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Examples of Interacting Particle Systems
on Z as Pfaffian Point Processes:
Coalescing–Branching Random Walks and
Annihilating Random Walks with
Immigration

Barnaby Garrod, Roger Tribe and Oleg Zaboronski

Abstract. Two classes of interacting particle systems on Z are shown to be
Pfaffian point processes, at any fixed time and for all deterministic initial
conditions. The first comprises coalescing and branching random walks,
the second annihilating random walks with pairwise immigration. Various
limiting Pfaffian point processes on R are found by diffusive rescaling,
including the point set process for the Brownian web and Brownian net.

1. Introduction and Statement of Key Results

Interacting particle systems of reaction–diffusion type have been an object
of mathematical investigation for a long time, see e.g. [9]. It turns out that
many such systems can be studied using methods of integrable probability.
This paper continues the study in [6], where it was shown that systems of in-
stantaneously annihilating or coalescing random walks on Z are Pfaffian point
processes, at any fixed time and for all deterministic initial conditions. The
purpose in this paper is to describe two additional mechanisms that preserve
this Pfaffian property. The Pfaffian property should be useful to investigate
statistics, such as asymptotics of correlation functions (as in Theorem 1 of
[18]) or for studying gap probabilities (as in [13,17] or [12] for examples from
random matrix ensembles).

The algebraic structure of the generators of various one-dimensional inter-
acting particle systems (without necessarily preservation of particle numbers)
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has been investigated and is in many examples intimately linked to Hecke al-
gebras, see the reviews [1,10]. A future aim is to better understand how to
deduce from these algebraic properties the concrete statistical properties of
our models, such as the correlation functions, and in particular what algebraic
properties lie behind the emergence of the Pfaffian property.

The connection between coalescing and annihilating systems is well known,
both at the analytic level and also via direct couplings of the two processes, see
[16] for review. Such pathwise couplings are fundamental to the study of the
Brownian Web and Net and the dual Brownian Web and Net (and their discrete
analogues—see [14,15]). Moreover all the models in this paper can be found
‘within’ the Net, and so there will be many pathwise couplings available. Our
results can be seen as analytic consequences of a strong coupling between our
two models, namely coalescing plus branching random walks and annihilating
random walks plus pairwise immigration, with finite systems of annihilating
random walks. We do not exploit this coupling, but we concentrate on investi-
gating ‘fixed time’ laws, aimed at revealing an algebraic structure behind the
processes.1

1.1. (BCRW) Branching–Coalescing Random Walks

In addition to instantaneously coalescing random walks, we allow nearest
neighbour binary branching: any given particle may instantaneously produce
an independent copy at a nearest neighbour. The dynamics of this continuous-
time model on Z are informally described as follows. Between interactions
particles perform independent nearest neighbour random walks with jumps

x → x − 1 at rate q, and x → x + 1 at rate p.

If a particle jumps onto an occupied site then the two particles instantaneously
coalesce. Independently a particle branches

x → {x, x − 1} at rate �, and x → {x, x + 1} at rate r.

Branching events respect coalescence: if a particle branches onto an occupied
site then the existing and new particles instantaneously coalesce.

The generator is given in (10), and this characterises the law of a process
with values in {0, 1}Z which we denote as the BCRW model. We write (ηt :
t ≥ 0) for canonical variables and Pη for the law corresponding to an initial
condition η ∈ {0, 1}Z. As in [6], we fix t ≥ 0 and consider ηt as a point
process on Z, and our aim is to establish that this is a Pfaffian point process
for a suitable Pfaffian kernel K(x, y). A simple point process on Z is called
Pfaffian if there is a 2 × 2 complex matrix-valued kernel K on Z×Z, (x, y) �→
(Kαβ(x, y))1≤αβ≤2, such that the n-th intensity function of the process ρ(n)

is given by ρ(n)(x1, x2, . . . , xn) = Pf[K(xi, xj)]1≤i,j≤n, n = 1, 2, . . . (see [2] for
more details).

1A colouring construction of annihilating particles starting from a coalescing system can be

used to relate the Pfaffian point processes describing the fixed time laws of coalescing and

annihilating random walks or Brownian motions, see [18]. At the moment we do not see
a similar link between branching–coalescing random walks and annihilating random walks
with pairwise immigration, but a further investigation might uncover such a link.
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Recall the notation from [6]: for η ∈ {0, 1}Z and y ≤ z we write

η[y, z) =
∑

y≤x<z

η(x)

so that η[y, y) = 0. For f : Z → R we write difference operators as

D+f(x) = f(x + 1) − f(x), D−f(x) = f(x − 1) − f(x).

If the difference operator D± is applied to the i-th argument of a function of
several variables we use the notation D±

i .

Theorem 1. Let (ηt : t ≥ 0) be the BCRW model with parameter values satis-
fying

p� = qr, p, q > 0. (1)
For any initial condition η ∈ {0, 1}Z, and at any fixed time t ≥ 0, the variable
ηt is a Pfaffian point process with kernel K given, for y < z, by

K(y, z) =
1
φ

(
Kt(y, z) −D+

2 Kt(y, z)
−D+

1 Kt(y, z) D+
1 D+

2 Kt(y, z)

)
, (2)

and K12(y, y) = 1 − 1
φKt(y, y + 1), with all other entries determined by anti-

symmetry, where

Kt(y, z) = φz−y
Pη[ηt[y, z) = 0], for t ≥ 0 and y < z,

and φ =
√

1 + �
q =

√
1 + r

p . The same result holds when p = r = 0 and q, l > 0

by taking φ =
√

1 + �
q , or when q = l = 0 and p, r > 0 by taking φ =

√
1 + r

p .

Remark 1.1. For certain random initial conditions, including the natural case
when the sites (η0(x) : x ∈ Z) are independent, the process does remain a
Pfaffian point process (see the remarks after the proof of Lemma 6). The
invariant measure, which is product Bernoulli, can be considered as a Pfaffian
point process (see the remark at the end of Sect. 2).

Remark 1.2. The restriction pl = qr seems to be necessary for the Pfaffian
point process property, and we do not fully understand its origin. Luckily, in the
large-scale diffusive limits explained below this restriction plays no role. Indeed
the limit continuum systems depend on three parameters. This is consistent
with the three parameters that can be used in the Brownian net, for example
the two drift parameters and a common diffusion parameter for the left and
right paths, which together determine the branching rate, see [15]. For the four-
parameter lattice models, there exist Markov duality functions even when the
restriction pl = qr is not true, and it would be of interest to examine whether
some other algebraic structure holds for the correlation functions.

Remark 1.3. In Sect. 4 we investigate continuum limits to our Pfaffian point
kernels, under space time diffusive scaling, yielding Pfaffian point processes
on R. For the branching parameter to have an effect in the continuum kernel,
it needs to be scaled to grow suitably fast. This however is well understood
in the construction of the Brownian net (see Sun and Swart [15]), and we of
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course need the same scaling of the branching as in the discrete-time branching
random walk approximations to the net. The Brownian net is a continuum col-
lection of space time paths found by scaling discrete-time branching–coalescing
random walks started at all space–time lattice points. The point set process
(ξA

t : t ≥ 0) within the net is defined by looking at all points at time t that
are on paths that start at time zero in a set A ⊂ R. It is known to be a
Feller process taking values in the compact sets of R with a suitable Haus-
dorff metric (see Theorem 1.11 in [15])). The approximating discrete-time
branching–coalescing random walks used in the construction of the net are
not Pfaffian point processes (the discrete-time difference equations analogous
to the Markov duality below are not solved by Pfaffians). However, the differ-
ence between the discrete-time models and continuous-time models does not
affect the continuum limits. We leave the verification of these technical details
to a forthcoming paper, but we state here the resulting Pfaffian property for
the Brownian net point set process, which answers the first open problem in
section 8.3 of the survey paper on the net [14]. The Brownian net can have
a parameter b ≥ 0, controlling the branching rate, where the embedded left–
right paths have drifts ±b. The standard Brownian net corresponds to b = 1,
and the Brownian web corresponds to the case b = 0.

Proposition 2. The transition density pt(A, dB) for the point set process (ξA
t ),

within the Brownian net with parameter b ≥ 0, is equal to the distribution of
the closed support of a Pfaffian point process on R with the kernel KA

t of the
form

KA
t (y, z) =

(
KA

t (y, z) −D2K
A
t (y, z)

−D1K
A
t (y, z) D1D2K

A
t (y, z)

)
for y < z,

(KA
t )12(y, y) = −D2K

A
t (y, y) + b, (3)

where Di is a partial derivative in the ith variable, and where (KA
t (y, z) : y, z ∈

R
2 : y ≤ z) is the unique bounded solution to the PDE

⎧
⎪⎪⎨

⎪⎪⎩

∂tK
A
t (y, z) = 1

2ΔKA
t (y, z) − b2KA

t (y, z)

KA
t (y, y) = 1

KA
0 (y, z) = I((y, z) ∩ A = ∅)eb(z−y).

(4)

The examples in Sect. 4 will illustrate how continuum kernels arise of this
form.

1.2. (ARWPI) Annihilating Random Walks with Pairwise Immigration

As for the previous model, particles jump left or right at rates q and p. If a
particle jumps onto an occupied site then the two particles instantaneously
annihilate. In addition, independently there is

immigration of a pair of particles on sites {x, x − 1} at rate m.
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Immigration respects annihilation: if a particle immigrates onto an occupied
site then the existing and new particles instantaneously annihilate. The gen-
erator is given in (13) and characterises a Markov process that we denote as
the ARWPI model.

Theorem 3. For any initial condition η ∈ {0, 1}Z for the ARPI model, and at
any fixed time t ≥ 0, the variable ηt is a Pfaffian point process with kernel K
given, for y < z, by

K(y, z) =
1
2

(
Kt(y, z) −D+

2 Kt(y, z)

−D+
1 Kt(y, z) D+

1 D+
2 Kt(y, z)

)
, (5)

and K12(y, y) = − 1
2D+

2 Kt(y, y), with other entries determined by anti-
symmetry, where

Kt(y, z) = Eη[(−1)ηt[y,z)], for t ≥ 0 and y < z.

Remark 1.4. The Glauber spin chain on Z is an assignment of ±1 spin values
to each site which independently flip according to rates determined by nearest
neighbour spins [8]. Sites favour aligned spin and at zero temperature a site
surrounded by spins of the same sign does not flip, and the domain wall be-
tween regions of constant spin forms a system of annihilating random walks
on the dual lattice. At positive temperature, a spin may spontaneously flip
regardless of its neighbours, and this corresponds to the creation of a pair
of neighbouring domain walls. Since the Glauber model can be solved at all
temperatures by mapping to a system of free fermions (Felderhof [5]), it is
reasonable that the extra immigration of pairs does not destroy the Pfaffian
property of solutions. A model with Poisson immigration of single particles is
perhaps of more interest, but we do not see a simple algebraic structure behind
this model.

Remark 1.5. We give in Sect. 3 a spatially inhomogeneous version of Theo-
rem 3, where the parameters px, qx,mx may be site dependent, in particular
allowing immigration of particles at different rates at different places. Contin-
uum limits can also be found for the ARWPI model under diffusive rescaling,
where the immigration rate m must be scaled suitably so that they have a
nontrivial effect in the limit. It is a pleasant fact that in many cases the Pfaf-
fian kernel can be found completely explicitly. For example in example (d) in
Sect. 4, which we call the Brownian firework, pairs of particles are immigrated
only at the origin at an infinite rate. This has a steady-state X

(c)
∞ where the

immigration and the annihilation balance each other: X
(c)
∞ is a Pfaffian point

process on R\{0} with kernel K(c)
∞ of the form

K(c)
∞ (y, z) =

1
2

⎛

⎝ K
(c)
∞ (y, z) −D2K

(c)
∞ (y, z)

−D1K
(c)
∞ (y, z) D1D2K

(c)
∞ (y, z)

⎞

⎠ for y < z,

(K(c)
∞ )12(y, y) = −1

2
D2K

(c)
∞ (y, y)
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where

K(c)
∞ (y, z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + 2
π

(
arctan y

z − arctan z
y

)
when 0 < y < z,

0 when y < 0 < z,

1 + 2
π

(
arctan z

y − arctan y
z

)
when y < z < 0,

(6)

The corresponding intensity is given by ρ
(1)
∞ (y) = 1

π|y| . Moreover since K(c)
∞ (y, z)

= 0 when y < 0 < z it is simple to deduce that

ρ(n+m)
∞ (y1, . . . , yn, z1, . . . , zm) = ρ(n)∞ (y1, . . . , yn)ρ(m)

∞ (z1, . . . , zm)

when y1, . . . , yn < 0 < z1, . . . , zm and hence that X
(c)
∞ |(−∞,0) and X

(c)
∞ |(0,∞)

are independent point processes. The infinite strength firework of particles at
the origin leads to the two half spaces being independent.

Remark 1.6. One simple consequence of the Pfaffian structure is an estimate
showing exponential convergence to equilibrium (which is a product Bernoulli
distribution). Indeed, writing ρ

(N)
t (y1, . . . , yN ) for the N point intensity func-

tion of the process as time t, we claim that there exist CN for all N ≥ 1 so
that ∣∣∣ρ(N)

t (y1, . . . , yN ) − ρ(N)
∞ (y1, . . . , yN )

∣∣∣ ≤ CNe−2mt (7)

uniformly over for all y1, . . . , yN and over all initial conditions (recall that m is
the immigration rate of pairs). This follows for a deterministic initial condition
η once we show that

|Kt(y, z) − K∞(y, z)| ≤ 2e−2mt for all y, z ∈ Z, (8)

since the entries in the kernel K are differences of the bounded function Kt, so
that the Pfaffian formula for ρ

(N)
t is given by a finite linear combination of finite

products of Kt(yi, yj). For a general initial condition, one can first condition
on the initial condition and then use the fact that the above estimates are
uniform in η.

To show (8) we can solve for Kt(y, z) explicitly. Indeed, fixing a deter-
ministic initial condition η, the kernel Kt(y, z) has a representation in terms of
a pair of independent continuous-time random walkers (Yt, Zt) with generator
qD+ + pD−, started at Y0 = y, Z0 = z. Let τ = inf{t : Yt = Zt}. Then the
equation solved by Kt(y, z) (see Lemma 7) shows that

Kt(y, z) = E
[
e−2mτ I(τ ≤ t)

]
+ e−2mt

E [K0(Yt, Zt)I(τ > t)]

where K0(y, z) = (−1)η[y,z) is bounded by 1. The limit K∞(y, z) = E[e−2mτ ],
and estimate (8) follows easily from subtracting these two probabilistic repre-
sentations. Solving explicitly we have

K∞(y, z) = θz−y, where θ ∈ (0, 1) solves θ + θ−1 − 2 =
2m

p + q
.
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The Pfaffian kernel of form (5) corresponding to K∞(y, z) is

K(y, z) =
θz−y

2

(
1 (1 − θ)

(1 − θ−1) (1 − θ)(1 − θ−1)

)
,

and K12(y, y) = (1− θ)/2. A little manipulation shows that this is a kernel for
a product Bernoulli(θ̂) distribution, where

θ̂ =
1 − θ

2
=

1
2

(√
m2

(p + q)2
+

2m

p + q
− m

p + q

)

Indeed by conjugating ETKE with an elementary matrix E for row and
column operations (which leaves the corresponding point process unaltered)
K(y, z) for y < z can be changed successively to

K(y, z) → θz−y

2

(
1 0

θ − θ−1 0

)
→ θz−y

2

(
0 0

θ − θ−1 0

)
, (9)

while leaving K12(y, y) = (1 − θ)/2 unchanged. Then the Pfaffian for ρ(N) has
only a single nonzero entry on the top row, and expanding along this row one
finds

ρ(N)(y1, . . . , yN ) =
1 − θ

2
ρ(N−1)(y2, . . . , yN ).

We remark that no exponential convergence statement such as (7) holds for
the BCRW model, since long empty gaps in the initial condition are only filled
at linear speed. However, for many initial conditions there is weak convergence
to a Bernoulli-invariant measure—see the remarks in Sect. 2.

2. Proof of Theorem 1

We start with a terse summary of the main steps: the proof in [6] for coalesc-
ing systems without branching uses the empty interval duality function; this
function remains a duality function for the branching model, but the empty
interval probabilities are no longer given by a Pfaffian; however, the duality
function can be adjusted by a suitable phase factor in a way that again yields
Pfaffians. The use of empty interval probabilities to study branching systems
is not new, see for example Krebs et al. [11] where the equations for a single
empty interval are used to study various finite systems.

The generator for BCRW is given, for suitable F : {0, 1}Z → R, by

LF (η) = q
∑

x∈Z

(F (ηx,x−1) − F (η)) + p
∑

x∈Z

(F (ηx−1,x) − F (η))

+ �
∑

x∈Z

(F (ηb
x,x−1) − F (η)) + r

∑

x∈Z

(F (ηb
x,x+1) − F (η)), (10)
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where ηx,y (resp. ηb
x,y) is the new configuration resulting from a jump (respec-

tively, a branch) from x onto y, that is
⎧
⎪⎨

⎪⎩

ηx,y(z) = ηb
x,y(z) = η(z) for z 
∈ {x, y},

ηx,y(x) = 0, ηb
x,y(x) = η(x),

ηx,y(y) = ηb
x,y(y) = min{1, η(x) + η(y)}.

For n ≥ 1 and y = (y1, . . . , y2n) with y1 ≤ . . . ≤ y2n we define the
function Σy(η) as the indicator that the intervals [y1, y2), . . . , [y2n−1, y2n) are
all empty; explicitly

Σy(η) =
n∏

i=1

I (η[y2i−1, y2i) = 0) .

We define a one-particle operator, acting on f : Z → R, by

Lp,qf(x) = qD+f(x) + pD−f(x).

Lemma 4. For y1 < . . . < y2n the action of the generator L on Σy(η) is given
by

LΣy(η) =
n∑

i=1

(Lp+r,q
y2i−1

+ Lp,q+l
y2i

)Σy(η)

where the subscript yi indicates the variable upon which the operator acts.

Proof of Lemma 4. A direct check shows that the terms of L coming from left
and right jumping contribute

q
∑

x∈Z

(Σy(ηx,x−1) − Σy(η)) + p
∑

x∈Z

(Σy(ηx−1,x) − Σy(η)) =
2n∑

i=1

Lp,q
yi

Σy(η)

to LΣy(η) (see [6] for the details of this calculation). It remains to compute
the terms arising from branching. Consider the term from left branching. The
modified branching configuration ηb

x,x−1 differs from η only at the site x − 1,
so for each x there can be a change in at most one of the indicators in Σy, so
we may write

�
(
Σy(ηb

x,x−1) − Σy(η)
)

= �

n∑

i=1

⎛

⎝
n∏

j=1,j �=i

I (η[y2j−1, y2j) = 0)

⎞

⎠

(
I
(
ηb

x,x−1[y2i−1, y2i) = 0
)− I (η[y2i−1, y2i) = 0)

)
.

Fix y < z and consider the generator contribution for a single empty interval
indicator, namely

�
∑

x∈Z

(
I(ηb

x,x−1[y, z) = 0) − I (η[y, z) = 0)
)
.

The terms indexed by x ≤ y and x ≥ z + 1 are zero, as the modified configu-
ration is unchanged in the interval [y, z). The terms indexed by y ≤ x ≤ z − 1
are also zero since there must be a particle at x to branch to the left from, in
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which case both empty interval indicators are zero. The remaining summand,
when x = z, is given by

� I(ηb
z,z−1[y, z) = 0) − � I (η[y, z) = 0) = � ((1 − η(z)) − 1) I (η[y, z) = 0)

= �D+
z I (η[y, z) = 0) .

A similar calculation reveals that the term of the generator arising from right
branching satisfies

r
∑

x∈Z

(
I(ηb

x,x+1[y, z) = 0) − I (η[y, z) = 0)
)

= rD−
y I (η[y, z) = 0) .

Collecting up contributions gives the claimed action. �

The expression for LΣy(η) in Lemma 4 has different operators acting
on even coordinates y2i and odd coordinates y2i−1. The proof of the Pfaffian
property in Lemma 6 is facilitated if each coordinate has the same operator
acting on it, and the aim is to introduce a suitable phase factor precisely to
have this effect. The phase factor is defined by

Φ(y) =
n∏

i=1

φ(y2i−y2i−1) for y = (y1, . . . , y2n) ∈ R
2n and n ≥ 1

and the following lemma shows that the value φ =
√

1 + �
q =

√
1 + r

p is the

correct choice.

Lemma 5. Suppose the rates p, q, r, l satisfy (1) and φ is chosen as in the state-
ment of Theorem 1. Then for y1 < . . . < y2n

Φ(y)L (Σy) (η) =
2n∑

i=1

(Lpφ,qφ
yi

− c0) (Φ(y)Σy(η))

where c0 = 1
2 (r + l) − (p + q)(φ − 1) = p+q

2 (φ − 1)2 ≥ 0.

Proof. This is a direct calculation. For a function of one variable we find that
a change of f : Z → R to f̃(y) = cyf(y), for c 
= 0, produces the change

Lp,q f̃(y) = cyLpc−1,qcf(y) + (pc−1 + qc − p − q)cyf(y).

We apply this in the even coordinates with c = φ and in the odd coordinates
with c = φ−1. The value of φ is chosen so that the corresponding difference
operators now agree on both sets of coordinates. Different potential terms
are created at odd or even coordinates, but these can be summed and then
redistributed equally between all coordinates, which yields the constant c0.
The equivalent expressions for c0 follow from the definition of φ. �

Lemma 6. For all η ∈ {0, 1}Z, for all n ≥ 1, y1 ≤ . . . ≤ y2n and t ≥ 0

Φ(y)Eη [Σy(ηt)] = Pf(K(2n)(t, y)),

where K(2n)(t, y) is the anti-symmetric 2n × 2n matrix with entries Kt(yi, yj)
defined, for i < j, by

Kt(y, z) = φz−y
Pη[ηt[y, z) = 0], for t ≥ 0 and y ≤ z.
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Proof of Lemma 6. We follow closely the arguments for the pure coalescing
case, as in Lemma 7 of [6], pointing out the changes needed here but refer the
reader to [6] details. We recall the notation for the discrete cells V2n and their
faces (∂V

(i)
2n : 1 ≤ i ≤ 2n − 1), defined as follows:

V2n = {y ∈ Z
2n : y1 < y2 < . . . < y2n},

∂V
(i)
2n = {y ∈ Z

2n : y1 < y2 < . . . < yi = yi+1 < . . . < y2n}.

We also use the notation yi,i+1 for the vector y with coordinates yi and yi+1

removed; thus, when n ≥ 2, for y ∈ ∂V
(i)
2n we have yi,i+1 ∈ V2n−2

To establish the identity in the lemma, one checks that both sides are
solutions to the system of ODEs, in this case

(ODE)2n

⎧
⎪⎪⎨

⎪⎪⎩

∂tu
(2n)(t, y) =

∑2n
i=1 (Lpφ,qφ

yi
− c0)u(2n)(t, y) on [0,∞) × V2n,

u(2n)(t, y) = u(2n−2)(t, yi,i+1) on [0,∞) × ∂V
(i)
2n ,

u(2n)(0, y) = Φ(y)Σy(η) on V2n,

taking u(0) ≡ 1. This infinite system can be shown by induction on n to
have unique solutions, within the class of functions with suitable exponential
growth at infinity. As in [6], the fact that (t, y) �→ Eη [Φ(y)Σy(ηt)] is a solution
follows from Lemma 5 and the extra fact that the phase factor satisfies Φ(y) =
Φ(yi,i+1) on the boundary ∂V

(i)
2n .

The fact that the Pfaffian is also the solution to this system follows as in
the nonbranching case in [6]. The starting point is that the function Kt(y, z)
solves the equation

∂tK(y, z) =
(
Lpφ,qφ

y + Lpφ,qφ
z − 2c0

)
Kt(y, z) for (y, z) ∈ V2 (11)

with the boundary condition Kt(y, y) = 1 for all t > 0. The Pfaffian is made up
of terms that are products of copies of K using all the variables y1, . . . , y2n, each
of which can be checked to be a solution of the full system. The combination
of terms in the Pfaffian is exactly what is needed to satisfy the boundary con-
ditions of the system. The details of these arguments are explained in Lemma
7 of [6] with the only change being that we need to verify the extra phase term
does not affect the initial condition being satisfied. However we may rewrite
the entries in the Pfaffian at time zero using

K0(y, z) = φz−y I(η[y, z) = 0) = lim
θ↓0

θη[a,z)

θη[a,y)

φz−a

φy−a
for a < y < z.

The Pfaffian Pf(K(2n)(0, y)) is therefore the limit of Pfaffians of a matrix A
with entries in quotient form Aij = ai/aj for i < j. For such matrices Pf(A) =
a2a4 . . . a2n/a1a3 . . . a2n−1 (see appendix of [6] for example) and hence, taking
a < min{yi},

Pf(K(2n)(0, y)) = lim
θ↓0

n∏

i=1

θη[a,y2i)

θη[a,y2i−1)

φy2i−a

φy2i−1−a
= Φ(y)Σy(η),

as required. �
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Remark 2.1. The last lemma is the point at which to observe that for certain
random initial conditions, the Pfaffian property is still true. Indeed suppose
that η0 is random but that E [Φ(y)Σy(η0)] is still given by a 2n × 2n Pfaffian
with entries K0(yi, yj) for i < j, for some K0 of exponential growth. The
statement of the lemma then still holds, and so does Theorem 1, which is
deduced from the lemma without any changes. A simple example is when
η0(x) are independent Bernoulli(θx) variables. Then the condition above is
true with

K0(y, z) = φz−y
∏

k∈[y,z)

(1 − θk).

A similar observation holds for the ARWPI model discussed in the next section.

Proof of Theorem 1. As in [6], the desired particle intensities Eη

[ηt(x1) . . . ηt(xn)] may be recovered from the empty interval probabilities. From
Lemma 6 we have

Eη [Σy(ηt)] = Φ(y)−1Pf(K(2n)(t, y)).

The factor Φ−1(y) can be expressed as the determinant of a diagonal matrix
D(y) with entries Dii(y) = φ(−1)i+1yi for i = 1, . . . , 2n. The empty interval
probabilities can then be expressed as a single Pfaffian

Eη [Σy(ηt)] = Pf(D(y)K(2n)(t, y)D(y)). (12)

Note the ij’th entry of the matrix D(y)K(2n)(t, y)D(y) is still a function only
of the variables yi, yj . We now follow the argument in [6], where the intensities
are derived from the empty interval probabilities via discrete derivatives. This
leads to the process ηt being a Pfaffian point process with a kernel K̂(y, z)
where for y < z

(
φy+zKt(y, z) −D+

z (φy−zKt(y, z))

−D+
y (φz−yKt(y, z)) D+

y D+
z (φ−y−zKt(y, z))

)
,

and

K̂12(y, y) = −D+
z

(
φy−zKt(y, z)

) |z=y = 1 − φ−1Kt(y, y + 1).

It remains to massage this kernel K̂ into the form K stated in the theo-
rem, which uses only row and column operations that can be represented
by conjugation with suitable matrices, that is we may replace K̂(y, z) by
A(y)K̂(y, z)AT (z) for any 2-by-2 matrix A(y) (depending only on the vari-
able y) that has determinant 1.

Expanding out the discrete derivatives in K̂ using the discrete product
rule, and then conjugating the final matrix with a diagonal matrix A(y) =(

φ−y 0
0 φy

)
leads to an equivalent kernel, which we still denote K̂, with

entries
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K̂11(y, z) = Kt(y, z);
K̂12(y, z) = − (φ−1Kt(y, z + 1) − Kt(y, z)

)
;

K̂21(y, z) = − (φ−1Kt(y + 1, z) − Kt(y, z)
)
;

K̂22(y, z) = φ−2Kt(y + 1, z + 1)
−φ−1Kt(y, z + 1) − φ−1Kt(y + 1, z) + Kt(y, z),

K̂12(y, y) = 1 − φ−1Kt(y, y + 1).
Subtracting the first row and column from the second row and column,

and then further conjugating with a diagonal matrix A(y) =
(

φ−1/2 0
0 φ1/2

)

gives the equivalent kernel K

K̂(y, z) = φ−1

(
Kt(y, z) −Kt(y, z + 1)

−Kt(y + 1, z) Kt(y + 1, z + 1)

)
,

with K̂12(y, y) = 1−φ−1Kt(y, y +1). Finally, the desired kernel K is obtained
by again subtracting the first row and column from the second. �

Remark 2.2. Letting t → ∞ the process, for any nonzero initial condition,
converges to an invariant Bernoulli distribution. It is fun to see this via the
Pfaffian kernels by solving for Kt(y, z) explicitly. Consider first the maximal
initial condition η0(x) = 1 for all x. Then K0(y, z) = 0 and the kernel Kt(y, z)
has a representation in terms of a pair of independent continuous-time random
walkers (Yt, Zt) with generator qφD+ + pφD−, started at Y0 = y, Z0 = z. Let
τ = inf{t : Yt = Zt}. Then equation (11) solved by Kt(y, z) implies that
Ms := Kt−s(Ys, Zs) exp(−2c0s) is a martingale for s ∈ [0, t ∧ τ ] and hence
that

Kt(y, z) = M0 = E[Mt∧τ ] = E
[
e−2c0τI(τ ≤ t)

]
] ↑ K∞(y, z) = E[e−2c0τ ].

Solving explicitly we find K∞(y, z) = φ−(z−y), and the Pfaffian kernel of form
(2) corresponding to K∞(y, z) is

K(y, z) =
φy−z−1

2

(
1 (1 − φ−1)

(1 − φ) (1 − φ)(1 − φ−1)

)
,

and K12(y, y) = 1 − φ−2. A little manipulation (using row and column opera-
tions as in (9) for the ARWPI model kernel) shows that this is a kernel for a
product Bernoulli(1 − φ−2) distribution. Convergence of Kt(y, z) implies that
all entries in the Pfaffian kernel converge, which in turn implies that the pro-
cess ηt converges as t → ∞ to the product Bernoulli(1 − φ−2) in distribution
in the product topology.

For general nonzero initial conditions the same is true. Rather than
analysing the kernel, we use a simple coupling argument for attractive nearest
neighbour systems. All nonzero solutions can be coupled between the maximal
solution and a solution started to from a single point. It therefore is enough to
prove convergence for the process η0

t started from a single occupied site, say
the origin. But this process can be coupled with the process ηZ

t started from
all occupied sites. Indeed by a graphical construction (or equivalently solving
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a system of equations using the same Poisson drivers for jump and branch
events) it shows that

η0
t (y) = ηZ

t (y) for all y ∈ [lt, rt],

where lt, rt mark the leftmost and rightmost occupied site in η0
t . The behaviour

of the pair {lt, rt} is however easy to understand: provided p + l > q and
q + r > p we can ensure lt → −∞ and rt → ∞. Under these conditions the
process looks like ηZ

t in a growing interval, and we already know ηZ

t converges
to Bernoulli equilibrium.

Remark 2.3. It is natural to look for a spatially inhomogeneous version of the
BCRW model, where px, qx, lx, rx are allowed to be site dependent. This was
explored in the thesis [7], and the Pfaffian property can survive, but under
a somewhat stronger condition on the parameters that we do not yet fully
understand.

3. Proof of Theorem 3

The result for the annihilating model with immigration follows by very similar
lines, and we remark only on the changes caused by the new immigration term.
The result holds for systems with spatially inhomogeneous rates. There is no
additional complexity in the proof, so we continue in this general framework.

The generator for (spatially inhomogeneous) ARWPI is given, for suitable
F : {0, 1}Z → R by

LF (η) =
∑

x∈Z

qx (F (ηx,x−1) − F (η)) +
∑

x∈Z

px (F (ηx−1,x) − F (η))

+
∑

x∈Z

mx

(
F (ηi

x−1,x) − F (η)
)
, (13)

where ηx,y is the new configuration resulting from a jump from x onto y, that
is {

ηx,y(z) = η(z) for z 
∈ {x, y},

ηx,y(x) = 0, ηx,y(y) = η(x) + η(y) mod (2),

and where ηi
x−1,x is the new configuration resulting from a pair immigration

onto {x − 1, x} defined by
{

ηi
x−1,x(z) = η(z) for z 
∈ {x − 1, x},

ηi
x−1,x(z) = 1 − η(z) for z ∈ {x − 1, x}.

Note that any immigrating particle instantly annihilates with any existing
particle on the target site. We suppose mx, px, qx are uniformly bounded, so
that this generator uniquely determines a Markov process.

The following spin product function is a Markov duality function for this
generator (as used for the pure annihilating model in [6]). For n ≥ 1 and
y = (y1, . . . , y2n) with y1 ≤ . . . ≤ y2n we define the spin product
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Σy(η) =
n∏

i=1

(−1)η[y2i−1,y2i).

We define the one-particle operator L, acting on f : Z → R, by

Lf(x) = qxD+f(x) + pxD−f(x) − 2mxf(x). (14)

Lemma 7. For y1 < . . . < y2n the action of the generator L on Σy(η) is given
by

LΣy(η) =
2n∑

i=1

Lyi
Σy(η).

Proof of Lemma 7. As in [6] the terms of L coming from particle motion con-
tribute

∑

x∈Z

qx (Σy(ηx,x−1) − Σy(η)) +
∑

x∈Z

px (Σy(ηx−1,x) − Σy(η)) .

It remains to compute the immigration term. Note that the modified immi-
gration configuration ηi

x−1,x differs from η on at most two sites, x − 1 and x.
Since the yi are strictly ordered, the intervals [y2i−1, y2i) are separated by at
least one site, whereby a pair of adjacent sites −1, x can intersect at most one
of the intervals. In particular any change due to immigration affects at most
one interval [y2i−1, y2i), leading to the formula

Σy(ηi
x−1,x) − Σy(η) =

n∑

i=1

⎛

⎝
∏

j �=i

(−1)η[y2j−1,y2j)

⎞

⎠

(
(−1)ηi

x−1,x[y2i−1,y2i) − (−1)η[y2i−1,y2i)
)

.

Fix y < z and consider the generator contribution for a single spin product
(−1)η[y,z), namely

∑

x∈Z

mx

(
(−1)ηi

x−1,x[y,z) − (−1)η[y,z)
)

.

The terms indexed by x ≤ y − 1 and x ≥ z + 1 are zero, as the modified
configuration is unchanged in the interval [y, z). The terms y + 1 ≤ x ≤ z − 1
are also zero, since the immigration of two particles does not change the parity
of η[y, z). The remaining terms give identical nonzero contributions: for x = y
or x = z

(−1)ηi
x−1,x[y,z) − (−1)η[y,z)

=
z−1∏

w=y
w �=x

(−1)η(w)
(
(−1)1−η(x) − (−1)η(x)

)
= −2(−1)η[y,z).

All together the immigration term is given by

∑

x∈Z

mx

(
Σy(ηi

x−1,x) − Σy(η)
)

= −2Σy(η)
2n∑

i=1

myi
.
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Collecting the jump and immigration terms gives the desired expression. �

Proof of Theorem 3. Following the argument from [6], we first claim that for
all η ∈ {0, 1}Z, for all n ≥ 1, y1 ≤ . . . ≤ y2n and t ≥ 0

Eη [Σy(ηt)] = Pf(K(2n)(t, y)),

where K(2n)(t, y) is the anti-symmetric 2n × 2n matrix with entries Kt(yi, yj)
for i < j, defined by Kt(y, z) = Eη[(−1)ηt[y,z)]. The particle intensities
Eη [ηt(x1) . . . ηt(xn)] can then be recovered from product spin expectations
via discrete derivatives and yield the stated kernel K(y, z). �

4. Some Continuum Pfaffian Point Process Limits

The entries for the Pfaffian kernels K(x, y) in both the branching model and
the immigration model, are determined by a scalar function Kt(x, y) that
solves a certain discrete heat equation. Under diffusive space time scaling,
and with suitable scaling of the parameters, we can obtain natural limiting
Pfaffian point processes X(c) on R, with associated continuum kernels K(c)

(where superscript (c) stands for continuum). We record here certain examples,
simply to add to the rather small current list of explicit Pfaffian point process
kernels. Two points are perhaps of greatest interest:

1. Unlike the continuum examples from [6], alongside the diffusive scaling
of space–time, the reaction parameters controlling branching and immi-
gration must be simultaneously scaled, so that they have a nontrivial
effect on the continuum limit. Indeed branching but instantly coalescing
Brownian motions do not have a simple meaning nor does immigration
of instantly annihilating pair of Brownian motions onto the same point.
However, since both discrete processes are Pfaffian whose entire statistics
are controlled by a kernel whose entries solve a discrete PDE, the correct
scaling for the parameters is easily revealed by examining the convergence
for the differential equations.

2. The discrete equations behind coalescing models with branching and an-
nihilating models with pairwise immigration are both discrete heat equa-
tions with a constant potential. This can be used to show there is an
equality in law for the fixed time particle positions between these two
models, if parameter values and initial values are chosen carefully. This
connection exists at the discrete level (see [7]) but is most transparent for
the limiting continuum models, and we detail this in the remarks after
example (b).
In each of the four examples below we define

X
(ε)
t (dx) = ηε−2t(ε−1dx) on εZ

where ηt is one of the models studied earlier, with an initial condition and
ε dependent parameters which we will specify. The point process X

(ε)
t will

be a Pfaffian point process on εZ with a kernel K(ε)
t . The diffusive scaling

above is chosen so that an isolated noninteracting particle will converge to a
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Brownian motion. We claim convergence of the particle system only at a fixed
time. Indeed, for all t ≥ 0, in each of examples (a),(b),(c) below we claim
X

(ε)
t → X

(c)
t in distribution, on the space of locally finite point measures on R

with the topology of vague convergence (for the final example (d) we restrict
to a region away from the origin). Moreover the limit X

(c)
t is a simple point

process and a Pfaffian point process on R. In our examples we can often solve
explicitly for the limiting kernel K(c)

t (x, y).
The entries of K(ε)

t are in terms of a scalar function K
(ε)
t (y, z) that will

solve a lattice PDE that naturally scales to a continuum PDE. The proof of
the convergence X

(ε)
t → Xt follows from the suitable convergence of K

(ε)
t (y, z)

and their discrete derivatives to the analogous solutions of a continuum PDE,
by plugging in to the kernel convergence Lemma 9 from [6]. However we omit
the details verifying all the conditions of this lemma.

(a) Annihilating Model with Constant Pairwise Immigration

We consider the ARWPI model with parameters px = qx = α > 0 and mx =
βε−2 ≥ 0 for all x and with zero initial condition. From Theorem 3 the process
X

(ε)
t is a Pfaffian point process on εZ with kernel K(ε)

t of the form

K(ε)
t (y, z) =

ε

2

⎛

⎝ K
(ε)
t (y, z) −D

(ε)
2 K

(ε)
t (y, z)

−D
(ε)
1 K

(ε)
t (y, z) D

(ε)
1 D

(ε)
2 K

(ε)
t (y, z)

⎞

⎠ for y < z,

(K(ε)
t )12(y, y) = − ε

2
D

(ε)
2 K

(ε)
t (y, y) (15)

where D
(ε)
i is the right discrete derivative on εZ (that is D(ε)f(x) = ε−1(f(x+

ε)−f(x))) acting on the i’th variable. The function K
(ε)
t (y, z) solves, for y, z ∈

εZ with y ≤ z, ⎧
⎪⎨

⎪⎩

∂tK
(ε)
t = αΔ(ε)K

(ε)
t − 2βK

(ε)
t ,

K
(ε)
t (y, y) = 1,

K
(ε)
0 (y, z) = 1.

(16)

Here Δ(ε) is the discrete Laplacian on (εZ)2.
The limit Xt is Pfaffian on R with kernel of the form

K(c)
t (y, z) =

1
2

⎛

⎝ K
(c)
t (y, z) −D2K

(c)
t (y, z)

−D1K
(c)
t (y, z) D1D2K

(c)
t (y, z)

⎞

⎠ for y < z,

(K(c)
t )12(y, y) = −1

2
D2K

(c)
t (y, y) (17)

(Di is the derivative in the ith coordinate) where K
(c)
t (y, z) is C2 on {y, z ∈

R
2 : y ≤ z} and solves

⎧
⎪⎨

⎪⎩

∂tK
(c)
t (y, z) = αΔK

(c)
t (y, z) − 2βK

(c)
t (y, z)

K
(c)
t (y, y) = 1

K
(c)
0 (y, z) = 1.

(18)
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The unique bounded solution K
(c)
t (y, z) has a probabilistic representation in

terms of a two-dimensional Brownian motion (Yt, Zt), run at rate 2α (that is
scaled to have variance 2αt at time t) and started at (y, z), namely

K
(c)
t (y, z) = E

[
e−2β(t∧τ)

]
where τ = inf{t : Yt = Zt}.

Solving for K
(c)
t (y, z) explicitly allows one to read off the one-point density

ρ
(1)
t (y) = −1

2
D2K

(c)
t (y, y) =

1
2

√
β

α
erf(
√

2tγ)

(where the error function is defined by erf(x) = (2/
√

π)
∫ x

0
exp(−t2)dt). The

kernel also has a limit as t → ∞, in particular K
(c)
t (y, z) → K

(c)
∞ (y, z) where

K(c)
∞ (y, z) = E[e−2βτ ] = e−

√
β
α (z−y).

It is no longer enough in the continuum to just examine convergence of K
(c)
t ,

but an examination of the exact formula shows that both K(c) and its first
two derivatives converge, uniformly over y, z, as t → ∞, which implies that the
continuum point processes X

(c)
t converge as t → ∞ to a point process X

(c)
∞

(one can follow the steps of the proof of Lemma 4 from [6]). The limit has
kernel

K(c)
∞ (y, z) =

1
2

⎛

⎝ e−
√

β
α (z−y)

√
β
αe−

√
β
α (z−y)

−
√

β
αe−

√
β
α (z−y) −β

αe−
√

β
α (z−y)

⎞

⎠ for y < z, (19)

and K(c)
∞,12(y, y) = 1

2

√
β
α . One can identify the limit, this time a disguised

form for the kernel for a Poisson process. Indeed, the same row and column
operations as in the discrete case allow the Pfaffian of the above kernel to be
easily computed explicitly, and the n-point intensity is given by

ρ(n)∞ (y1, . . . , yn) ≡
(

1
2

√
β

a

)n

.

Thus the distribution of the (continuum) point process in the large time limit

is a Poisson process rate 1
2

√
β
α . The four entries in the kernel converge expo-

nentially to the t = ∞ limit. As in the discrete ARWPI model, this can be used
to show the exponentially fast convergence ρ

(n)
t (y1, . . . , yn) → ρ

(n)
∞ (y1, . . . , yn)

as t → ∞, for any fixed n and uniformly over yi.
Explicit formulae can be found for a variety of other initial conditions (see

[7]). For example for an initial Bernoulli(εθ) condition, where θ is fixed, only the
initial condition in (16) changes to K

(ε)
0 (y, z) = (1−2εθ)ε−1(z−y), and the initial

condition for limiting PDE (18) changes to K
(c)
0 (y, z) = exp(−2θ(z−y)). In the

maximal case, ηx = 1 for all x, the initial conditions K
(ε)
0 (y, z) = (−1)ε−1(z−y)

are extremely oscillatory, but they converge in distribution to the zero function
which is sufficient to imply suitable convergence of the kernels at a fixed times
t > 0.
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(b) Branching and Coalescing Model with Maximal Initial Condition

We consider the BCRW model with parameters px = qx = α > 0 and l = r =
2ε

√
αβ > 0, and with maximal initial condition, that is η(x) = 1 for all x (we

have chosen the form of the branching rate parameters so that the limit has a
convenient form). From Theorem 3 the process X

(ε)
t is a Pfaffian point process

on εZ with kernel K(ε)
t of the form

K(ε)
t (y, z) = εφ

⎛

⎝ K
(ε)
t (y, z) −D

(ε)
2 K

(ε)
t (y, z)

−D
(ε)
1 K

(ε)
t (y, z) D

(ε)
1 D

(ε)
2 K

(ε)
t (y, z)

⎞

⎠ for y < z,

(K(ε)
t )12(y, y) = 1 − φ−1K

(ε)
t (y, y + ε). (20)

The function K
(ε)
t (y, z) solves, for y, z ∈ εZ with y ≤ z,
⎧
⎪⎨

⎪⎩

∂tK
(ε)
t = αφΔ(ε)K

(ε)
t − 2ε−2c0K

(ε)
t ,

K
(ε)
t (y, y) = 1,

K
(ε)
0 (y, z) = 0.

(21)

Examination of the constants φ and c0 shows that

φ = 1 + ε
√

β/α − ε2(β/2α) + O(ε3), c0 = βε2 + O(ε3).

The limit Xt is Pfaffian on R with kernel of the form

K(c)
t (y, z) =

⎛

⎝ K
(c)
t (y, z) −D2K

(c)
t (y, z)

−D1K
(c)
t (y, z) D1D2K

(c)
t (y, z)

⎞

⎠ for y < z,

(K(c)
t )12(y, y) = −D2K

(c)
t (y, y) +

√
β/α (22)

where K
(c)
t (y, z) is C2 on {y, z ∈ R

2 : y ≤ z} and solves
⎧
⎪⎨

⎪⎩

∂tK
(c)
t (y, z) = αΔK

(c)
t (y, z) − 2βK

(c)
t (y, z)

K
(c)
t (y, y) = 1

K
(c)
0 (y, z) = 0.

(23)

Note that the term (K(c)
t )12(y, y) requires a bit more care than in example (a)

and that an extra term
√

β/α emerges, as follows:

ε−1K
(ε)
t (y, y) = ε−1

(
1 − φ−1K

(ε)
t (y, y + ε)

)

= ε−1
(
1 − (1 + ε

√
β/α + O(ε2))−1(1 + εD

(ε)
2 K

(ε)
t (y, y))

)

= −D
(ε)
2 K

(ε)
t (y, y) +

√
β/α + O(ε2)

→ −D2K
(c)
t (y, y) +

√
β/α as ε ↓ 0.

The t → ∞ limit follows the lines of the previous example and X
(c)
t →

X
(c)
∞ where the limit has Pfaffian kernel that is twice the one in (19), and with

the extra difference that
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(K(c)
∞ )12(y, y) = −D2K

(c)
∞ (y, y) +

√
β

α
= 2

√
β

α
.

Similar row and column manipulations as in the discrete case show that this

kernel encodes a Poisson process of rate 2
√

β
α .

Remark 4.1. In many formulations of determinantal point processes, the de-
terminantal kernel D is associated with an integral operator D on L2(R), and
the diagonal values D(y, y) are linked to those of (D(y, z) : y < z) by the fact
that the operator is assumed to be of trace class. One might ask the same for
the Pfaffian case, asking for four operators Kij on L2(R). For our examples
this link is broken: the operators Kij acting on L2(R) would have discontinu-
ities along y = z and are not expected to be trace class. The diagonal values
K12(y, y) are not given, for example, as even the continuous limit of K12(y, z).
This is also the case for classical Pfaffian kernels, for example for GOE.

The operator formulation is useful, for example when applying the the-
ory of Fredholm determinants or Fredholm Pfaffians, and in classification the-
orems. However, we state our continuum Pfaffian kernels in the form of the
five measurable functions, namely (Kij(y, z) : y, z ∈ R, y < z))i.j∈{1,2} and
(K12(y, y) : y ∈ R). These five functions are what appear in the Pfaffian for-
mulae for the intensities ρ(N). Kernel (22) can be adjusted, by row and column
operations, so that for example the diagonal values K12(y, y) are given as the
continuous limit of K12(y, z) as z ↓ y, for example to
⎛

⎜⎝
K

(c)
t −D2K

(c)
t +

√
β
αK

(c)
t

−D1K
(c)
t +

√
β
αK

(c)
t D1D2K

(c)
t −

√
β
α (D2K

(c)
t + D1K

(c)
t ) + β

αK
(c)
t

⎞

⎟⎠

We hope that this form may be more useful for example when manipulating
Fredholm Pfaffians (as for example in the manipulations for the gap probabil-
ities for the GOE spectrum).

Remark 4.2. With our convention on kernels just as measurable functions, a
Poisson rate γ process can be realised as a Pfaffian point process with kernel γJ
where J(y, z) = 0 for y < z and J12(y, y) = γ (the same convention would allow
Poisson processes to be determinantal processes with a purely diagonal kernel).
The kernel in example (b) is connected to Poisson thickening. A locally finite
point process X can be γ thickened by adding the points of an independent
Poisson process Y of rate γ, producing a new point process X + Y . If the
original point process was Pfaffian with kernel K, then the thickened process
remains Pfaffian with kernel K + γJ. Indeed, since the points of X and the
Poisson process never meet, the intensities for the thickened process are given
by

ρ
(N)
X+Y (y1, . . . , yN ) =

∑

J⊆{1,...,N}
ρ

|J|
X (yj : j ∈ J)γN−|J|

where |J | is the size of the subset J . But the Pfaffian Pf(K + γJ) can be
expanded by the Pfaffian sum formula to give exactly this relation.
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A locally finite point process X can be γ thinned by removing each point
independently with probability γ, producing a new point process which we
denote Θγ(X). If X is Pfaffian with kernel K, then the thinned process Θγ(X)
remains Pfaffian, with the kernel γK.

Since the PDE behind both the continuum branching process and the
continuum pairwise immigration model is the same, the heat equation with
constant potential, it is not surprising that there is a connection between their
fixed time distribution. Using thickening and thinning we can state this: let

X1 = the diffusion limit of BCRW with p = q = α, l = r = 2ε
√

αβ and η ≡ 1;
X2 = the diffusion limit of ARWPI with p = q = α,m = ε2β and η ≡ 1;

Y = a Poisson point process of rate
1
2

√
β/α, independent of X2.

Then, as point processes on R,

Θ1/2(X1)
D= X2 + Y.

The proof is just the verification that the Pfaffian kernels are identical.
There is a nice dynamic coupling argument that connects annihilating

Brownian motions with coalescing Brownian motions (see [18]), but we do not
know a dynamic coupling that explains the above equality of distributions.

A similar identity also works for carefully chosen Poisson initial conditions
and also for the processes on Z with suitably chosen initial conditions (many
details are in [7]).

(c) Branching and Coalescing Model with a Single Initial Particle

We take the same parameter choices as in example (a) but choose an initial
condition that is a single particle at the origin. The initial conditions for (21)
and (22) change to

K
(ε)
0 (y, z) = φz−yI(0 
∈ [y, z)), K

(c)
0 (y, z) = e

√
β
α (z−y)I(0 
∈ [y, z)).

The explicit solution is

K
(c)
t (y, z) = e

√
β
α (z−y) (1 − ψt(y)ψt(−z)) + e−

√
β
α (z−y)ψt(−y)ψt(z), (24)

where

ψt(x) = 2erfc
(

x − 2
√

αβt√
2αt

)
.

As in the discrete setting, the fixed time distribution started from a single site
is quite easy to understand. The limit behaviour of the leftmost and rightmost
particles {lt, rt}, under the parameter scaling we have used, is known to become
that of a sticky pair {Lt, Rt}, that is the solution of

dLt = I(Lt 
= Rt)dBL
t + I(Lt = Rt)dB − 2

√
αβdt, L0 = 0,

dRt = I(Lt 
= Rt)dBR
t + I(Lt = Rt)dB + 2

√
αβdt, R0 = 0,

where BR, BL, B are three independent Brownian motions run at rate 2α.
Uniqueness in law holds and Lt ≤ Rt for all t ≥ 0 (see Proposition 2.1 in [15]).
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Let Y be an independent Poisson process of rate 2
√

β
α . The point process

X
(c)
t can be constructed as the pair of particles Lt and Rt together with the

particles from Y that lie inside (Lt, Rt). Indeed then

P[Xt[y, z) = 0] = P[Rt < y] + P[Lt ≥ z] + e−2
√

β
α (z−y)

P[Lt < y,Rt ≥ z].

Comparing this with formula (24) for K
(c)
t (y, z) = e

√
β
α (z−y)

P[Xt[y, z) = 0],
and using ψt(x) = P[Rt ≥ x] = P[Lt < −x], one finds that

P[Lt < y,Rt ≥ z] = P[Lt < y]P[Rt ≥ z] − e2
√

β
α (z−y)

P[Lt ≥ z]P[Rt < y].

This formula, which is straightforward to verify independently, is one way of
describing the joint law of (Lt, Rt).

(d) Annihilating Model with Immigration at the Origin

We allow immigration only at one site, namely the origin, producing a model we
have come to call the Brownian firework. The immigration rate must be scaled
differently to example (c) in order to see a nontrivial effect in the continuum
limit. Thus we consider the ARWPI model with parameters px = qx = α > 0
for all x, with m0 = βε−1 ≥ 0 and mx = 0 for all x 
= 0, and with zero initial
condition. From Theorem 3 the process X

(ε)
t is a Pfaffian point process on εZ

with kernel K(ε)
t of the form

K(ε)
t (y, z) =

ε

2

⎛

⎝ K
(ε)
t (y, z) −D

(ε)
2 K

(ε)
t (y, z)

−D
(ε)
1 K

(ε)
t (y, z) D

(ε)
1 D

(ε)
2 K

(ε)
t (y, z)

⎞

⎠ for y < z, (25)

and (K(ε)
t )12(y, y) = − ε

2D
(ε)
2 K

(ε)
t (y, y), where the function K

(ε)
t (y, z) solves,

for y, z ∈ εZ with y ≤ z,
⎧
⎪⎨

⎪⎩

∂tK
(ε)
t = αΔ(ε)K

(ε)
t − 2βε−1(I(y = 0) + I(z = 0))K(ε)

t ,

K
(ε)
t (y, y) = 1,

K
(ε)
0 (y, z) = 1.

The limiting kernel K
(c)
t (y, z) solves

⎧
⎪⎨

⎪⎩

∂tK
(c)
t (y, z) = αΔK

(c)
t (y, z) − 2β(δy=0 + δz=0)K

(c)
t (y, z)

K
(c)
t (y, y) = 1

K
(c)
0 (y, z) = 1.

(26)

This limiting PDE has a distributional potential consisting of delta functions
on the y = 0 and z = 0 axes. However it has unique bounded continuous mild
solutions, which are smooth away from the axes. We first show convergence of
K

(ε)
t . The probabilistic representation of the limiting continuous PDE is

K
(c)
t (y, z) = E

[
e− β

α LY
t∧τ − β

α LZ
t∧τ

]
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where LY and LZ are the (semimartingale) local times at zero of two indepen-
dent Brownian motions Y and Z run at rate 2α. The corresponding formula

K
(ε)
t (y, z) = E

[
e− β

α LY (ε)
t∧τ − β

α L
(ε)
t∧τ

]

holds for random walks Y (ε), Z(ε) on εZ, jumping right and left each with rate
ε−2α, and their local times, for example

LY (ε)

t = 2αε−1

∫ t

0

I(Y (ε)
s = 0)ds.

Weak (and strong) invariance principles for random walks and their local times
are a widely studied topic (see survey of results in [4]). In our simple concrete
setting, the weak convergence of (Y (ε), LY (ε)

) on D[0, T ] × D[0, T ] is straight-
forward to check (characterising the local time via a Tanaka formula). Then
the weak convergence of (Y (ε), Z(ε), LY (ε)

, LZ(ε)
) → (Y,Z, LY , LZ) can be used

to check that

K
(ε)
t (yε, zε) → K

(c)
t (y, z) whenever yε → y, zε → z.

The (complicated) explicit formula below for K
(c)
t (y, z) reveals that the inten-

sity

ρ
(1)
t (y) = −D2K

(c)
t (y, y+) ↑ ∞ as y → 0.

Thus the boundedness conditions, on K and its derivatives, in the kernel con-
vergence lemma (Lemma 9 from [6]) can never hold on R. However we may
consider the kernel on the set R\(−δ, δ) for any δ > 0 and obtain a limiting
point process and limiting kernel on R\(−δ, δ). Finally we take δ ↓ 0 to con-
struct a limiting process and kernel on R\{0} (we use this trick also when
doing the further limits t → ∞ and β → ∞ below).

The solution to PDE (26) can be found as follows. The substitution
K

(c)
t (y, z) = 1 + K̃

(c)
t (y, z) yields the equation, on V2 = {(y, z) : y < z},

∂tK̃
(c)
t (y, z) = αΔK̃

(c)
t (y, z) − 2β(δy=0 + δz=0)K̃

(c)
t (y, z) − 2β(δy=0 + δz=0),

(27)
with zero boundary K̃

(c)
t (y, y) = 0 and zero initial condition K̃

(c)
0 (y, z) = 0.

The Green’s kernel for this equation on V2 with zero Dirichlet boundary con-
ditions can be built out of the one-dimensional kernel gt(x, x′) for the operator
αΔ−2βδ0 on R, which in turn is given in terms of a standard Brownian motion
B and its local time at zero l0 by

gt(x, x′) = Ex

[
δx′(Bt/2α)e−(β/α)l0t/2α

]

=
√

α

πt
e− α(x−x′)2

t − β

2α
e

(|x|+|x′|)β
α e

β2t

4α3 erfc
(

βt1/2

2α3/2
+

α1/2(|x| + |x′|)
t1/2

)

(for the final formula, where erfc(z) = (2/
√

π)
∫∞

z
exp(−w2)dw, see the hand-

book [3] Equation 1.3.7). The Green’s kernel for (27) is given by
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Gt((y, z), (z′z′)) = gt(y, y′)gt(z, z′) − gt(y, z′)gt(z, y′), and the final solution
for inhomogeneous equation (27) is given using d’Alembert’s formula by

K̃
(c)
t (y, z) = −2β

∫ t

0

∫

V2

Gs((y, z), (y′, z′))(δy′=0 + δz′=0)dy′dz′ds.

This yields a complicated formula for the kernel K
(c)
t (y, z) = 1 + K̃

(c)
t (y, z).

Two limits lead to more attractive explicit kernels. The limit as t → ∞ for
K

(c)
t , yields the kernel for the steady state of the Brownian firework. Indeed

t → K
(c)
∞ (y, z) is decreasing, and the limit solves the elliptic equation (still

with boundary condition K
(c)
∞ (y, y) = 1)

αΔK(c)
∞ (y, z) = 2β(δy=0 + δz=0)K(c)

∞ (y, z).

The solution is

K(c)
∞ (y, z) = 1 +

2β

πα

∫ ∞

0

e− β
α s

(
arctan

y

s + |z| − arctan
z

s + |y|
)

ds.

A further limit can be taken as the immigration rate at the origin β increases
to an infinite rate, and this yields kernel (6) stated in introduction for the
infinite rate Brownian firework.
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