∪ B )

X(A , B ) = P(A) + P(B ) − P(A ∩ B ) − P(A ∪ B )

Y (A , B ) = P(A) + P(¬A ∩ B ) − P(B ) − P(A ∩ ¬B )

X(A , B ) Y (A , B )

Identities Calculations

!P(B ) + P(A ∩ ¬B ) − P(A ∪ B )

!P(A) + P(B ) − P(A ∩ B ) − P(A ∪ B )

!Z3

!Y

!P(B ∩ ¬A) + P(A ∩ B ) − P(B )

!P(A) + P(B ∩ ¬A) − P(A ∪ B )
!Z2

!X

!P(A ∩ ¬B ) + P(A ∩ B ) − P(A)

!P(A) + P(¬A ∩ B ) − P(B ) − P(A ∩ ¬B )

!Z4

!Z1
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3.8 Computational Models of  Human Probability 
Judgments 

In this section, we introduce and compare 3 computational models of  

probability judgments.  

3.8.1 Relative Frequency Sampling Model 
	 The first model we consider is simply a sample-based approximation 

to the true probability. The probability estimate of  an event A occurring can 

be obtained by sampling a set of  episodes and counting the number in which 

event A occurred. From !  total samples, !  are marked as successes, or 

occurrence of  event A. Given the true probability of  event A, !  and 

event not-A with probability ! , this process can be characterised as !  

independent Bernoulli trials with success probability ! . Therefore, the 

eventual number of  samples that successfully counts as event A follows a 

binomial distribution: 

!                                    (3.5) 

and the number of  samples that failed to count as event A is the rest: 

!                              (3.6) 

Given that !  out of  !  samples registered as event A, people can simply 

respond with the relative frequency of  occurrence of  event A as their 

probability estimate of  event A, 

! .                     (3.7) 

	 By the law of  large numbers, the relative frequency of  the samples as 

probability estimates will be very close to the true probability when the total 

number of  samples is large enough. Bernoulli estimated that more than 

25,000 samples are needed for “moral certainty” about the true probability 

!Z5

!P(A ∩ ¬B ) + P(B ∩ ¬A) + 2P(A ∩ B ) − P(A) − P(B )

!P(A ∩ ¬B ) + P(B ∩ ¬A) + P(A ∩ B ) − P(A ∪ B )
!Z6

N S(A)
P(A)

1 − P(A) N

P(A)

S(A) ∼ Bin(N, P(A))

F(A) ∼ N − Bin(N, P(A))

S(A) N

̂PS(A) = S(A)
N

∼ Bin(N, P(A))
N
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of  an event, where moral certainty means that, at least 1000:1 odds, the true 

probability falls within .02 of  the estimated probability. 

3.8.2 Bayesian Sampling Model 
	 As noted above, while a pure sampling model will produce the 

correct probabilities from relative frequencies in the limit, it can produce 

extreme conclusions where the number of  samples is small. Consider the 

case where you draw a single sample from the posterior of  the event; it 

seems like a poor idea to report that you are 100% certain that an event 

occurred. The Bayesian approach moderates such extreme conclusions, 

leading to conservatism. 

	 In the simulation below, we use a symmetric Beta distribution 

!  as the prior on all possible probability estimates. The Beta 

distribution is a conjugate prior probability distribution for the Bernoulli and 

binomial distributions. It is defined on the interval [0,1], which is of  course 

also the interval for probability estimates. This prior reflects the degree of  

belief  placed on every possible probability estimate that range from 0 to 1. 

 

Figure 5. Illustrations of  the Bayes prior (left), the Jeffrey prior (middle), and 

an empirical prior (right). The empirical prior was obtained by fitting the 

histogram of  the normalised frequencies (adjusted by the proportion of  uses) 

of  the probability-describing phrases in natural language against the mean 

probability estimates of  the same phrases (British National Corpus; adapted 

Beta(β, β )
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from Stewart et al., 2006, Table 2). The purple curve shows the best-fitted 

symmetric Beta distribution: ! . 

	 What generic prior beliefs should people have about the posterior 

probabilities that they sample from? What makes a good generic prior for 

the Beta distribution is a contentious topic. As shown in Figure 5 (left), a 

uniform distribution, ! , was suggested by Bayes and later adopted by 

Laplace in his female birth rate analysis (Bayes & Price, 1763; Laplace, 

2012). Their justification was one of  “ignorance” or “lack of  information” 

as there was no reason to consider the case !  was more likely than the 

case !  for all possible values of  ! . A uniform probability density 

function (pdf) is consistent with the no-preference principle on ! . However, 

this no-preference principle does not generalise to, even, monotone 

transformations of  ! . For example, a uniform pdf  on !  clearly assigns 

preference over some log-odds ratio !  than another; 

!  and ! . An alternative prior is Jeffreys’ prior 

(Figure 5 middle), ! , which fixed the lack of  monotone 

transformation problem for binomial distributions.   

	 On the extreme end, Haldane’s prior, ! , is sometimes 

considered to represent complete uncertainty (or total ignorance) about prior 

information (Jaynes, 2003). Haldane’s prior asserts that people are not even 

sure whether it is possible that samples generated in the first stage will yield 

either event A or event not-A. However, in reality, people should know a 

priori that if  a sample is not marked as event A then it has to be marked as 

event not-A.  

	 Though Bayes’ prior, Haldane’s prior, and Jeffreys’ prior each have 

their own justifications and theoretical benefits for Bayesian inference under 

different contexts, for this chapter we choose to empirically estimate the 

generic prior people use. In particular we use the data from Stewart, Chater, 

& Brown (2006) who asked participants to report their probability judgments 

for a range of  probability-describing phrases in natural language (e.g., 

“doubtful”, “uncertain”, “fair chance”, “likely”). They also collected the 

Beta(.27,.27)

Beta(1,1)

p = p1

p = p2 p ∈ [0,1]
p

p p

η( p) = log p
1 − p

η( p = .8) ≈ .6 η( p = .9) ≈ .95
Beta(.5,.5)

Beta(0,0)

THE SAMPLING BRAIN !52



adjusted frequencies (raw frequency times proportions of  probability uses) of  

each phrase based on the data from British National Corpus world edition 

(http://www.natcorp.ox.ac.uk/index.html). We fit these data using a 

symmetric Beta distribution and found that the best-fitting distribution was 

 when maximising the likelihood of  the histogram for the Beta 6

parameter. We will use this empirical prior throughout the simulation 

sections, assuming that all people share this empirical prior and use it across 

all situations, though this assumption is only a starting point and is likely too 

strong. 

	 With the prior fixed at ! , we now consider how people would 

respond to the incoming samples in the first stage assuming they are drawn 

from the true probability ! . Given !  samples collected, the Beta 

distribution in the second stage should get updated according to Bayes’ rule. 

Formally, for !  samples successfully marked as event A and !  failed to 

be marked as event A, people will have a posterior probability for probability 

estimates that is distributed according to ! . We 

assume that participants then report the mean of  their posterior distribution 

as their probability estimate. For any ! ,  we have the mean of  ! : 

! . Therefore, the probability estimate is a simple linear 

transformation of  the number of  successes: 

!                        (3.8) 

	 The purpose of  the correction is of  course to improve the accuracy 

of  the probability estimates. Because we derived this correction using a 

!  prior and used the mean of  the posterior distribution as the 

estimate, then our estimate will certainly show improved accuracy, in terms 

of  mean squared deviation from the true posterior probability, assuming that 

the distribution of  posterior probabilities matches our prior.  

Beta(.27,.27)

β* = .27

P(A) N

S(A) F(A)

Beta(β + S(A), β + F(A))

x ∼ Beta(a , b) x

.[x] = a
a + b

̂PBS(A) = S(A) + β
N + 2β

∼ Bin(N, P(A)) + β
N + 2β

Beta(.27,.27)

 Fennel and Baddeley (2012) analysed blog posts and found that the distribution of  the 6

probabilities of  good and bad events occurring followed Beta distributions with parameters 

much greater than one. We chose to use these self-generated probabilities as they seemed to 
be more likely to reflect subjective probabilities, though we note that very similar predictions 

would result using their priors.
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3.8.3 Applying the Probability Theory plus Noise model 
	 The probability theory plus noise model assumes that people 

estimate probabilities in a way that is fundamentally rational, but is 

perturbed by random noise (Costello & Watts, 2014). They suggest the bias 

in probabilistic estimates is the result of  a memory retrieval process (or 

potentially an inference process), with a tallying of  number of  retrievals 

marked as event A and event not-A. Therefore, they assume that the total 

number of  event A will be: !  where !  is the number of  

samples drawn in total. Note that both !  here and !  from the sampling 

models above represent the total number of  samples or instances drawn 

from memory; here we use different symbols in the interest of  clarity in the 

simulations. 

	 The critical mechanism proposed by the probability theory plus noise 

model is that recalling samples from memory is perturbed by random noise, 

in which each flag can be misread with a probability of  !  (Costello & Watts, 

2014). Therefore, the eventual count of  event A, ! , will be different from 

! . If  we assume that random noise affects individual sample independently, 

then !  should be the sum of  all of  the true flags minus the portion 

misread as false, plus all false flags that were misread as true. These two flag-

flipping processes can be characterised as the sum of  two binomial 

processes:  

! .                        (3.9) 

	 The estimated probability of  the event A is thus: 

!          (3.10) 

3.9 Predicted Average Probability Estimates: A 
Mimicry Theorem 

	 Remarkably, it turns out that the second two models, while having 

very different origins, precisely mimic each other’s behaviour, regarding 

TA = M × P(A) M

M N

d

C(A)
TA

C(A)

C(A) = TA − Bin(TA, d ) + Bin(M − TA, d )

̂PPTN(A) = C(A)
M

= TA − Bin(TA, d ) + Bin(M − TA, d )
M
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expected probability estimates. For the probability theory plus noise model, 

the average probability estimates predicted by the model depends on the 

flag-flipping processes governed by the random noise. Every single flag, 

regardless of  whether it is true or false for the event A, has a probability d of  

being read incorrectly. Thus, the flags follow a binomial distribution, 

! , with mean !  and variance ! . !  thus has 

mean value of   

!                            (3.11) 

	 As seen in Figure 6 (left), the !  predicted by the probability 

theory plus noise model is a linear transformation of  the true probability 

! . 

	 In a significant elaboration of  their approach, the extended 

probability theory plus noise model, Costello, Watts, and Fisher (2018) 

suggest that increased random error is needed for conjunctive or disjunctive 

events. The rate of  random error is enhanced from !  (for single events) to 

!  (for conjunctions and disjunctions). In this model, the expected value 

of  probability estimates for a conjunctive event !  is: 

! .       (3.12) 

	 Similarly, the expected value of  probability estimates for a disjunctive 

event !  is: 

! .       (3.13) 

	 For the sampling model, the number of  samples that shows an event 

occurred again follows a binomial distribution, and the expected estimate is 

unbiased: 

! .                                    (3.14) 

	 However, for the Bayesian sampling model, people respond with the 

mean of  the posterior distribution as their probability estimate. Given that 

the mean of  a Beta distribution is a fixed linear transformation of  its 

parameters, the variability of  probability estimates solely depends on the 

variability of  the samples (i.e., ! ). Hence, the expected value of  

the probability estimates predicted by the Bayesian sampling model is 

Bin(M, p) M × p M × p(1 − p) ̂PPTN(A)

.[ ̂PPTN(A)] = (1 − 2d )P(A) + d

.[ ̂PPTN(A)]

P(A)

d

d + Δd

A ∩ B

.[ ̂PPTN(A ∩ B )] = (1 − 2[d + Δd ])P(A ∩ B ) + [d + Δd ]

A ∪ B

.[ ̂PPTN(A ∪ B )] = (1 − 2[d + Δd ])P(A ∪ B ) + [d + Δd ]

.[ ̂PS(A)] = P(A)

Bin(N, P(A))
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! .                    (3.15) 

where !  is the number of  sample drawn to approximate the true probability 

and !  is the shape parameter of  the generic prior over probabilities.  

Comparing to Equation (3.8) which gives one probability estimate, Equation 

(3.15) considers the expectations as the average values of  repeated 

probability estimates made by the same model. Note that if   

!  (bridge condition),                      (3.16) 

then !  and both the Probability Theory plus Noise and the 

Bayesian sampling models predict the exact same mean probability estimates 

(Figure 6).  

	 For a conjunctive or disjunctive event, the bridge condition that 

connects the extended probability theory plus noise model (Costello et al., 

2018) and the Bayesian sampling model is simply !  and 

then ! , where !  is a new mental sample size for 

calculating the probabilities of  combined variables.  

.[ ̂PBS(A)] = N
N + 2β

P(A) + β
N + 2β

N

β = .27

d = β
N + 2β

1 − 2d = N
N + 2β

d + Δd = β
N′� + 2β

1 − 2[d + Δd ] = N′ �
N′� + 2β

N′�
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Figure 6. An illustration of  model behaviours. The relationship between the 

true probability (x-axis) and the expected probability estimates (y-axis) 

predicted by the probability theory plus noise model (left) and the sampling 

plus correction model (right). 

	 The predictions for the combined probability identities in Table 2 

are based purely on the average probability estimates (Costello & Watts, 

2014; Costello et al., 2018), so we see that the Bayesian sampling model 

exactly matches the predictions of  the probability theory plus noise model as 

long as the bridge condition holds. For example, Costello and Watts (2017) 

found that the best-fitting values were !  for the probability 

estimation data reported in Zhao, Shah, and Osherson (2009). For this fitting 

result, the Bayesian sampling model can predict quantitatively the same 

mean values by simply applying the bridge condition: !  and 

! . When the empirical generic prior is used in both 

cases (i.e., ! ) and setting ! , the Bayesian sampling 

model should fit the mean values of  probability estimations just as well as 

the probability theory plus noise model. In this sense, the increased noise 

d = .05,Δd = .04

d = β
N + 2β

= .05

d + Δd = β
N′� + 2β

= .09

β* = .27 N = 4.86,N′� ≈ 2.46
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suggested by the probability theory plus noise model for conjunctive events is 

simply the reduced total number of  samples retrieved for the same 

conjunctive events (a decrease from !  to ! ). 

	  

Table 3. 

Summary of  model predictions (left to right: probability theory, probability 

theory plus noise model, sampling model, Bayesian sampling model) on the 

average values of  the combined probability expressions from Table 1. 

*The bridge conditions were applied to the Bayesian sampling model: 

!  and ! . 

3.10 Where do Bayesian Sampling and PTN 
Differ? 

	 While the Probability Theory plus Noise and Bayesian sampling 

models make indistinguishable predictions for the average estimates, they do 

make distinct predictions about the variability of  estimates. The probability 

theory plus noise model predicts that the variance is independent on the true 

probability !  and instead depends only on the degree of  random noise 

(! ) and the number of  samples recalled (! ) (Costello & Watts, 2014). In 

contrast, the variance of  probability estimates predicted by the Bayesian 

N N′�

d = β
N + 2β

Δd = (N − N′�)β
(N + 2β )(N′� + 2β )

Identities Prob Theory PTN Sampling BS*

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

!2Δd (P (A) + P (B )) − 2Δd

!2Δd (1 − P (A)) + d

!2Δd P (B ) + d

!.[ ̂Z1]

!2d + 2Δd

!2d + 2Δd

!2Δd (P (A) + P (B )) − 2Δd

!.[ ̂Z4]

!2Δd P (B ) + d

!2Δd P (A) + d

!.[ ̂Y ]

!2d + 2Δd

!2Δd (1 − P (B )) + d

!.[ ̂Z3]

!2Δd P (A) + d

!.[ ̂Z6]

!2Δd (P (A) − P (B ))

!.[X̂ ]

!2Δd (1 − P (B )) + d

!2Δd (1 − P (A)) + d

!.[ ̂Z2]

!2d + 2Δd

!.[ ̂Z5]

!2Δd (P (A) − P (B ))

P(A)
d M
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sampling model depends on the true probability (see Table 4). Holding the 

number of  samples drawn from the posterior distribution ( ! ) and symmetric 

Beta prior parameter ( ! ) constant, the predicted variance of  the probability 

estimates will have a quadratic relationship with ! , peaking at ! .  

Table 4. 

Predicted variance of  human probability estimates from the Probability 

Theory plus Noise model and the Bayesian sampling model. 

*The bridge conditions were applied to the Bayesian sampling model: 

!   

	 To determine which account better matches human data, we looked 

at the variability of  the estimates of  the two data sets we examined earlier: 

Costello et al. (2018) and Stewart, Chater, and Brown (2006). First, Costello 

et al. (2018) reports a series of  experiments (Experiment 1, 2, and 3 in their 

paper) that asks participants to estimate probabilities of  a range of  weather 

events (e.g., cold, windy, or sunny) or to estimate probabilities of  a range of  

future events (e.g., “Germany is in the finals of  the next World Cup (July 

2018)”). People were allowed to judge the probability in both frequency 

(response with number of  occurrences over 100 days) and probability 

(response with probability of  occurrence on a randomly selected day) form.  

	 Second, we also consider the variability of  the probability estimates 

of  phrases reported by Stewart et al. (2006). As seen above, the same dataset 

has been used to calculate the empirical prior. However, we excluded data 

points with zero variance, such as the phrase “fifty-fifty chance”, which was 

estimated to be 50% probability by all participants. We assume that for these 

N

β

P(A) P(A) = .5

Probability Theory plus 
Noise

Bayesian Sampling*

Variance of  Probability 
Estimates

!
d (1 − d )

M !
(1 − 2d )2P (A)(1 − P (A))

N

d = β
N + 2β
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questions participants do not perform sampling but instead directly convert 

the phrase into a probability (cf. Kemp & Eddy, 2017). 

 

Figure 7. The relationship between the mean and the variance of  people’s 

probability estimates (left panel: Costello et al., 2018; right panel: Stewart et 

al., 2006). (A) The sampling plus correction model predicts a quadratic 

relationship (purple lines). (B) The probability theory plus noise model 

predicts a constant relationship (purple lines). Best-fitting model parameters 

are displayed in the titles, and the MSE of  each model in predicting the 

empirical tasks can also be found in Table 5. 

	 In Figure 7, an inverted-U shaped relationship can be found between 

the means and variances of  the probability estimates. This is qualitatively 

consistent with the relationship predicted by the Bayesian sampling model. 

We fit both the Bayesian sampling model and the probability theory plus 

noise model to the data. In addition, the Bayesian sampling model uses the 

empirical prior as above. For both Costello et al. (2018) and Stewart et al. 
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(2006) tasks, we fixed !  ex ante and thus only the total number of  

samples !  was permitted to vary in the fitting for the Bayesian sampling 

model. Table 5 shows that, for both tasks, the Bayesian sampling model can 

achieve lower MSE and thus a better fit to the relationships between the 

expectations and variances of  probability estimates. Because the Bayesian 

sampling model used fewer parameters than the probability theory plus 

noise model, the lower MSE values convincingly demonstrate that the 

Bayesian sampling model provides a better account of  the variability. 

Table 5. 

Fitting results for both the probability theory plus noise model and the 

sampling plus correction model. 

3.11 Discussion 
	 In this chapter, we have argued that sampling can play a crucial role 

in forming probability judgments, and indeed is key to explaining aspects of  

well-known biases in human judgments including availability and 

representativeness (Lieder et al., 2012; Sanborn & Chater, 2016; Lieder et 

al., 2018). But this approach raises a neglected problem: how should sample 

frequencies be converted into probability ratings? Researchers have often 

implicitly assumed that probabilities can be computed taking relative 

frequencies, but we have seen that this gives inappropriately extreme results 

for small samples.  

β* = .27
N

Probability Theory plus Noise Bayesian Sampling

Experiment Best-fitted 
parameters

MSE Best-fitted 
parameters

MSE

Costello et al. 
(2018)

Stewart et al. 
(2006)

!1.11 × 10−4

!4.99 × 10−4

!N = 9.72(β* = 0.27)

!N = 3.33(β* = 0.27)

!0.65 × 10−4!M = 11.19,d = 0.17

!2.46 × 10−4!M = 6.29,d = 0.26
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	 Here we provided a rational Bayesian account of  how this problem 

can be addressed. It turns out, unexpectedly, that the approach perfectly 

mimics the predictions, in expectation, for a major recent theoretical 

account: Costello and Watts’s (2014; 2018) probability theory plus noise 

model. We have noted, though, that the two approaches differ regarding the 

variability of  probability estimates, and the empirical data favour the 

Bayesian sampling account. Here we consider where our approach fits into 

other work on bias in probability estimates, how our approach could be 

extended to more realistic sampling algorithms, and how it can explain other 

biases such as the conjunction fallacy and subadditivity. 

	 The general approach outlined here (whether using the Bayesian 

sampling or PTN mechanisms) also captures a variety of  interesting further 

phenomena. We considered unpacking in the introduction, where single 

‘unpacked’ or ‘packed’ descriptions are compared, and observed that 

whether the unpacked description is judged as more or less probable 

depends on the likelihood of  the specific unpacked descriptions that are 

chosen. But there is also a much more stable unpacking effect, which arises 

where a single probability judgment (e.g., probability of  an air crash) is 

compared with the sum of  ‘unpacked’ judgements (probability of  an air 

crash due to engine failure; probability due to terrorist attack; and so on). 

Here, conservatism will raise each of  these small probabilities, and the 

summing of  raised probabilities will amplify the effect further.  

3.11.1 Other Accounts of  Bias in Probability Estimates 
	 There are other empirically successful models of  probability 

reasoning in the literature such as heuristic accounts (e.g., inductive confirmation 

model: Crupi & Tentori, 2016; configural weighted average model: Nilsson, Juslin, & 

Winman, 2016). However, the inductive confirmation model predicts a 

negative correlation between the predicted and empirical average 

conjunction fallacy rate (Costello & Watts, 2016), and the configural 

weighted average model does not provide a satisfying account on the rate of  

the conjunction fallacy (Costello & Watts, 2016). Furthermore, both models 

did not specify the detailed computational mechanism for the probability 
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estimate of  a single event. This basically prevents these models from 

explaining a number of  empirical results, particularly, the combined 

probability expressions in Table 1. 

	 While the very existence of  cognitive biases like conservatism has 

been seen as a sign that people are fundamentally irrational, others have 

argued that these irrationalities appear because people have been reasoning 

against the wrong normative standards (Oaksford & Chater, 2007). There 

have been compelling accounts of  how deviations from the “correct” 

response can be the result of  rational inference. However, these accounts 

cannot explain the types of  inconsistencies seen in the identities in Table 2 – 

no matter how the problem is interpreted, these identities should still 

correspond with the predictions of  probability theory. 

  

3.11.2 Integrating with More Realistic Sampling Algorithms 
	 The Bayesian sampling model assumes that people draw 

independent samples from their posterior distribution. But, as we have 

implicitly touched on in the introduction, this does not match the empirical 

data on how people generate hypotheses. Instead, people generate correlated 

hypotheses in which the identity of  the next hypothesis depends on what was 

produced earlier. For example, in an animal-naming task, participants were 

asked to free recall animal names whenever it comes to mind (Bousfield & 

Sedgewick, 1944). The result indicated that animal names, which were 

reported temporally close, are also semantically similar. Similar results on 

the autocorrelation of  mental samples are also reported in repeated time or 

spatial estimation tasks (Gilden et al., 1995).  

	 These results mean that people must instead be using an algorithm 

that generates autocorrelated samples such as Markov Chain Monte Carlo 

(MCMC; Metropolis et al., 1953) or more complex alternatives (Courville & 

Daw, 2008; Lieder et al., 2012; Gershman et al., 2009; Zhu et al., 2018). 

Autocorrelated samples contain less information than independent samples, 

so autocorrelated samples must be weighted differently than independent 
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samples. Fortunately, there is an easy way to do so if  the amount of  

autocorrelation is known. The effective sample size can be calculated 

!                                (3.17) 

where !  is the total number of  samples and !  is the autocorrelation at lag 

k. The autocorrelated samples can then be reweighted by !  to be 

equivalent to independent samples. This reweighting means that the number 

of  independent samples estimated from human data does not need to be 

equal to a whole number. Of  course, the autocorrelation will not be known 

perfectly if  only a short sequence of  samples is generated, but here a generic 

value estimated over a lifetime of  experience could be used here.  

3.11.3 Conclusions 
	 We have introduced a Bayesian sampling model, in which people are 

assumed to first draw samples from their posterior distribution and then 

make the best estimate possible given those samples. An exact Bayesian 

model does not have this uncertainty about probabilities – while there is 

uncertainty about the true state of  the world, there is never any uncertainty 

about the probability of  any state or collection of  states. Our approach thus 

better matches the phenomenology of  making probability estimates, as any 

hemming and hawing about what estimate to make clearly points to some 

uncertainty about the probabilities. To explain a variety of  classic deviations 

from probability theory, we then simply assume that people are aware (at 

some level) of  this uncertainty and adjust for it appropriately. 

3.12 Appendix 
3.12.1 Detailed Derivation of  Model Predictions 
In this section, we provide detailed mathematical operations that lead to our 

results in the main text. First, we consider the Probability Theory plus Noise 

ESS = N
1 + 2∑∞

k = 1 ρ(k)

N ρ(k)
ESS

N
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model (Costello & Watts, 2014). As described above, the PTN model predicts 

human probability estimates: 

!                                    (3.S1)                               

where the probability estimates of  an event A are taken as the relative 

frequency of  samples eventually marked as event A (after being corrupted by 

the read-out noise), ! , and total samples retrieved, ! . The noise 

randomly flips the identities of  samples, in this case, from event A to event 

not-A and vice versa. This effectively results in two independent binomial 

process: (a) !  samples originally marked as event A now have !  of  

them that changed to event not-A; (b) symmetrically, !  samples 

originally marked as event not-A now have !  of  them turned to 

event A. In the end, the PTN model predicts that total samples being read 

out as event A post noise process should be: 

!                (3.S2) 

where d is the degree of  random noise. 

 	 Based on Equation 3.S1 and 3.S2, we can derive the expected value 

of  the probability estimates predicted by the PTN model 

!                           (3.S3)                          

	 Similarly, we obtain the variance of  the probability estimates: 

!                      (3.S4) 

	 Then we consider the properties of  the relative frequency sampling 

and Bayesian sampling models. People generate veridical samples from the 

true probability ! . If  we assume such a process produces independent 

̂PPTN(A) = C(A)
M

C(A) M

TA Bin(TA, d )
M − TA

Bin(M − TA, d )

C(A) = TA − Bin(TA, d ) + Bin(M − TA, d )

.[ ̂PPTN(A)] = TA − d TA + d (M − Ta)
M

= (1 − 2d ) TA
M

+ d

= (1 − 2d )P(A) + d

1[ ̂PPTN(A)] = 1[C(A)]
M2

= d (1 − d )(TA + m − TA)
M2

= d (1 − d )
M

P(A)
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and identically distributed samples, then out of  a total of  !  samples, 

!  should be successfully marked as event A. In this end, 

the rest samples will fail to be marked as event A: ! . 

For the relative frequency sampling model, a probability estimate can be 

made by simply taking the relative frequency of  !  and the total samples: 

!                               (3.S5) 

	 However, people may also not fully trust these samples, maybe due to 

small sample size, stochasticity in the sample-generation process, or an 

existing stronger prior belief  on what the true probability ought be. They 

can then incorporate such prior beliefs with these samples. Here, we assume 

people have a symmetrical prior belief  that follows a Beta distribution: 

! . With additional !  samples indicating event A and !  

indicating event not-A, a Bayesian agent then updates its belief  to the 

posterior accordingly: ! . Given that, a Bayesian 

agent could choose to produce its probability estimates as the mean of  the 

posterior: 

!                  (3.S6) 

	 We also note that the choice of  reporting mean values of  the 

posterior as probability estimates is based on Bayesian decision theory as the 

mean minimises squared errors. Alternatively, people could choose the 

median of  the posterior as their probability estimate, which minimises 

absolute deviations. Following the formulisation of  (S6), we can compute the 

expected value and variance of  probability estimates predicted by the 

Bayesian sampling model: 

!                  (3.S7) 

!          (3.S8) 

N

S(A) ∼ Bin(N, P(A))
F(A) ∼ N − Bin(N, P(A))

S(A)

̂PS(A) = S(A)
N

∼ Bin(N, P(A))
N

Beta(β, β ) S(A) F(A)

Beta(β + S(A), β + F(A))

̂PBS(A) = S(A) + β
N + 2β

∼ Bin(N, P(A)) + β
N + 2β

.[ ̂PBS(A)] = N
N + 2β

P(A) + β
N + 2β

1[ ̂PBS(A)] = NP(A)(1 − P(A))
(N + 2β )2 = (1 − 2d )2P(A)(1 − P(A))

N
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3.12.2 Bayesian sampling improves accuracy from relative frequency 
sampling 
	 As discussed above, we know the relative frequency sampling model 

will produce unbiased probability estimates, whereas Bayesian sampling 

predicts biased estimates. So how could a biased estimate achieve higher 

accuracy to the true probability than an unbiased estimate? To demonstrate 

this, we conducted a simulation in which we compared probability estimates 

predicted by the sampling and Bayesian sampling models, using several 

possible distributions of  the true probabilities (Figure S4 x-axis). For this 

simulation, we repeatedly drew probabilities from the true distribution, 

!  and let both models make estimates about these true 

probabilities. Next, we computed the mean squared errors (MSE) between 

the true probabilities and estimates produced by both models. The smaller 

this MSE is, the more accurate the predicted probability estimates are.  

	 In Figure S4, we subtracted the MSE of  the sampling model from 

the MSE of  the Bayesian sampling model to quantify the degree of  

improvement from incorporating a symmetric prior. For small number of  

samples (e.g., ! ), the Bayesian sampling method significantly 

improved the accuracy of  the estimates. For larger numbers of  sample (e.g., 

! ), both models produce a similar level of  accuracy. The estimates 

from the Bayesian sampling model are more advantageous as the value of  

!  increases. This is because the sampling model predicts estimates that 

are equivalent to an estimate from Bayesian sampling using Haldane’s 

Beta(0,0) prior, so the further !  is from zero the better the Bayesian 

sampling will be. 

ptru e = Beta(βtru e, βtru e)

N = 1,2,3,4

N > 10

βtru e

βtru e
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Figure S4. The degree of  improvement in the probability estimate (y-axis) due 

to the inclusion of  the correction step in the sampling plus correction model. 

X-axis depicts the true probability distributions from Beta(0.1,0.1) (most left) 

to Beta(10,10) (most right). An empirical prior, Beta(0.27,0.27), was used in 

the correction step as explained in the text. 
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Chapter 4  

Sample from Memory 
“Cognition is recognition.” (Douglas Hofstadter, 1995) 

4.1 Introduction 
	 We now consider sampling from past computations and, more 

specifically, how the ability to do so may improve the efficiency of  learning . 7

Here, we further restrict the examined scope of  learning phenomena to 

classical conditioning (also known as Pavlovian conditioning). During 

classical conditioning, human and animal subjects alter the magnitude and 

timing of  their conditioned responses (CR), as a consequence of  the 

contingency between the conditioned stimulus (CS) and the unconditioned 

stimulus (US). The most famous example of  classical conditioning was 

described by Pavlov (1927) where dogs were repeatedly given food powder 

(US) following a presentation of  a sound (CS). The dogs salivated initially 

only at food delivery, but gradually the sound started to elicit salivation after 

repeated sound-food (CS-US) pairings.  

	 The classical conditioning paradigm provides valuable empirical data 

for computational models of  animal learning because, unlike instrumental 

conditioning (which we will return to in the next chapter), the experimenter 

has significantly more control over when each learning episode should occur. 

The ability to learn about the CS-US relationship plays a fundamental role 

in this learning process that allows animals to adapt to imminent biologically 

significant events (Hollis, 1982; 1997). This mechanism could be further 

used to, presuming a common set of  theoretical principles between humans 

and other animals, explain the development of  many abnormal behaviours 

 Selective reuse from past inferences (amortised inference) have also been shown to improve 7

the accuracy of  inference (Stuhlmuller, Taylor, & Goodman, 2013; Gershman & Goodman, 

2014).
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in humans such as drug abuse (Siegel, 1989) and anxiety disorders (Bouton, 

2002).  

	 Most contemporary theories of  classical conditioning employ a 

variation on the error-correction principle that was most notably proposed 

by Rescorla & Wagner (1972). The critical feature of  this error-correction 

theory is that learning (or the change in associative strength of  a stimulus) 

happens whenever there is a discrepancy between what animals expected 

from CS and what magnitude of  US animals actually received. This 

principle alone can explain a rather wide range of  experimental findings 

such as acquisition, extinction, and blocking. A great deal of  empirical data, 

however, contradicts with Rescorla & Wagner’s model such as spontaneous 

recovery and latent inhibition (see Miller et al., 1995 for a review of  failures 

of  the model). In this chapter, we will review a range of  classical empirical 

findings in the animal learning literature, and suggest a simple extension of  

the Rescorla & Wagner’s model — adding an additional memory 

component which allows animals to replay past experiences — that can 

avoid many of  the limitations the original model. The proposed model, the 

random replay model, emphasises the role of  sampling from past experiences 

as a complementary mechanism for associative learning and builds on an 

earlier replay model (Ludvig, Zhu, Mirian, Kehoe, & Sutton, under review). 

The random replay model assumes a more realistic memory model than the 

assumption of  an infinite memory size in the earlier replay model. In the 

random replay model, memory stores a fixed number of  past conditioning 

trials with guaranteed storage of  new trial and random drop-out of  an 

existing trial from memory. This newer memory model is now able to exhibit 

a certain degree of  forgetting and recency. 

	 The idea of  replay has been used in neuroscience to describe the 

reactivation of  place cells in the hippocampus during periods of  rest or sleep 

(e.g., Davidson, Kloosterman, & Wilson, 2009; Gupta, van der Meer, 

Touretzky, & Redish, 2010; Euston, Tatsuno, & McNaughton 2007; Wilson 

& McNaughton, 1994). Reusing past experiences to assist learning also 

enables many applications in artificial intelligence that achieve impressive 

performances on video games (Mnih et al., 2015) and the ancient Chinese 
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board game Go (Silver et al., 2016; Silver et al., 2017). The proposed 

random replay mechanism is not the only way to reuse past experience. 

Another approach to reuse past experiences in reinforcement learning is to 

use these data to build a model (i.e., model learning) and then to simulate 

and generate new data from this learnt model (Sutton, 1990; Sutton, 

Szepesvari, Geramifard, & Bowling, 2008) . While recent theoretical works 8

have demonstrated an analytically optimal design of  memory size and replay 

mechanisms in simple games (Liu & Zou, 2017; Zhang & Sutton, 2017), 

here we focus on the explanatory power of  the simplest replay mechanism—

replay at random—in animal learning. We will also show that introducing 

additional memory of  past trials and the random replay mechanism can 

explain the “counterintuitive” behavioural facilitation in classical 

conditioning for hippocampal lesioned animals (see Schwarting & Busse, 

2017 for a review).  

4.2 Computational Models of  Associative 
Learning 

	 A computational model of  associative learning should provide a 

formal framework for animal learning phenomenon both mechanistically 

and normatively. The mechanistic questions concern when and how the 

associative strength of  a stimulus should change. The normative question 

concerns why the associative strength should change in the manner 

suggested by the mechanism.  

4.2.1 Rescorla-Wagner Model 
	 As mentioned above, the leading theory of  animal learning was 

suggested by Rescorla & Wagner (1972). In their model, unlike earlier 

models, learning occurs not directly because CS-US pairings, but because 

such pairing is unanticipated on the basis of  the current associative strength, 

which functions effectively as a prediction of  US occurrence. This idea is 

 We will return to this idea in the subsequent chapter8
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formally defined as an error-correction learning rule, whereby changes in 

associative strength between CS and US occur whenever differences 

between what was expected and what actually happened: 

!                                               (4.1) 

where !  is the difference between animal’s expectations and reality (also 

known as the prediction error) for trial t; !  is the actual US (often rewards 

such as food and liquid or aversive outcomes, like electronic shocks); !  is the 

associative strength for the same trial.  

	 To handle multiple stimuli (e.g., both tone and light) within one trial, 

the Rescorla-Wagner learning rule works by computing the overall 

associative strength for the trial as the sum of  the associative strengths for all 

stimuli available on that trial: 

	 !                                    (4.2) 

where !  represents the individual associative strength for stimuli s at trial 

t; !  is the set of  stimuli present on that trial; !  is an indicator function, 

and it takes value of  1 when stimulus s is in the set  !  (i.e., stimulus s was 

present on trial t) and 0 otherwise .  9

	 Whenever the prediction error !  is non-zero, the Rescorla-Wagner 

learning rule prescribes that associative strengths should get updated in 

proportion to the prediction error: 

!                              (4.3) 

where !  is the learning rate that controls the size of  the update.  

	 With this simple Rescorla-Wagner learning rule, the model 

successfully accommodates a number of  learning phenomenon in classical 

conditioning, including acquisition, blocking, and conditioned inhibition (see 

Pearce & Bouton, 2001 for a review). 

δt = Rt − Vt

δt

Rt

Vt

Vt = ∑
s

Vt(s)2At(s)

Vt(s)
At 2A(s)

At

δt

Vt+ 1(s) = Vt(s) + αδt2At(s)

α ∈ [0,1]

 The indicator function can be viewed as a special case of  the eligibility trace in 9

reinforcement learning where trace length is one (Singh & Sutton, 1996; Maei & Sutton, 

2010). 
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4.2.2 The Random Replay Model 
	 We consider a simple extension to the Rescorla-Wagner model  

where animals can store past trials of  conditioning and actively re-use these 

trial memories to assist learning (Ludvig et al., under review). As illustrated 

in Figure 8, there are two parallel streams of  information processing in the 

random replay model. First, there is the usual process of  associative learning 

as formalised in the original Rescorla-Wagner model. The animals 

encounter a CS-US pairing on a trial and update the associative strength of  

the CS in the same manner as in the classic Rescorla-Wagner model. 

Second, past trials (i.e., CS, US, and the timing of  the trial) are also 

remembered in a trial memory. The animal can thus draw samples from this 

trial memory and replay these sampled trials like normal trials. That is, 

during the replay process, new prediction errors are computed based on the 

current associative strength and the content of  the trial sampled from 

memory.  

	 Clearly, how the trial memory stores past trials and how to sample 

from the trial memory determines the model behaviour. Here, as a proof-of-

concept for the replay idea, we adopt the simplest memory storage 

mechanism that allows a certain degree of  forgetting and recency effects . 10

The storage of  trials works as if  it were a leaky bucket: (a) the memory has a 

limited capacity (i.e., only a fixed number of  trials are remembered), and (b) 

once the number of  trials exceeds the memory capacity, a random trial is 

dropped out, and (c) the most recent trial is always successfully remembered. 

The first two rules ensure that forgetting of  past trials is present, and the last 

two rules further regulates the forgetting such that it should be more likely 

for older trials than for newer trials (i.e., recency). In addition, we assume the 

simplest trial-retrieval mechanism — random sampling from the memory 

bucket with replacement.	  

	 This replay process will provide a sample of  past trials that contains 

similar information to a normal trial: the CS, US, and the relative timing. 

 Analytical solutions of  optimal memory size and optimal replay mechanism are only 10

available in simple settings (Liu & Zou, 2017).
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The animal, then, can compute prediction errors for these samples using the 

Rescorla-Wagner rule: 

! .                                    (4.4) 

The difference from the standard Rescorla-Wagner learning rule is that 

!  is the remembered US for the replayed trial. !  is, however, still the 

present associative strength. Similar to the Rescorla-Wagner model, the 

associative strength needs to be updated whenever the prediction errors from 

replayed trials, ! , are also non-zero: 

!                     (4.5) 

where a different and smaller learning rate !  is used to update the 

current associative strength;  !  is the indicator function now placed 

on the replayed trial, which takes a value of  1 when the stimulus (e.g., CS or 

US) was presented in the replayed trial, and 0 otherwise.  

 

Figure 8. Schematic of  the random replay model. The standard error-

correction learning rule is depicted in solid arrows. In addition, the model 

assumes a memory of  past trials, which are then randomly sampled and 

then replayed (dashed arrows). The replayed trials are treated like any other 

trial and are used to update associative strength through the standard error-

correction learning rule.  

δreplay
t = R replay

t − Vt

R replay
t Vt

δreplay
t

Vt+ 1(s) = Vt(s) + αreplayδreplay
t 2A replay

t
(s)

αreplay < α

2A replay
t
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4.3 Towards a Unifying Account of  Classical 
Conditioning 

	 Empirical studies of  classical conditioning have provided a vast 

dataset to constrain theoretical models. To demonstrate the explanatory 

power of  the random replay model, we simulate six well-established 

empirical findings that have been replicated across species or preparations 

(e.g., Rescorla, 2004; Schmajuk & Alonso, 2012; Schwarting & Busse, 2017): 

acquisition, spontaneous recovery, latent inhibition, retrospective 

revaluations, acquisition-extinction interval, and facilitatory lesion effects. 

These empirical findings suggest desirable models predictions based on the 

standard classical-conditioning paradigm (4.3.1, 4.3.2, 4.3.4, and 4.3.5), the 

timing of  the trial distribution (4.3.3), and the effects of  hippocampal lesions 

(4.3.6).  

	 The qualitative model predictions are presented for the core 

phenomena and detailed quantitative fitting to the exact parameters of  

particular dataset is left to future work. Each of  these six learning 

phenomena has had tailored explanations within associative learning 

framework, but no unifying theoretical model has been able to explain all of  

them. In the simulation below, we test the model predictions with one set of  

parameters: learning rate for normal trials ! , learning rate for 

replayed trials ! , number of  replays !  (working memory 

size), memory capacity !  (long-term memory size). To account for 

the behaviour of  hippocampal-lesioned animals, we suggest two parameter 

changes: a lower overall memory capacity !  but a higher learning 

rate for replayed trials ! . 

4.3.1 Acquisition  
	 During simple acquisition, a CS is repeatedly paired with a US. For 

instance, a tone might be repeatedly paired with food or a light might be 

repeatedly paired with a puff  of  air to the eye. Animals can learn to predict 

the US (e.g., food or puff  of  air) by making an appropriate anticipatory 

response to the CS (e.g., salivate or blink). This is the simplest learning 

α = .05
α = .005 Nreplay = 5

Ntotal = 200

N (lesion)
total = 50

α(lesion)
replay = .05
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phenomena in classical conditioning and often acquisition trials are denoted 

as X+ where “X” indicates the presentation of  the CS and “+” indicates the 

presentation of  the US (see Table 6 for a complete list of  trial types 

considered in the simulations).  

Table 6. 

All types of  classical conditioning trials considered in this Chapter. CS1 and 

CS2 denotes two different conditioned stimuli. US denotes the 

unconditioned stimulus. 

	 On each trial, animals observe X+ and incrementally update the 

associative strength of  X based on the prediction errors (Equation 4.3). 

Given enough of  these updates, animals, following Rescorla-Wagner’s 

model, can learn to elicit an appropriate conditioned response to the CS. For 

the random replay model, however, additional replays take place between 

trials; in those replays, past trials (also X+ in acquisition) are sampled at 

random and replayed. The replay process effectively leads to further 

increments in the associative strength of  X, and faster learning of  the 

association between the CS and US is predicted. Though making distinct 

predictions about the speed of  acquisition, it might be impossible to separate 

the random replay model from Rescorla-Wagner’s model based solely on this 

behavioural data. As we shall see in the next section, however, the necessity 

of  additional replay processing becomes much more apparent when more 

experimental variables are manipulated. 

Trial Type CS1 CS2 US

Null absent absent absent

X+ present absent present

Y+ absent present present

XY+ present present present

X- present absent absent
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4.3.2 Spontaneous Recovery 
	 Spontaneous recovery has long been seen at odds with the basic 

Rescorla-Wagner model and the widespread observations of  this 

phenomenon suggests that an additional mechanism is needed beyond the 

error-correction principle (Rescorla, 2004; Sissons & Miller, 2009). In 

classical conditioning, the arranging of  a positive relation between a CS and 

a US typically establishes a conditioned response to that CS (as in the 

standard acquisition trial). After animals have acquired the CS-US relation, 

during extinction training where the CS-US relation is removed (typically 

through presenting CS-alone trials), animals progressively cease responding. 

According to the Rescorla-Wagner model, the associative strength and thus 

conditioned response should be completely eliminated by the end of  

extinction. By simply introducing a delay after extinction, however, the 

extinguished response reappears when the same CS is represented to the 

animals, sometimes at nearly full strength — hence so-called spontaneous 

recovery (Napier, Macrae, & Kehoe, 1992; Kehoe, 2006). Moreover, the 

degree of  recovery increases as the delay between the end of  extinction and 

recovery test is increased (e.g., Haberlandt, Hamsher, & Kennedy, 1978). 

Table 7. 

Experimental procedures in classical conditioning 

	 The basic Rescorla-Wagner model predicts that the associative 

strength approaches 0 by the end of  extinction. There is no chance that the 

model would predict a recovery while no further training is provided to the 

Phenomena Phase 1 Phase 2 Phase 3

Spontaneous recovery X+ X- test X

Latent inhibition X- X+ test X

Backward blocking XY+ X+ test Y

Recovery from overshadowing XY+ X- test Y

Recovery after blocking X+ XY+ X-
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animals during the delay between the end of  extinction and the recovery 

test. The associative strength should remain at 0 because effectively animals 

observe “Null” trials during the delay. Within an associative framework, a 

number of  explanations for spontaneous recovery have been proposed and 

most share a common intuition: the two conflicting experiences (i.e., X+ in 

acquisition and X- in extinction) should be temporally weighted differently 

with more recent experiences having a greater effect on learning. With the 

passage of  time, however, the two sets of  experiences become increasingly 

similar in recency (i.e., both are temporally more distant from the present), 

resulting in relatively more influence of  X+ than before. The conditioned 

response thus partially returns, generating spontaneous recovery. This idea 

has been formally defined as (a) different decay rates for excitatory and 

inhibitory processes (Bouton, 1993), (b) a temporal weighting rule 

(Devenport, 1998; Devenport, Hill, Wilson, & Ogden, 1997), (c) diffusion of  

stimulus characteristics over time (Estes, 1955), and (d) inference of  different 

latent causes for acquisition and extinction (Courville, Daw, & Touretzky, 

2006; Courville & Daw, 2008; Gershman, Blei, & Niv, 2010; Gershman & 

Niv, 2012).  

	 The random replay model can be thought of  as a mechanistic 

account of  these previously suggested models for spontaneous recovery. By 

the end of  extinction, both X+ and X- trials are stored in the trial memory, 

but with more X- than X+ given the forgetting feature of  the memory 

storage rule (random drop-out of  existing trial memories). The delay period 

after extinction essentially creates a series of  Null trials and will also be 

incorporated into the trial memory. As a result, the trial memory satisfies the 

intuition that (a) more recent experiences have greater influence on 

performance and (b) with an increase in delay, more Null trials will be added 

to the memory and hence the relative influence of  distant trials (in this case 

X+) against recent rials (in this case X-) should also increase. In Figure 9 

(blue lines), the random replay model is simulated to explain spontaneous 

recovery with parameter values mentioned above. The model predicts that a 

longer extinction-test delay should generate greater degree of  recovery as in 
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the empirical study on the conditioned eye blink response in rabbits 

(Haberlandt et al., 1978).  

 

Figure 9. Spontaneous recovery predicted by the random replay model (blue), 

whereas the classic Rescorla-Wagner model (red) predicts no recovery in the 

third phase. Both models are repeatedly simulated for 100 times with exact 

same set of  parameters. The median value of  these simulated runs are 

depicted as solid lines. 

4.3.3 Impact of  Length and Timing of  Training Phases 
	 The random replay model makes further testable predictions about 

spontaneous recovery. For example, suppose a significantly longer extinction 

training phase where all X+ trials drop out of  the trial memory, recovery 

should be muted in this situation because there are no X+ trials left in 

memory to be replayed. Similarly, when the acquisition trials are few, the 

number of  X+ trials that are stored in memory before extinction is small, so 

even a shorter extinction phase would be expected to fully wash out the X+ 

from the trial memory. Therefore, the degree of  spontaneous recovery 

should depend on the relative length of  the acquisition and extinction trials. 
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This prediction matches what has been observed in fear conditioning (e.g., 

Rescorla, 2006; Laborda & Miller, 2013): massive extinction treatment 

reduces the return of  fear.  

	 Indeed, the magnitude of  spontaneous recovery varies inversely with 

the acquisition-extinction interval: there is a greater recovery for a shorter 

interval between acquisition and extinction (Figure 10A: Rescorla, 2004). 

The experimental procedure can be divided into five phases. First, animals 

were presented with ! + (e.g., CS: white noise, US: food) until their 

conditioned responses reached a threshold. Second, animals received the 

same treatment with an alternative !  CS (e.g., light). If  the animals were 

trained with the light first, then they received the white noise next (and vice 

versa). Third, animals exposed to an extinction contingency for both !  and 

!  (i.e., trials were either ! - or ! -). The presentation of  ! - and ! - trials 

was counterbalanced. Fourth, a resting period was inserted (i.e., extinction-

test interval as in the standard spontaneous recovery experiment). Finally, 

conditioned responses were recorded for both !  and !  after a fixed resting 

period for both CSs. The main finding was that recovery was greater for a 

stimulus trained closer in time to extinction that for one trained in the more 

distant past (Rescorla, 2004).   

 

Figure 10. Shorter acquisition-extinction intervals produce a greater degree 

of  spontaneous recovery. (A) Experimental data with pigeon subjects. 

Responses that had been trained distantly from (! : longer acquisition-

R1

R2

R1

R2 R1 R2 R1 R2

R1 R2

R1
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extinction interval) or proximally to ( ! : shorter acquisition-extinction 

interval) extinction. !  exhibits greater recovery than !  in a recovery test. 

The figure was adapted from Rescorla (2004). (B) Simulation of  the random 

replay model. The Rescorla (2004) experiment has five phases (left to right: 

! +, ! +, random mixture of  ! - and ! -, rest, and test). The random replay 

model predicts that !  emerges to recover more than ! . 

	 Figure 10 shows how this finding follows naturally from the random 

replay model. Because the trial memory favours storing temporally more 

recent trials, animals are expected to have more remembered trials of  !  

than ! . Random sampling from such a memory ensures that learning with 

replayed trials also prioritises recent trials. Following from the replay model’s 

explanation for standard spontaneous recovery whereby the degree of  

recovery is positively related to the proportions of  previous trials in the 

memory, !  (with more reinforced trials still in the trial memory) is thus 

predicted to have greater recovery than ! . Stronger versions of  trial spacing 

effects, in which duration of  a trial and the duration of  the inter-trial 

interval were manipulated (e.g., Balsam et al., 2010; Gallistel & Gibbon, 

2000, 2002), can also be accounted by this simple replay mechanism (Ludvig 

et al., under review).  

4.3.4 Latent Inhibition 
	 In latent inhibition, initial exposures to unreinforced presentations of  

a stimulus (i.e., X-) reduces the speed of  conditioning when that stimulus is 

later paired with a US (i.e., X+) (Lubow, 1973; Lubow & Moore, 1959). This 

finding poses yet another challenge to the Rescorla-Wagner model: the 

associative strength for X should remain at 0 during the initial X- trials when 

the animals expect no US from X and also receive no US (i.e., no prediction 

error). Later associative learning models postulated attentional mechanisms 

to explain latent inhibition, whereby animals learn not to pay attention to 

the stimulus when it has been repeatedly presented alone before 

(Mackintosh, 1974; Pearce & Hall, 1980).  

R2

R2 R1

R1 R2 R1 R2

R2 R1
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	 From the random replay model’s perspective, initial conditioning 

with X- trials should also be remembered by the animals. When in the 

second phase, X+ trials are presented, animals should also replay some of  

earlier X- trials, thereby slowing down conditioning to X. In Figure 11B, we 

depict one simulation of  the replay model (blue lines for normal animals) 

with the latent-inhibition procedure. In the first phase, 100 unreinforced 

trials were presented to animals. As with the experimental data, the random 

replay model shows no change in associative strength in this stimulus-alone 

presentation; however, the trial memory gradually fills up with a number of  

X- trials. In the second phase, the animal experiences 100 reinforced 

presentation of  the same stimulus (X+). Because the memory was 

dominated by X- before the start of  the second phase, sampling X- trials 

from memory means that there was a negative prediction error (see Eq 4.4), 

and thus associative strength goes down. This results in a slower learning 

than if  there had been no previous exposure to X- trials. 
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Figure 11. The random replay model of  classical conditioning for both 

normal and hippocampal lesion animals. The learning phenomena were in 

figure title and the simulated experimental procedures were separated by 

dashed lines. (A) Spontaneous recovery. (B) Latent inhibition. (C) Backward 

blocking. (D) Recovery from overshadowing. (E) Recovery after blocking. 

All simulations presented here used the exact same set of  model parameters 

in the main text and also for Figure 9 and 10 above. 
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4.3.5 Retrospective Revaluation  
	 A third class of  associative learning phenomena that can be 

reproduced by the random replay model is retrospective revaluation. These 

learning phenomena typically include two or more CSs (e.g., light and tone 

can be simultaneously presented within the same trial). In retrospective 

revaluation, animals change their responding to one CS on the basis of  

further trainings with a different CS (e.g., Dickinson, 1996; Van Hamme & 

Wasserman, 1994). We will investigate three instances of  retrospective 

revaluations below: backward blocking, recovery from overshadowing, and 

recovery after blocking.  

4.3.5.1 Backward Blocking 

	 In backward blocking, animals are first presented with reinforced 

compound XY+ trials; for example, both tone and light are paired with food 

delivery. Then in the second phase, they are trained with one of  the stimuli 

in isolation (e.g., X+) — i.e., only tone is paired with same food delivery. 

When tested after this second phase, the conditioned response for the other 

stimulus (e.g., Y) that was not presented in the second phase appears to 

become lower (Shanks, 1985; Miller & Matute, 1996). Though animals 

never re-encountered the Y stimulus, the training of  X+ trials functions in 

the second phase as if  it blocks the previously learnt associative strength of  Y 

in the first phase; hence the name, backward blocking. 

	 The key intuition behind many existing explanations of  the 

phenomenon is that, during the first phase of  XY+ training, animals not 

only learn that both X and Y predicts the US, but they also implicitly learn 

that X and Y are somehow related. This idea is crucial to understand many 

retrospective revaluation phenomena and has been instantiated in both 

latent-cause models (Courville & Daw, 2008; Gershman et al., 2010) and 

through within-compound associations in standard associative models 

(Dickinson, 1996; Van Hamme & Wasserman, 1994; Markman, 1989; 

Tassoni, 1995). According to these models, a representation of  the absent 

stimulus (Y) becomes activated by presenting the other stimulus (X), because 
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the XY+ training results in (a) a generative model where two latent causes 

(e.g., X, Y) are necessary for a US or (b) within-compound associations are 

formed. Just as presenting Y- trials reduces the associative strength of  Y, 

mentally activating a presentation of  Y (through its associations with X) in 

the second stage of  the XY+ X+ experiment should also reduce the 

associative strength of  Y.  

	 The Rescorla-Wagner model has no implicit or explicit associations 

between X and Y, and therefore it predicts no blocking for Y in the second 

phase. The random replay model, however, offers a simple mechanistic 

account for how the associations between X and Y were formed. After the 

first phase of  training with XY+ trials, the trial memory will consist of  many 

XY+ trials. Memories of  these XY+ trials will be replayed during the 

second phase of  training with X+ trials. Such replays result in the reduction 

of  the associative strength of  Y. To illustrate why this happens, we suppose 

an idealised training case where US has unit value and, upon the completion 

of  XY+ training, animals learn that the associative strengths for X and Y 

are equal to 0.5. In the second phase, X is now paired with the same unit 

US, so the associative strength of  X will gradually increase towards 1, 

through the standard error-correction learning rule. Meanwhile, when 

replaying XY+ trials, the sum of  the associative strengths of  X and Y are 

now greater than 1 (because Y is at 0.5 and X is greater than 0.5). This will 

produce negative prediction errors for both X and Y and decrease their 

associative strengths through the error-correction learning rule for replayed 

trials. However, given the fact that replayed learning rate is smaller than the 

normal learning rate, the overall trend for associative strength of  X is to 

increase towards 1 and of  Y is decrease towards 0, explaining the backward 

blocking phenomenon. In Figure 11C (blue lines), we simulate the random 

replay model and a decrease in associative strength of  Y can be found while 

the training in the second phase only contains X+.  
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4.3.5.2 Recovery from Overshadowing 

	 Recovery from overshadowing is very similar to backward blocking, 

except the second phase of  training is altered from X+ (acquisition) to X- 

(extinction). That is, animals are first trained with XY+, which is then 

followed by extinction of  one stimulus X-. During the extinction of  X, 

however, the level of  responding to the absent stimulus Y increases (Matzel, 

Schachtman, & Miller, 1985; Wasserman & Berglan, 1998), in an almost 

inverse case to backward blocking.  

	 Figure 11D (blue lines) shows what the random replay model does in 

a recovery from overshadowing experiment. The exact same mechanism of  

trial memory and random replay is used in the simulation. The replay of  

XY+ trials during X- extinction generates a positive prediction error for 

both X and Y because, following the same illustrative situation above, 

!  and !  where the US was assumed to have a unit 

value. This effectively boosts the associative strengths of  both X and Y, but 

the boost for X is offset by the ongoing extinction of  X, especially with the 

higher learning rate for real versus replayed experiences.  

4.3.5.3 Recovery after Blocking 

	 A slightly more complicated experiment procedure is needed to elicit 

recovery after blocking. Initially, animals go through a standard blocking 

protocol, which includes two phases of  training (X+ then XY+). This results 

in limited responding to the added stimulus Y; that is, the learning of  Y is 

blocked by X because X alone is sufficient to predict the US. Then a third 

phase of  X extinction training (X-) is introduced to animals. The ‘surprise’ 

empirical finding is that the level of  responding to stimulus Y increases 

during this extinction training of  X (Blaisdell, Gunther, & Miller,1999), 

hence the name, recovery after blocking.  

	 Recovery after blocking is again quite readily accommodated by the 

random replay model (see Figure 11E). During the first phase of  X+ 

training, the associative strength of  stimulus X increases to asymptote, with 

no change in the strength of  the yet-to-be-experienced stimulus Y. In the 

V (X ) < 0.5 V (X ) + V (Y ) < 1
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second phase of  XY+ training, no prediction errors are present because X 

alone can predict the US fully. Thus, there is no learning for both X and Y. 

So far, the Rescorla-Wagner model and the random replay model predict the 

exact same qualitative changes in the associative strengths of  X and Y, 

though the random replay would expect the acquisition of  X to be faster 

than the Rescorla-Wagner model would (as discussed above). The only 

difference is that the trial memory of  the random replay model now contains 

a mixture of  both X+ and XY+ trials. These additional memories and 

replays of  X+ or XY+ do not change the associative strength and sustain 

the blocking effect. 

	 The trial memory and replay process start to make distinct 

predictions from the Rescorla-Wagner model in the third phase, which 

consists of  X- extinction training (see Table 7). The replay of  XY+ during 

X- extinction training generates positive prediction errors for both X and Y, 

and therefore increase in the associative strength of  the previously blocked 

stimulus (Y). In Figure 11E (blue lines), we depict a simulation of  the 

random replay model using the same set of  parameters across as elsewhere 

in this chapter.  

4.3.6 Facilitatory Lesion Effects 

	 The random replay model proposes a simple extension to the basic 

Rescorla-Wagner model by highlighting the importance of  trial memory and 

random replay from such memory. Prevailing neuroscientific theories argue 

that hippocampus is critical to many functions of  memory, and behavioural 

changes related to memory are often observed in animals with hippocampal 

destruction (e.g., Douglas, 1967; Cohen & Eichenbaum, 1993; Hirsh, 1974; 

Sutherland & Rudy, 1989; Ludvig, Sutton, Verbeek, & Kehoe, 2009).  

	 In this section, we focus on the behavioural effects of  hippocampal 

lesions in classical conditioning (see Schwarting & Busse, 2017 for a review). 

Schmaltz and Theios (1972) show that rabbits with their hippocampus 

removed show both faster acquisition of  a conditioned nictitating membrane 

response and slower extinction than unoperated rabbits. Later studies 
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replicated the facilitatory effect of  these hippocampal lesions in acquisition 

on different species (e.g., rats in Schmajuk & Isaacson, 1984) and on both 

appetitive and aversive conditioning (see Weiss & Disterhoft, 2015 for a 

review).  

	 To account for the faster acquisition but slower extinction in 

hippocampal lesion animals, the random replay model has to assume two 

computational consequences of  hippocampal lesion: (a) the capacity of  the 

trial memory should be reduced, and (b) the learning rate for replayed trials 

should be enhanced. It is not obvious why the learning rate should be 

increased, but this adjustment may be justifiable as the main learning now 

take place in striatum for hippocampal-lesion animals (Bornstein & Daw, 

2012). With these two adjustments on model parameter values, the random 

replay model can reproduce the facilitatory effect in acquisition and 

inhibitory effect in extinction for hippocampal-lesioned animals (Figure 11A, 

red lines). Simultaneously, the random replay model suggests a number of  

new predictions for possible behavioural changes for hippocampal lesion 

animals in latent inhibition and other retrospective revaluation experiments 

(Figure 11B to 11E, red lines). In latent inhibition, hippocampus lesioned 

animals are predicted to have slower acquisition in second phase and no 

recovery in the third phase. Facilitatory effects are expected in all 

retrospective revaluations for hippocampus lesioned animals. To the best of  

our knowledge, the literature lacks sophisticated empirical investigations of  

the performance of  hippocampal lesion animals on most of  these tasks.  

4.4 Discussion 
	 The random replay model is a formal model of  associative learning. 

The model suggests simple extension to the Rescorla-Wagner model, by 

including an additional trial memory component and the randomly 

resampling trials from that memory to replay and learn from with the same 

error-correction learning rule. As demonstrated above, these extensions to 
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the error-correction learning models can capture a number of  classical 

conditioning phenomena.  

	 The idea of  replay is inspired by lengthy neuroscience evidence of  

the behaviour of  place cells in the hippocampus (e.g., Davidson et al., 2009; 

Redish, 2016; Gupta et al., 2010). These neurons seem to exhibit experience 

replay, mostly during the resting state of  animals, in spatial navigation tasks 

(Gupta et al., 2010; Dave & Margolish, 2000; Gardner & Moser, 2017; Wu, 

Haggerty, Kemere, & Ji, 2017; Foster, 2017). Reusing past experiences to 

assist learning also has also been demonstrated to be useful in artificial 

intelligence. Deep learning agents with experience replay can achieve 

human-level performance on Atari video games (Mnih et al., 2015) and the 

ancient Chinese board game Go (Silver et al., 2016; Silver et al., 2017).  

	 For simplicity, here, we only consider a very simple curation and 

retrieval mechanisms for the trial memory: A fixed size memory bucket that 

adds in the most recent trial and randomly drops out old trials when the 

bucket is full. Sampling past trials from the memory is also random. While 

simple, the trial memory and random replay mimic a mental model of  the 

world presumed in model-based reinforcement learning algorithms (Daw, 

Niv, & Dayan, 2005; Balleine & O’Doherty, 2010; Daw et al., 2011; 

Vanseijen & Sutton, 2015). The mental model of  the world typically has a 

full description of  how the world works. In conditioning tasks, the world 

model summarises the transition function between states and reward 

function. The computational advantage of  using model-based reinforcement 

learning is that a single model transition lumps together many real-world 

transitions and effectively reduces what needs to be kept in memory. The 

trial memory proposed here resembles a mental model of  world because, as 

more actual trials are observed and curated, the more accurate the trial 

memory approaches to  the true statistics of  the world.  

	 Replaying past trials at random, however, is clearly non-optimal 

because not all previous trial are relevant for the current learning objective. 

Other replay schemes have been previously suggested to further enhance the 

efficiency of  learning such as prioritising certain trials to replay based on 

their absolute reward prediction errors (Lin, 1992; Liu & Zou, 2017; Zhang 
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& Sutton, 2017) or based on the expected value of  improvements (Mattar & 

Daw, 2018). How different replay schemes affect learning and which scheme 

is adopted by animals are interesting questions to explore in the future. 

	 The random replay model does not challenge the normative error-

correction principle of  learning. The model, however, advocates an 

augmented view of  what are the training data used for learning: sampled 

memory from past is also a critical, but previously neglected, part of  data 

that need to be considered through the error-correction rules. We showed 

that many phenomena observed in classical conditioning reveal traces of  a 

mental process that draws samples from memory and actively reuses these 

samples for learning.  
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Chapter 5  

Sample from Simulation 
“There is a reflex which is still insufficiently appreciated and which can be termed the 

investigatory reflex. I sometimes call it the ‘What-is-it?’ reflex.” (Ivan Pavlov, 1924) 

5.1 Introduction 
	 Through interactions with the environment, animals not only 

acquire value estimations for various states in the environment, but also get 

to know about how the environment works in general (e.g., state transitions 

and reward functions). The learnt transition and reward function comprise a 

world model which summarises the environment’s dynamics. In this chapter, 

we will further demonstrate that humans and other animals behave as 

though they can draw samples from simulating such a world model. More 

importantly, this ability to sample from simulations (i.e., imagined mental 

samples), as we shall see below, can be used to potentially explain why we are 

curious creatures.  

	 Humans and other animals have strong preferences for informative 

options. We are all highly curious creatures and will explore unknown 

options and even sometimes sacrifice rewards to resolve uncertainty earlier. 

When faced with delayed, uncertain rewards, humans and other animals 

usually prefer to know the eventual outcomes in advance. This search for 

information will even occur independent of  any potential profit, when there 

is no possible effect on the delivery of  primary rewards, as if  consuming 

information itself  was rewarding (e.g., Wyckoff, 1952; Prokasy, 1956; Spetch, 

Belke, Barnet, Dunn, & Pierce, 1990; Stagner & Zentall, 2010; Bromberg-

Martin & Hikosaka, 2011; Blanchard, Hayden, & Bromberg-Martin, 2015; 

Iigaya, Story, Kurth-Nelson, Dolan, & Dayan, 2016). On occasion, this 

information seeking leads to seemingly suboptimal choices with animals 

preferring options with lower average reward rates (Spetch et al., 1990; 
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Stagner & Zentall, 2010). In this chapter, we develop a new computational 

model of  this information-induced sub optimality based on the idea that 

animals’ choices reflect the anticipated prediction errors from any upcoming 

cues in addition to the expected rewards. 

5.2 Empirical Evidence for Information-Induced 
Sub-Optimality 

	 The strong preferences for advanced information about rewards has 

been widely observed across species, including rats (Prokasy, 1956; Chow, 

Smith, Wilson, Zentall, & Beckmann, 2017), pigeons (Spetch et al., 1990; 

Zentall, Laude, Stagner, & Smith, 2015), starlings (Vasconcelos, Monteiro, & 

Kacelnik, 2015), monkeys (Bromberg-Martin & Hikosaka, 2009; 2011; 

Blanchard et al., 2015), and humans (Iigaya et al., 2016; Zhu, Xiang, & 

Ludvig, 2017). In some cases, animals even give up food or water for 

advanced information about impending rewards, even when these advanced 

signals do not change the rate of  eventual reward delivery. For example, 

pigeons reliably choose an alternative that provides delayed access to food 

only 50% of  the time over one that always provides the same amount of  

food with the same delay, but only when an immediate cue is provided, 

which tells the pigeons whether or not the food will eventually be available 

on that trial (Kendall, 1974; 1975; Spetch et al., 1990; Gipson et al., 2009). 

The choice of  the 50% alternative over a 100% alternative is clearly 

suboptimal in terms of  reward maximisation. Similarly, when choosing 

between delayed, probabilistic rewards, monkeys and humans will strongly 

prefer an option that informs them about the eventual outcome of  that trial 

over one that leaves the resolution of  uncertainty to the time of  reward 

delivery (Bromberg-Martin & Hikosaka, 2009; 2011; Iigaya et al., 2016; Zhu 

et al., 2017). 

	 Figure 12 presents a schematic that encapsulates many of  the 

experiments that have been used to study this curiosity-like behaviour (e.g., 

Wyckoff, 1952; Green & Rachlin, 1977; Spetch et al., 1990; Roper & 
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Zentall, 1999; Stagner & Zentall, 2010; Bromberg-Martin & Hikosaka, 

2009; 2011; Iigaya et al., 2016; Fortes, Vasconcelos, & Machado, 2016; Zhu 

et al., 2017). In these experiments, animals pick between two options with 

uncertain, delayed outcomes, where the cued option (red, top row in Figure 

11) provides immediate cues as to the eventual outcome and the other, 

uncued option (blue, bottom) does not. For cued options, subjects receive a 

predictive cue after the initial-link (IL), which either perfectly predicts 

reward R after the terminal-link (TL) delay (the green S+ cue) or which 

perfectly predicts no reward with the same delay (the yellow S0 cue). The 

probability of  the reward-predictive cues varies across experiments and is 

indicated here by q. For the uncued options, non-predictive stimuli 

(represented as the black S* cue) always appear after choosing the uncued 

option, leaving the animal in a state of  uncertainty. A reward R then follows 

with a probability of  p after the same delay of  TL. 

 

Figure 12. Formal representation of  the information-choice task as a Markov 

Decision Process (MDP). Two offers (red and blue circles) are presented, and 

the animal must choose one of  them. A cue then appears after this initial 

choice (Initial Link: IL), which is either informative (green S+ indicates a 

rewarding outcome; yellow S0 indicates a neutral outcome with probability q 

and 1-q respectively) or uninformative (black S* leaving the animal in a state 

of  uncertainty). Following a delay (Terminal Link: TL), the animal obtains 
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the outcome (reward or no reward). The anticipatory signals proposed by 

the APE model are illustrated as the purple dashed lines. 

	 To apply computational models to these experiments, this 

information-choice task was represented as a Markov Decision Process 

(MDP). The agent starts in the choice state with two actions available (cued or 

uncued). The cued action leads to one of  the cued states (either S+ or S0) 

stochastically, whereas the uncued action leads to the uncued state (S*). The 

uncued state only resolves its uncertainty at time IL+TL (i.e., the end of  a 

trial), when it leads to reward with probability of  p and no reward with 

probability of  1-p. 

5.3 Computational Models of  Suboptimal Choices  
	 To explain the patterns of  information-induced suboptimal choice 

discussed above, we introduce a new model — the Anticipated Prediction 

Error (APE) model. We explore and evaluate the model in contrast with a 

baseline reinforcement-learning model: The Temporal-Difference (TD) 

learning model (Sutton & Barto, 1998). We start by outlining the standard 

TD model and then show how the APE model builds on and extends this 

basic framework. 

5.3.1 The Temporal-Difference (TD) Model 
	 As a baseline model, we consider the TD model of  animal learning 

(Sutton & Barto, 1987; Moore, Desmond, Berthier, Blazis, Sutton, & Barto, 

1986; Moore & Blazis, 1989; Moore, Choi, & Brunzell, 1998; Ludvig, 

Sutton, & Kehoe, 2012). The model suggests a normative account of  animal 

learning, where animals are trying to form accurate long-term predictions of  

rewards. Animals following the TD learning rule are assumed to estimate a 

value function (V) for each state in their environment. Similar to the 

associative strength in the Rescorla-Wagner model discussed in Chapter 4, 
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the value of  a state is an estimate of  future rewards and is learned through 

an incremental update mechanism. At trial t, animal should update 

estimations for state values as follows: 

!                                           (5.1) 

where !  is the learning rate, and !  is the temporal difference error: 

!                                  (5.2) 

where !  is the immediate reward received upon transition from state !  to 

! , and !  is a discount factor between 0 and 1.  

	 The information-choice paradigm in Figure 12 is basically an 

instrumental-conditioning experiment where learning depends on the 

consequences of  an animal’s choices: the delivery of  a reinforcing stimulus is 

contingent on what the animal does. These experiments can trace their 

history all the way back to Thorndike’s experiments that motivated his 

famous Law of  Effect, where cats progressively decreased their time to 

escape puzzle boxes with each successive attempt (Thorndike, 1898). In 

Thorndike’s box, what to choose next based on previously learned 

knowledge was crucial to find a better policy to escape. Thus, the main 

difference in the instrumental case from our random replay model of  

classical conditioning (see the previous chapter) is that learning and control 

each have effects on the other: the learning system should guide choices, and 

choices will subsequently affect the observed data for the learning system.  

	 For the MDP considered here (Figure 12), choice is only possible at 

one state C (the beginning of  the trial) between progressing to either state 

!  or state ! . In the modelling work below, for simplicity— selecting 

actions based on the state value, we assume a softmax action selection rule 

for all the models. 

!                      (5.3) 

where the probability of  choosing the cued option, ! , is dependent on 

the difference in decision value, ! ; and !  is the inverse 

V (st) = V (st) + αδt

α δt

δt = Rt + γV (st+ 1) − V (st)

Rt st

st+ 1 γ

Ccu ed Cu ncu ed

P(Ccu ed ) = exp[β ̂V (Ccu ed )]
exp[β ̂V (Ccu ed )] + exp[β ̂V (Cu ncu ed )]

P(Ccu ed )
̂V (Ccu ed ) − ̂V (Cu ncu ed ) β
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temperature parameter that controls the degree of  randomness of  action 

selection; with smaller ! , animals select actions more randomly.  

	 Note that we deliberately use two different notations for state values: 

!  and ! . Both state values are learned through experiences, whereas 

the former is used to form accurate predictions of  long-term rewards, and 

the latter is used to generate actions. The benefit of  this distinction will be 

clearer when we introduce the APE model. For the TD model, !  is always 

equal to ! . 

5.3.2 The Anticipated Prediction Error (APE) Model 
	 The key intuition behind the APE model is that animals both learn 

from their experiences as per the TD rule above, but also enhance that 

experience with samples of  potential future outcomes at the time of  choice 

(i.e., sample from simulations of  imagined future episodes). From those 

anticipated samples, they calculate a prediction error, which is then used to 

adjust the value learned through the TD rule. Importantly, this sampling 

process can lead to biased learning values that do not necessarily accord with 

the encountered experiences. To explain the information-induced 

suboptimal choices, it is necessary to assume that there is an optimism bias 

for rewards (Sharot, Riccardi, Raio, & Phelps, 2007; Sharot, 2011), or more 

generally, that animals are more likely to sample from both big wins and big 

losses (Ludvig, Madan, & Spetch, 2014; Madan, Ludvig, & Spetch, 2014; 

Lieder et al., 2018).  

	 More formally, the new model proposed here supposes that 

information-seeking behaviours are due to a forward-sampling process, 

whereby animals draw mental samples of  possible future states, and then 

calculate any prediction errors for that sample. The mean value of  these 

prediction errors is defined as the APE: 

!                    (5.4) 

where !  is the transition probability from state s to subsequent ! , !  and 

!  are the immediate reward received upon and the time needed for the 

transition respectively, and !  denotes the discount factor. These APEs are 

β

V (s) ̂V (s′�)

V (s)
̂V (s)

A PE(s′�|s) = Tss′� × [Rss′� + γDss′�V (s′�) − V (s)]

Tss′� s′� Rss′�
Dss′�

γ
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hypothesised to reflect the degree of  anticipation for a future imagined state 

!  given the current state s.  

	 The key assumption of  the model is that these anticipated prediction 

errors do not just drive learning, but are rewarding in and of  themselves (see 

McDevitt et al., 2016). Positive APEs are thus reinforcing and negative APEs 

punishing. Therefore, when animals make choices, they consider both the 

value function as learned through the TD model as well as the APEs  

derived through forward sampling. Accordingly, we can define the decision 

value !  as the weighted sum of  the APEs for all possible future states plus 

the value function of  state s: 

!                               (5.5) 

where !  is the set of  all possible future states that are reachable from state 

s, !  is the weight associated with the future state ! , and reflects the sampling 

bias toward that future trajectory. For simplicity, we only consider !  as the 

immediate next state from state s; that is, animals were assumed to only 

engage in one-step look ahead into future. 

	 For the APE model, the decision value is different from the value 

function because the inclusion of  the anticipatory sampling process. Besides 

that, the same softmax choice rule was applied to generate actions. It is also 

worth noting that the APE model can be viewed as an extension of  TD 

model. The APE model argues for separation of  learning (as in the value 

function) and control (as in the decision value) through an additional 

anticipatory sampling process (represented by the sampling weights). 

However, when there is no anticipatory sampling (i.e., sampling weights are 

equal to 0), the APE model reduces to TD model; this also means that  the 

values driving learning and control are no longer separated. In the 

simulation below, we treat the TD model as a special case of  the APE model 

where sampling weights are 0. 

s′�

̂V (s)

̂V (s) = V (s) + ∑
si∈F(s)

wi A PE(si |s)

F(s)
wi si

F(s)
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5.4 Explaining Suboptimal Choices with the APE 
model 

	 In this section, we characterise the behaviours of  both the TD and 

APE models based on a series of  information-choice tasks. We broadly 

classified the task, based on the primary experimental variables in the test, 

into five applications: (a) cue-outcome contingency, (b) uncertainty 

resolution, (c) delay to outcomes, (d) reward magnitudes, and (e) negative 

outcomes (see Table 8). Alongside each application, we present results from 

both the TD and APE models. 

Table 8. 

Key experimental variables that have been found to determine the degree of  

suboptimal choice in information-choice tasks. 

Experimental Variables Papers Species

Cue-outcome contingency Stagner & Zentall (2010) Pigeon

Kendall (1974; 1985) Pigeon

Roper & Zentall (1999) Pigeon

Gipson et al. (2009) Pigeon

Fortes et al. (2016) Pigeon

Uncertainty resolution Green & Rachlin (1977) Pigeon

Dunn & Spetch (1990) Pigeon

Bromberg-Martin & Hikosaka (2009; 2011) Monkey

Vasconcelos et al. (2015) Starling

Delay to outcomes Spetch et al. (1990) Piegon

Iigaya et al. (2016) Human

Reward magnitudes Blanchard et al. (2015) Monkey

Bennett et al. (2016) Human

Negative outcomes Zhu et al. (2017) Human

Charpentier, Bromberg-Martin, & Sharot 
(2018)

Human
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5.4.1 Cue-outcome Contingency 
	 Advance information is generally valuable. When such information is 

earned by trading against primary rewards (e.g., food and water), an 

important question is how much of  this primary reward, if  any, would 

creatures be willing to sacrifice for advance information. Using a series of  

information-choice tasks (see Figure 14A), Stagner and Zentall (2010) found 

that pigeons learn to trade, at least, 30% of  their potential reinforcement 

rate for “useless” advance information. In their task, pigeons repeatedly 

chose between a 20% reinforcement gamble (that provided advance 

information about the eventual outcome) and a 50% reinforcement gamble 

(no advance information) that gave reward after a delay. The advance 

information was provided by coloured cues. In the informative case, the cue 

colour indicated whether or not reward would be available at the end of  the 

trial, whereas in the informative case the coloured cues could lead to either 

reward or no reward. Figure 13 shows how the experiment had 4 phases: 

training, reversal, discrimination, and non-discrimination. Throughout this 

experiment, the cue-outcome contingencies were manipulated but a 

consistent preference for informative cues was observed (Figure 14A). 

Indeed, such information that cannot change the subsequent outcomes is 

often called non-instrumental information. 

 

Figure 13. Schematic illustration of  the four-phase information-seeking task 

in Stagner & Zentall (2010). In the Training phase, pigeons learned to prefer 

the cued option (depicted as “Left”). Then the cue-outcome contingency was 

reversed in the Reversal phase, and pigeons still learned to prefer the cued 

option (now “Right”). In the third Discrimination phase, novel choice stimuli 

(“Circle” and “Plus” shapes) were introduced while keeping the same cue-

outcome contingency. The shapes were counterbalanced across pigeons, and 

they again learned to prefer the cued option (“Plus” in this case). In the final 
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Non-Discrimination phase, choosing either option should not provide valuable 

advance information, and pigeons learned to prefer the one with the higher 

expected value (“Plus” in this case). 

	 In this case, the pigeons gave up the potential for a 2.5x higher 

reinforcement rate for a piece of  “useless” information that just revealed the 

eventual outcomes 10 seconds early, but did not alter them. This strategy has 

been interpreted as potentially optimal for birds in nature in that these extra 

few seconds can be spent on other tasks or even to just hide safely from a 

predator (e.g., Vasconcelos, Monteiro, & Kacelnik, 2015). 

	 We first test whether the TD learning rule is sufficient to explain the 

observed preference for suboptimal choices. The TD model assumes no 

additional memory or computation from the animals, except value functions 

for the individual states. Figure 14B (top panel) shows how the TD model 

selects the option with the higher reinforcement rate with enough training, 

which is the optimal behaviour, but the exact opposite of  what pigeons do. 

This insensitivity to advance information of  the TD model is also reported 

in Bromberg-Martin and Hikosaka (2009; 2011). 

	 Clearly, pigeons are sensitive to the advance information and learn to 

pick the option with advance information (as in the first three phases of  the 

experiment). Simultaneously, however, when advance information is 

removed from consideration, the same pigeons do learn to select the higher 

reinforcement rate similar to the TD model (as in the final phase). How 

could TD model explain the pigeons’ behaviour so well without advance 

information and so badly with that information?  

	 We now examine a simple extension of  the TD model, the APE 

model, that further assumes an anticipatory sampling process for animals 

which can simulate samples of  future episodes from their model of  world. 

For example, in the Training phase of  Stagner and Zentall (2010)’s 

experiment (Figure 14), when pigeons evaluate the value of  “Left” option, 

they should generate samples for what will happen next after choosing the 

“Left”. Choosing “Left” could lead to the “red” or “green” states with 20% 
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and 80% probability respectively. To illustrate, suppose that animals do not 

discount future rewards (i.e., ! ) and have trained long enough (i.e., 

animals have the correct value functions of  states, transition and reward 

functions of  tasks), thus the value for “red” and “green” should be: 

!   

!                                            (5.6) 

On average, the anticipated prediction errors per sample should be: 

!   

!        (5.7) 

where !  is the transition probability from state s to s’. Because animals 

have the right model of  world, the transition function is correctly 

represented in the brain. For simplicity, we do not consider details of  how 

animals learn a world model from experience. In the simulations below, we 

simply assume that, after !  trials, a correct world model including transition 

and reward functions should be learnt by animals where 

! . 

	 On average, the anticipatory sampling process generates samples in 

proportion to !  and !  respectively for the “red” and “green” states. 

Hence, the total amount of  APEs should be the sum of  all the samples’ 

APEs:  

	 	 ! .              (5.8) 

	 To make the difference clear, !  represents the transition 

function, which is assumed to be determined by the task, and w denotes the 

sampling weights, which are determined by the internal processes. Pigeons 

then combine knowledge from both the anticipatory sampling process and 

the standard value function to construct the decision value for choosing 

“Left”: 

!                      

(5.9) 

	 Similarly, for the other option (i.e., choosing “Right”), the decision 

value based on the APE model should be: 

γ = 1

V (red) = 1

V (green) = 0

A PE(red |Left) = T (red |Left) × [V (red) − V (Left)]

A PE(green |Left) = T (green |Left) × [V (green) − V (Left)]

T (s′�|s)

K

K ∼ N(μ = 50,σ = 10)

wred wgreen

wred A PE(red |Left) + wgreenA PE(green |Left)

T (s′�|s)

̂V (Left) = V (Left) + wred A PE(red |Left) + wgreenA PE(green |Left)
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!        

(5.10) 

	 Interestingly, in this idealised scenario (i.e., pigeons have the correct 

model of  the MDP), both !  and !  are 

equal to 0 because ! . This is a unique 

feature of  the information-choice task that the absence of  advance 

information also means there is no rapid change in the value function. 

Therefore, the decision value of  choosing “Right” is effectively identical to 

its value function: 

!                                   (5.11) 

	 Given that, the choice probability of  the option with advance 

information (in the Training phase it is “Left”) is determined by the 

differences in decision values between “Left” and “Right”. Here, the 

preference for choosing the informative option (“Left”) over choosing the 

non-informative option (“Right”) is solely driven by the net sampling weights 

of  good news (! ) and bad news (! ). The APE model predicts that 

sampling more positive future states leads to information-seeking behaviour; 

conversely, sampling more negative future states leads to information 

avoidance behaviour. In the information-choice task of  Stagner & Zentall 

(2010), the net sampling weights between good news and bad news 

determines the choice preference: 

!                                (5.12) 

	 In Figure 14C, we show that APE model can reproduce the changes 

in choice probability in response to changes in the cue-outcome contingency.  

	  

̂V (Right) = V (Right) + wblueA PE(blue |Right) + wyellow A PE(yellow |Right)

A PE(blue |Right) A PE(yellow |Right)
V (Right) = V (blue) = V (yellow) = .5

̂V (Right) = V (Right)

wred wgreen

Δw = wred − wgreen
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Figure 14. (A) Behavioural data from the four-phase task of  Stagner & 

Zentall (2010). Strong preferences for advance information and a lower 

reinforcement rate option emerged through experience in the Training, 
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Reversal, and Discrimination phases. When the advance information is 

absent (Non-discrimination phase), pigeons learnt to choose the option with 

the higher reinforcement rate. The figure was adapted from Stagner & 

Zentall (2010). (B) The TD model predicts no preference for advance 

information. Value functions were initialised at 0. On the first trial in the 

Reversal phase, cue values were reset to 0 to account for changes in cue-

outcome contingency. On the first trial in the Discrimination phase, value 

functions were agin reset to 0 for the new choice context. (C) The APE 

model can capture the dynamics of  the choice probability for the suboptimal 

option with advance information. The same simulated procedure was used 

as for the TD model. We set the learning rate, inverse temperature in the 

softmax choice rule, and the discount factor at !  for 

both models. The APE model has an additional parameter: the sampling 

bias for good news, which was set at ! . Both the TD and APE models 

were repeatedly simulated with the same set of  parameters 100 times, and 

the solid lines denote the median of  individual simulated runs (dashed lines). 

5.4.2 Uncertainty Resolution  
	 In Stagner & Zentall (2010)’s version of  the information-choice task, 

the expected reward rate was different between informative (20% reward) 

and the non-informative options (50% reward). Though strong information-

induced suboptimality was observed, the experimental design inevitably 

confounded the expected reward and the amount of  resolved uncertainty 

associated with the advance information. To isolate the effect of  uncertainty 

resolution, an earlier series of  experiments considered a type of  information-

choice task where the expected rewards for both the informative and non-

informative options were identical (e.g., Green & Rachlin, 1977; Bromberg-

Martin & Hikosaka, 2011). 

	 We focus on the Green & Rachlin (1977) task (Figure 15A) because it 

provides a broad manipulation of  the degree of  uncertainty being resolved 

by the advance information. In their task, pigeons were trained to choose 

α = .06, β = 6, γ = .98

Δw = 4
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between two options that led to different degrees of  uncertainty resolution 

(i.e., probabilities of  reward), but the expected rewards for both options 

remained same throughout the experiment. The benefit of  choosing the 

informative option (i.e., the cued option) was that pigeons were informed 

about the eventual outcome, through signalled light colours, 30 seconds 

earlier, thereby eliminating any uncertainty.  On the other hand, choosing 

the non-informative option provided one non-discriminative colour, and 

pigeons remained uncertain about the outcome for the same 30 s until food 

delivery.  

 

Figure 15. The effect of  uncertainty reduction on choice of  the informative 

option. (A) Illustration of  the experimental procedure used in Green & 

Rachlin (1977) to study pigeons’ preference for uncertainty reduction. Both 

options had the same probability of  reinforcement (p), but after choosing the 

cued option, pigeons were informed of  the eventual outcome immediately 

from the colour signals. Choosing the uncued option, however, left pigeons 

in a state of  uncertainty until the end of  trial (30 s later). The tested values 

of  p varied across the range of  4%, 10%, 20%, 40%, 50%, 60%, 80%, 90%, 

96%, and 100%. (B) Experimental data from Green & Rachlin (1977) are in 

black, and error bars indicate ! SEM. The simulations of  the TD model 

(blue) and APE model (shades of  red for different values of  the !  

parameter). The softmax inverse temperature and discount factor were set at 

! . The APE model can reproduce the quadratic relationships 

observed in data. 

±

w+

β = 6, γ = .98
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	 Figure 15B (black line) shows how the experimental results suggest a 

quadratic relationship between choice probability of  the cued option and the 

probability of  reinforcement (p). From an information-theoretical 

perspective, the amount of  uncertainty can be quantified as the Shannon 

entropy: 

!                             (5.13) 

where X denotes all n possible future outcomes of  choosing the option. The 

concept of  entropy quantifies our intuition in guessing Heads or Tails of  a 

coin toss. We are most uncertain about the outcome when it is a fair coin 

and become gradually more certain when the coin is biased toward either 

Heads or Tails. In this task, the entropy also exhibits a quadratic relationship 

with the probability of  reinforcement (by analogy, one can imagine that 

Reward can be coded as Heads, and No Reward can be coded as Tails), 

which peaks when !  and decreases when p is away from .5. Using the 

amount of  Shannon entropy reduction as an information bonus has even 

been formally implemented in a previous extension of  the TD model (e.g., 

Bennett, Bode, Brydevail, Warren, & Murawski, 2016). Though the 

Shannon entropy fits this part of  data, we will see later that this idea lacks 

explanatory power in information-choice tasks concerning delay to outcome, 

reward magnitude, and negative outcomes. The reasons are that Shannon 

entropy does not vary with time or reward and is always non-negative.  

	 Figure 15B (red lines) also shows how the APE model can predict the 

quadratic relationship because the anticipated prediction errors are 

proportional to ! . To illustrate, we consider the idealised condition 

again (where pigeons have the correct model of  the task). Pigeons should 

learn that the value for the cued option and the uncued option are the same: 

! , assuming that food has unit value. In addition, for 

the task depicted in Figure 15A, ! , ! , and 

! . For example, according to Equation 5.4, the size of  the 

anticipatory prediction error for the good news (red) would be calculated as: 

!                  (5.14) 

H(X ) = −
n

∑
i= 1

P(xi)log P(xi)

p = .5

p(1 − p)

V (cued) = V (uncued) = p

V (red) = 1 V (green) = 0
V (yellow) = p

A PE(red |cued) = p × [V (red) − V (cued)]
= p(1 − p)
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	 Similarly, we calculate the amount of  APE for bad news (green) as  

!           (5.15) 

	 This example calculation indicates that APE for future states in 

Green & Rachlin (1977)’s task should be quadratic with p, resulting in choice 

preference for the APE model that are also quadratic with the probability of  

reinforcement. 

5.4.3 Delay to Outcome 
	 A third well-documented empirical finding in the information-choice 

task is that the degree of  preference for the informative option increases with 

longer delays to the eventual outcome (i.e., longer TL in Figure 16). Longer 

delays to the outcomes mean that any advance information provides an even 

earlier resolution of  the uncertainty. Intuitively, if  the amount of  uncertainty 

resolved by the information is constant, earlier reception of  the information 

should be more valuable than later. As shown in Figure 16 (Left), both 

pigeons (Spetch et al., 1990) and humans (Iigaya et al., 2016) exhibit 

significant modulation of  their preference for informative options with 

different delays to the reward.  

	 Note that the unique property of  the anticipatory sampling process is 

that it requires animals to conduct mental time travel to future states 

(Clayton & Dickinson, 1998; Roberts, 2002; Clayton, Bussey, & Dickinson, 

2003; Zentall, 2005; Schacter, Addis, & Buckner, 2007; Roberts, 2014) . In 11

the information-choice task, such an anticipatory sampling process is more 

likely to draw a future cue state (e.g., good news, bad news, or neutral news) 

when the duration of  that cue presentation is longer. For example, the 

probability of  drawing a future sample, which happens to be good news, 

should be proportional to the duration of  the presentation of  the good news 

A PE(green |cued) = (1 − p) × [V (green) − V (cued)]
= − (1 − p)p

 There is a debate on whether non-human animals are capable of  mental time travel. The 11

Bischof–Köhler hypothesis argues for human uniqueness in the ability to travel mentally in 

time; other animals cannot anticipate future needs or drive states and are bound to a 
present that is defined by their current motivational state (Köhler, 1917; Bischof, 1978; 

Suddendorf  & Corballis, 1997).
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signal — in this case, the duration is equal to the terminal link (TL) or delay 

from choice to reward. To formally describe this property, we further 

constrain the sampling weights to be a linear function of  TL:  

!                                       (5.16) 

where !  is a gain factor that represents the degree of  influence by the TL 

duration on sampling weights. Similarly, the behaviour of  the APE model in 

this task should be driven by the difference in this gain factors for the good 

news and bad news. Here, we set the gain factor for good news and bad 

news to ! . The TD model becomes a special case of  the APE 

model when all gain factors are equal to 0.  

	 In Figure 16, we present model simulations of  both the TD and APE 

model. The human study provides more diagnostic data (Iigaya et al., 2016) 

where the expected reward for both the informative and non-informative 

option are the same. The TD model always predicts indifference in choices 

across any length of  the TL, whereas the APE model predicts an increase in 

preference for the informative option with longer TLs.  

w = g × T L

g

g + = .1, g − = 0
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Figure 16. Delay to outcome manipulation in the information-choice task. 

(Left) The pigeon study found that longer delays induce greater preference 

for the cued option (Spetch et al., 1990). The experiment contained a cued 

option with a 50% reinforcement rate and an uncued option with a 100% 

reinforcement rate. The duration of  the TL was varied across 5, 10, 30, 50, 

and 90 seconds. (Right) The human study found a similar pattern (Iigaya et 

al., 2016). Both the cued and uncued option had a 50% reinforcement rate. 

The TD model fails to reproduce the increase in preference for cued options 

with an increase in TL, whereas the APE model successfully captures this 

relationship. We set the inverse temperature in softmax and the discount 

factor !  for both models. The APE model has an additional 

parameter ! . 

β = 2, γ = .98
g + = .1
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5.4.4 Reward Magnitude 
 	 Suppose we purchased two lotteries, which both have a 50% chance 

of  winning something and a 50% chance of  winning nothing. One lottery 

provides a potential reward of  $100, and the other provides a potential 

rewards of  $1, and the outcome can only be known in a month from now. 

Fortunately, we are given the opportunity to find out right now the outcome 

of  one of  the lotteries. Which lottery would you prefer to know about? 

Intuitively, the advance information that would resolve the uncertainty of  

the lottery with the higher payoff  would seem to be more valuable. However, 

this intuition is at odds with information theory as both lotteries have the 

same amount of  entropy — hence one should really be indifferent if  strictly 

following information theory.   

	 Using a similar information-choice task paradigm, Blanchard et al. 

(2015) formally tested this intuition and directly probed how animals choose 

between information with the same amount of  uncertainty resolved but  

with different upcoming payoffs. Figure 17A shows how the overall task 

structure was similar to the standard information-choice task in Figure 12 

with only the reward magnitudes manipulated. Monkeys were asked to 

choose between a cued option and an uncued option. Choosing the cued 

option resulted in either good news or bad news with a 50/50 chance. The 

good news not only indicated an upcoming water reward, but also the 

amount of  water to come (represented by the height of  white bar in the 

experiment). Choosing the uncued option resulted in random states which 

contained no further information, and the monkey only learned the 

outcome at the end of  trial. The amount of  juice delivered to monkeys 

ranged from 75 to 375 !  in 15!  increments.  

	 Figure 17B shows the behavioural results of  two monkeys as a 

psychometric curve of  the choice probability of  the cued option against the 

differences in reward magnitudes (i.e., the amount of  liquid) between the 

cued and uncued options. If  advanced information was worth nothing to the  

animals (i.e., no value), then the animals should be indifferent between two 

options when the difference in water rewards was 0. Indeed, this is the 

prediction of  the TD model as shown in Figure 17C (black line). The 

μL μL
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empirical psychometric curves, however, were shifted leftwards for both 

monkeys, suggesting that monkeys were willing to sacrifice some amount of  

water in exchange for learning the eventual outcome sooner. This 

phenomena can be reproduced by the APE model (Figure 17C blue and red 

lines) because the anticipated prediction errors naturally grow with the 

reward magnitudes (see Equation 5.4). 

 

Figure 17. Reward magnitude manipulation. (A) An illustration of  the 

experimental procedure of  the monkey study reported in Blanchard et al. 

(2015). On each trial, monkeys were presented with two offers in sequence, 

each followed by a dark screen period (order is counterbalanced). Then they 

had to choose between a cued offer (cyan bar) and an uncued offer (magenta 

bar). The height of  the central white bar indicated the amount of  liquid 

potentially available on that trial, and the green and red dots revealed 

whether the risky option won or lost respectively. The probability of  

reinforcement for both options was 50% throughout experiment. After a 

2.25s cue presentation, the monkeys received outcome delivery. (B) 
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Behavioural results. Preference for the cued option as a function of  the 

liquid amount difference between the cued and uncued options. Error bars 

indicate ! SEM. The figure is adapted from Blanchard et al. (2015). (C) 

Predictions of  the TD and APE model. We set the inverse temperature and 

discount factor as !  for both models. The APE model has an 

additional sample weightings parameter as shown in the figure legends. 

5.4.5 Negative Outcomes 
	 Though the standard economic analysis suggests that information is 

valuable only to the extent that it can lead to better decisions, humans and 

other animals should just ignore the non-instrumental information which 

has no prospect of  improving their decision making. As reviewed above, the 

suboptimal-choice literature provides a wealth of  empirical data that 

humans and other animals still seek out non-instrumental information, even 

at the cost of  primary rewards. However, animals, in many other situations, 

actually avoid the non-instrumental information, once again without any 

strategic rationale (Jenkins & Boakes, 1973; Golman, Hagmann, & 

Loewenstein, 2017).  

	 To further examine the learning curve of  information-preference 

behaviour, we conducted an information-choice task with humans (Zhu et 

al., 2017). Figure 18A illustrates the basic design. Participants were 

instructed to choose between two options. Just as in the standard 

information-choice task, after choosing the “Find Out Now” option, 

informative cues were presented as animal symbols, and participants could 

infer the upcoming outcomes by which symbol appeared. By choosing the 

other “Keep It Secret” option, participants always encountered the same 

animal symbol, leaving them in a state of  uncertainty. To mimic the 

information-choice task used with other animals, we deliberately set the 

outcomes to be only consumable immediately. Hence, unlike monetary 

rewards used to incentive human participants, they were rewarded or 

punished by images (Crockett et al., 2013; Iigaya et al., 2016). Positive 

±

β = 6, γ = .98
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images were erotic, negative images were aversive (e.g., gruesome pictures), 

and the neutral image was a circle. 

	 We consider three conditions for the task with a similar procedure, 

but different outcomes. The Good condition involved positive and neutral 

images, the Bad condition involved negative and neutral images, and the Mix 

condition involved positive and negative images. These outcomes were 

always delivered with 50/50 odds on each trial.  

 

Figure 18. People preferred advance information, but less so when aversive 

outcomes were included in the gamble. (A) Experimental procedure of  the 

human information-choice task reported in Zhu et al. (2017). Participants 

chose between an informative “Find Out Now” option and a non-

informative “Keep It Secret” option. By choosing the informative option, 

participants could know immediately the nature (appetitive, aversive, or 

neutral) of  upcoming images by inference from the animal symbols. By 

choosing the non-informative option, however, the same animal symbol 
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always appeared, and the final outcome was only revealed at the end of  trial. 

The diagram only depicts the Good condition, which contains 50% erotic 

and 50% neutral images. We also tested a Bad condition (50% aversive and 

50% neutral images) and a Mix condition (50% erotic and 50% aversive 

image). (B) The time series of  choice probability for the informative option 

(i.e., “Find Out Now”). Shaded area indicates ! SEM. (C) Predicted time 

series of  choice probability from the TD model. The model was repeatedly 

simulated 100 times with the same set of  parameters (dashed lines). The 

solid lines are the median of  the dashed lines. At asymptote, the TD model 

chooses indifferently between the two options. (D) Similar simulations from 

the APE model. The asymptotic behaviour of  the APE model agrees with 

the human data. Both models share the same learning rate, inverse 

temperature, and discount factor ! . For the APE 

model, additional sampling weights parameters were used, as displayed in 

the figure legend.  

	 As shown in Figure 18B, people preferred advance information 

about potential positive outcomes (i.e., erotic images), as in the other 

information-choice tasks (e.g., Iigaya et al., 2016). When the advance 

information can potentially reveal the upcoming images to be aversive, in 

both the Bad and Mix conditions, there was less information-seeking than in 

the Good condition where there was no worry of  receiving such advanced 

information. In addition, the learning curve indicates that people learn to 

seek out good news through preferring options with advance information, 

and to actively avoid bad news through preferring to remain uncertain.  

	 We simulated both the TD and APE models on the information-

choice task presented in Zhu et al. (2017). The appetitive images have a 

positive unit value, the neutral images have zero value, and the aversive 

images have a negative unit value. As shown in Figure 18C, the asymptotic 

behaviour of  the TD model is to choose indifferently between the 

informative and non-informative options across all three conditions. Note 

±
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that the TD model predicts a short period of  information avoidance in the 

Good condition (see blue solid line in Figure 18C). The aversion to 

information of  the TD model was previously observed (Bromberg-Martin & 

Hikosaka, 2009; Niv, Joel, Meilijson, & Ruppin, 2002; Denrell, 2007). This is 

a direct result of  integrating learning (i.e., the estimation process based on 

data: TD learning rule) and control (i.e., the data generation process: 

softmax choice selection). The estimation of  the mean value of  an option is 

based on data that generates itself  based on current estimations. Indeed, the 

integration of  learning and control as in the TD model inevitably produces 

a bias against uncertain options; this point was recently formally proved and 

generalised to any system that combines learning and control (Nie, Tian, 

Taylor, & Zou, 2017). 

	 The emergence of  information seeking or avoidance through 

experience can be reproduced by the APE model for all three conditions. In 

the simulation, we follow previous empirical and theoretical works on how 

people should sample when extreme events are present (i.e., appetitive and 

aversive images) (e.g., Lieder et al., 2018; Tversky & Kahneman, 1973; 

Ludvig, Madan, & Spetch, 2014): the generated samples from imagined 

future states should be biased toward the most extreme events. This implies 

higher sampling weights for advanced information that reveals the highly 

appetitive and aversive images. The sampling weights associated with 

appetitive and aversive images were thus set to 1. This extremity bias drives 

the sampling process more toward the advance information that predicts 

appetitive and aversive images, and hence learns to seek or avoid 

information, pending the valence. Therefore, the APE model predicts 

information seeking in the Good condition, information avoidance in the 

Bad condition, and close to indifference to information in Mix condition. 

5.5 Discussion 
	 We presented a novel model of  learning to prefer information. The 

APE model can be seen as an extension of  the basic TD model with an 
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additional sampling process from simulations (i.e., imagined future episodes) 

assumed. This sampling process generates anticipated prediction errors 

based on the imagined future prospects and current state valuations. These 

APEs are treated like primary rewards, which combined with a bias toward 

sampling trajectories toward positive outcomes, leads to information seeking 

in situations with potential positive outcomes and to information avoidance 

in situations with potential aversive outcomes. The positive APEs encourage 

a preference for that future state whereas the negative APEs discourage such 

a preference.  

	 We tested the APE model against the classical TD model on the 

empirical findings using the information-choice paradigm. The empirical 

findings were categorised into five main groupings with each manipulating 

one key experimental variable in the task: cue-outcome contingency, 

uncertainty resolution, delay to outcomes, reward magnitudes, and negative 

outcomes (see Table 8 for summary). The TD model fails to reproduce any 

of  these applications because of  the model’s insensitivity to information. 

The APE model successfully explained all five categories of  empirical data 

using a single, common mechanism of  anticipatory sampling from 

simulations. A number of  other modifications of  TD model have built on 

the common assumption that receiving information cues can be rewarding. 

Information-bonus models treat the act of  obtaining information valuable  

as inherently valuable (Bromberg-Martin & Hikosaka, 2009; 2011; Bennett 

et al., 2016). The anticipatory utility model postulates a positive utility of  

anticipating an upcoming certain reward (Loewenstein, 1987; Iigaya et al., 

2016). The APE model can be viewed as a mechanistic account for those 

models (only for the information-bonus model in appetitive conditioning) 

and possibly could also explain the origin of  anticipatory utility.  

	 The information-choice task is a special form of  instrumental 

conditioning. The key difference from the classical conditioning phenomena 

discussed in Chapter 4 is that animals can “voluntarily” choose among 

stimuli. Because this additional degree of  freedom in experimental design 

where the animals can choose what to learn, in instrumental conditioning, it 

has been thought to be difficult to identify exactly when each learning 

THE SAMPLING BRAIN !116



episode occurs (Skinner, 1963). The APE model presented here as a 

combination of  the standard TD learning and an anticipatory sampling 

process can be a candidate model to understand instrumental conditioning.  

	 The existing experimental paradigm can be rendered as a shallow 

decision tree (see Figure 12), and the APE model presented here is assumed 

to have only one-step anticipation on the model of  world. With larger 

branching and/or deeper decision trees, it becomes quickly impractical to 

mentally imagine all possible future trajectories. A recent smartphone-based 

study adopted a four-stage information-seeking game, and observed 

systematic deviations from the optimal strategy suggested by dynamic 

programming (Hunt et al., 2016). This type of  task poses yet another 

computational challenge for the models discussed here and urges the models 

to adapt to more complicated decision tasks. As the APE model embedded 

with look-ahead experiences, we consider this model more convenient to 

incorporate with other planning algorithms. Recent developments of  

planning algorithms suggest that complicated tree search can be roughly 

divided into two components. For example, in Monte-Carlo tree search 

(Coulom, 2006), agents can act optimally according to an optimal policy on 

the part of  tree that has been well-explored and act randomly on the less-

known part of  tree. The applicability of  APE model on this type of  more 

extensive tree search can be an interesting future research question. 

THE SAMPLING BRAIN !117



Chapter 6  

Conclusions 

6.1 Towards A Theory of  Sampling Brain 
	 This thesis has focussed on how mental sampling can enhance 

computational models of  cognition. I pursued a theory of  Bayesian 

sampling (Chapter 2-3) and augmented classical learning models with 

mental sampling (Chapter 4-5).  

	 The key idea behind the Bayesian sampling is that Bayesian models 

of  cognition need not require the brain to represent and calculate all 

probabilities, but these can be approximated instead through samples 

(Sanborn & Chater, 2016; Gershman et al., 2012; Griffiths et al., 2012; Vul 

et al., 2014; Wozny et al., 2010; Lieder et al., 2012; Zhu et al., 2018). I 

suggested that a specific sampling algorithm, ! , may explain how and 

why mental samples are autocorrelated. However, from a statistical 

perspective, independent samples can be best justified because they contain 

more information than autocorrelated samples and a waste of  cognitive 

resources is to be expected from autocorrelated samples. The ! -type of  

mental sampling algorithm paves a rationale for autocorrelated samples that 

the brain has to tolerate some degrees of  autocorrelation in order to retain 

the possibility of  generating samples from far-away modes.  

	 By considering the stochasticity in the sample-generation process and 

the limited number of  samples generated, the brain can proactively correct 

for the intrinsic uncertainties of  these mental samples. I found evidence in 

human probability estimates where sample-based estimations for probability 

judgments are tempered by an additional Bayesian inference on the mental 

samples. While simplifying assumptions were added to our analysis (i.e., 

direct sampling and exact Bayesian inference), this result suggests a 

promising direction for understanding the origin of  judgments. A set of  

MC3
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mental samples might be generated at first, but the estimates are not only 

based on the statistics of  these samples. There may exist an additional 

correction process applied upon these samples before a judgment is formally 

reported.  

	 I also studied the impact of  two sources of  mental samples on 

learning where value estimates are repeatedly updated with regard to new 

experiences. Learning problems served as a valuable empirical benchmark 

for the use of  mental samples from memory and simulation. Evidence for 

the reuse of  past experiences was found in classical conditioning. According 

to the model developed here, replayed experiences go through the exact 

same error-correction learning rule as a new experience does. Even if  the 

sampling from memory is as simple as random, the random replay model 

can accommodate many classical conditioning phenomena, including 

spontaneous recovery, latent inhibition, retrospective revaluation, and 

hippocampal-lesion effects. The model also prescribes a number of  novel 

predictions that could be tested in future behavioural experiments and with 

hippocampal-lesioned animals. More importantly, the random replay model 

advocates an extended view on training data for learning systems: past 

experiences from an agent’s interactions with the environment may not be 

forgotten and could be deliberately reused to shape future behaviour. 

	 Whenever there is a choice among options, animals may activate an 

anticipatory sampling process based on their current model of  world. The 

prospects from choosing any option can be mentally quantified through the 

anticipated prediction errors, which reflects the difference in value estimates 

between the option and imagined samples from choosing that option. Many 

sub-optimal choices can be explained in this way, through known sampling 

biases such as an optimism bias and a bias towards extreme events. The 

Anticipated Prediction Error model described a mental process that, through 

the combination of  a standard error-correction learning rule and 

anticipatory sampling, reaches a risky choice. Beyond its explanation of  

preference for information and curiosity-like behaviour, the insights from 

sampling has further potential in explaining gambling behaviour, drug abuse, 

anxiety, and many other mental disorders.  
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6.2 Neural Mechanisms of  Sampling 
	 I have demonstrated many appealing properties of  sampling on the 

computational and algorithmic level of  analysis of  cognition (Marr, 1982). 

Sampling has also gained momentum to become a unifying framework due 

to its generalisation to biologically-plausible implementations in spiking 

neural networks. The neural sampling hypothesis proposes that probability 

distributions are encoded in samples of  neural populations (Orban et al., 

2016; Berkes et al., 2011; Hoyer & Hyvarinen, 2003). According to this 

hypothesis, neural variability is not a nuisance, but rather a vital part of  how 

the brain encodes probability distributions and performs computations with 

them. The first application of  a sampling scheme in spiking neural networks 

is in visual competition (Hoyer & Hyvarinen, 2003): when viewing 

ambiguous stimuli with two stable percepts (e.g., Necker’s cube and Rubin’s 

vase/face), neurons oscillate between two distinct states (Blake & Logothetis, 

2002). That is, the same stimulus can yield two distinct firing rates in the 

same neuron, resembling a sampling process between two likely percepts of  

the stimulus.  

	 Matching patterns between neuronal firing rate variability statistics 

and sampling stochasticity have been further demonstrated in a series of  

subsequent studies (e.g., Berkes et al., 2011; Savin & Deneve, 2014; Aitchison 

& Lengyel, 2016). As neurons are not likely to have global access to the 

activity of  all other neurons in the population, all the biologically-plausible 

sampling algorithms in the literature have features of  local sampling (e.g., 

Savin & Deneve, 2014; Aitchison & Lengyel, 2016). The !  algorithm 

suggested in Chapter 2 also shares this local search property, but implies 

adjustments to the existing neural sampling schemes for the algorithm to be 

implemented in neural hardware: (a) multiple chains of  sampling running in 

parallel but at different temperatures, (b) tracking the cold chain for output, 

and (c) a switching mechanism between chains. The first two adjustments, as 

they are similar to a distributed MCMC sampling algorithm, have been 

implemented in a spiking neural network (Savin & Deneve, 2014). The 

neural architecture used for distributed MCMC basically combines spatial 

(information integrated across neurons) and temporal coding (information 
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integrated across time) of  probability distributions. This is a promising 

architecture to deploy ! -like sampling algorithms. However, the 

switching scheme between chains is more challenging to be implemented in 

neural populations, and perhaps, there could be a higher-level meta-

controller that alternates among low-level neurons which are dedicated to 

drawing samples. 

6.3 Limitations and Alternatives of  Sampling 
	 I have discussed the sampling brain as a general form for cognition 

and have selected classical cognitive phenomena that comply with this view. 

There are other prominent alternatives to sampling. I will focus on two of  

them: variational Bayesian inference and reasoning principles. Though 

many differences in explaining cognition (as we will discuss below), both 

sampling and variational methods can be broadly classified as approximation 

algorithms that attempt to get closer to the true probability distribution and 

hope for a vanishing approximation error with longer computations. In 

contrast, reasoning principles cut out any approximation process and can 

provide accurate answers straightaway.  

6.3.1 Variational Bayes 
	 The variational methods presume that the true probability 

distribution belongs to some parametric family of  probability distributions 

(e.g., Gaussian distribution; Jordan, Ghahramani, Jaakkola, & Saul, 1999; 

Wainwright & Jordan, 2008). Unlike the sample-based approximation, if  the 

target probability distribution is not considered in the parametric family, the 

approximation error will never approach to zero. In essence, variational 

methods tend to attain efficiency at the expense of  flexibility and bias. Often 

in practice, variational methods use a simpler probability distribution to 

approximate a complex probability distribution (Blei, Kucukelbir, & 

McAuliffe, 2017). Then the inference problem is substituted with an 
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optimisation problem where some “distances” between the target 

distribution and parametric family are minimised.  

	 Both sampling and variational algorithms have been proposed as 

cognitive mechanisms for mental activities (Sanborn, 2017). As I have 

demonstrated across this thesis, successful applications of  sampling in 

Bayesian models of  cognition rely on its ability to accommodate two key 

aspects of  mental activities: (a) stochasticity and (b) limited cognitive 

resources. Variational Bayes algorithms are also able to replicate these two  

features of  mental activities (Sanborn, 2017; Gershman & Beck, 2017). The 

difference between sampling and variational methods could be most 

profound in their neural architectures. Neural implementations of  

variational methods regard neural noise as a nuisance that should be 

averaged out across a large population of  neurons (e.g., Rao, 2004; Ma et al., 

2006; Beck, Pouget, & Heller, 2012). However, the neural sampling 

hypothesis views the neural noise as a necessary part of  stochasticity that 

supports sampling processes.  

	 It is also possible that the brain could use both sample-based and 

variational approximation approaches. Hybrids of  sampling and variational 

methods, which combine the strengths of  both methods, have been 

developed to tackle complex probability distributions in machine learning 

(e.g., variational particle approximations: Saeedi, Kulkarni, Mansinghka, & 

Gershman, 2017). In addition, the correction for mental samples discussed 

in Chapter 3 can be potentially enhanced through a “better” correction 

prior. A better correction prior requires smaller distances between the 

correction prior and the true probability; naturally, this correction prior can 

be iteratively improved via variational methods.  

6.3.2 Reasoning Principles 
	 A mind exploiting reasoning principles warrants accurate estimations 

of  probabilities, if  used appropriately. Such reasoning principles include  the 

ignorance of  irrelevant information and principle of  indifference (e.g., van Fraassen, 

1989; Strevens, 1998; Kemp & Eddy, 2017). Consider the probability of  
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tossing a fair dice that lands “1” face up. Without having touched the dice, 

recalling past dice-tossing experiences, or mentally simulating dice tossing, it 

is possible that one can give a firm answer: the probability is ! . The ability 

to infer the correct probability in minimum time requires us to invoke the 

principle of  indifference. This principle states that, without sufficient reason 

to assign any two events different probabilities, they should be assigned the 

same probability. Here, the fair dice has six faces, and we do not have any 

reason to believe these six probabilities are distinguishable. Given the fact 

that one face will have landed up for sure, the sum of  these six probabilities 

must equal to one, and therefore the probability of  “1” should be assigned a 

probability of  one-sixth.  

	 Like the variational methods, these reasoning principles are not 

necessarily at conflict with sampling to compete for control of  behaviour. 

The brain may speed up the process of  sampling with the help from 

reasoning principles. The most straightforward application of  cooperation 

between sampling and reasoning principles is to ignore the irrelevant 

information.  For example, when asked to estimate the length of  daytime of  

a random place on a random day, it is sensible to ignore the information 

about the location’s longitude because length of  daytime does not vary with 

longitude. Then we could concentrate on drawing samples from places that 

share similar latitudes with the target location.  

	 Indeed, an interesting question that merits future research could be 

about how the brain coordinates among many computational tools. To solve 

this question may require a computational complexity perspective (Chater & 

Vitányi, 2003; Papadimitriou, 2003; Vitányi & Chater, 2017; Gershman, 

Horvitz, & Tenenbuam, 2015; Bossaerts & Murawski, 2017). The reasoning 

principles basically discard fake complexity that, upon successful removal of  

fake complexity, no information can be lost for compression (i.e., lossless 

compression). However, approximation approaches, such as sampling and 

variational methods, deal with actual complexity where any form of  data 

compression is inevitably lossy.  

1/6
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6.4 Envoi  
	 The philosophy of  sampling is deeply rooted in experimentation. 

Experiments are primary components of  scientific method, which provide 

the basis for knowledge, test existing theories, and call for new theories. 

Likewise, mental sampling plays critical roles for cognition: it provides 

evidence for the brain to form valid hypotheses about reality. The sampling 

brain hypothesis is a promising research direction but definitely not the end 

of  history. The potential applications of  the hypothesis in fields such as 

psychiatry, financial markets, and artificial intelligence have yet to be fully 

explored. Nevertheless, I believe that there will be better theories and models 

to transcend the sampling brain hypothesis in the future. As a student of  

science, I hope this future arrives sooner.  
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