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Sunnary .

This thesis is concerned with the construction of products
in cyclic homology and cohomology, by use of the methods of acyclic
models. A theory HC*(A) which is dual to cyclic cohomology HC (A)
over its natural coefficients is introduced, and products are defined
in HC*A) and HC (A) . The product then induced on cyclic homology
HC*(A) is shown to agree with that defined by Loday and Quillen. By
using HC—(A) , it is possible to construct a multiplicative chern
character ch : K.(A) = HCT ~™A) . Kunneth theorems in the various

theories are proved, and some examples are considered.



Introduction

This introduction will take the form of an outline of the thesis,
describing its subject matter and its purpose, followed by a discussion
of cyclic homology theory, outlining the motivation for its definition,
and some of its applications. The content of this second part is taken
from the published work of Connes and others, and does not contain any
material of my own: it is intended to provide a context for the work

following.

This thesis is concerned with the cyclic homology and cohomology
theories defined by Alain Connes, and in particular with products in
those theories. For an associative algebra A over a field F , the
cyclic homology HC*(A) and cyclic cohomology HC (A) may be defined;
we give the definitions in Chapter 1. Cyclic cohomology has a periodicity
operator I—Cn(A) »HC (A) , and so I—C*(A) becomes a module over the
polynomial ring F[e] , where 9 is an indeterminate of degree 2, whose

action on HC (A) is defined by the periodicity operator.

Taking into account the product in cohomology, I-Clt(F) is isomorphic
to FCe] , and the module action defined by the periodicity operator
agrees with the action defined by the product of HC (F) with HC (A)
Thus it seems reasonable to consider F[e] as the natural coefficients

for cyclic cohomo”gy. HC*(A) is the dual of HC (A) over F , but



not over these coefficients FCe] . Thus we introduce a further

theory HC*(A) , which is the F[e]-dual of HC (A)

We wish to construct products by a version of the method of acyclic
models. In order to obtain suitable models, we need to look outside the
category of algebras. We give the definition of cyclic and cocyclic
F-modules, and then the cyclic homology of any cyclic F-module, and

the cyclic cohomology of any cocyclic F-module, may be defined.

In Chapter 2, we construct an F[6]-module product map

HC*(A) 8p[0] HC*(B) = HC*(A 0 B) , and an F[e]-module product map
HC (A) HC (B) wHC (A a B) . Further use of the acyclic models
method allows us to prove the commutativity and associativity of the
products, and an appropriate form of uniqueness. This allows us to
identify any product in cohomology constructed by this method with the
product defined by Connes in [8J. Loday and Quillen in [23] construct
a product in cyclic homology, HCn(A) 0 HOM(B) HOHM+—|A A B) . W
will show that the relation between HC*(A) and HC*(A) is analogous
to the relation between homology with coefficients in Z and homology
with coefficients in Q/Z . Then the product in Q/Z homology which
is induced by the product in Z homology will provide an analogy for
the definition of a product on HC*(A) which is induced by the product

on HC* ) . This product agrees with that given by Loday and Quillen.

In Chapter 3, we discuss the construction of a multiplicative chern

character, ch:K.(A) - HCT+2)I(A)



In Chapter 4, we prove a variety of Kunneth theorems, by
showing that the products which we have constructed give natural
chain equivalences of complexes. The Kunneth theorem for HC*(A)
involves more work, since the complex which defines cyclic homology

is not a free F[e]-module.

In Chapter 5, we use the Kunneth theorems and the properties of

the products to calculate the cyclic cohomology of a few examples.

We now summarise some of the recent work on cyclic homology, in
order to provide a context for the work following. Details are not

given, but may be found in the references cited.

Cyclic cohomology was introduced by Alain Connes in 1982 [7,8].
Geometric situations in which his work applies are the actions of a group
G on a smooth manifold M, where G may be an infinite discrete group
or a Lie group, and a foliation F on a smooth manifold V . These two
examples are closely related, since given a foliation, its leaves can
be considered as the orbits under the action of a groupoid defined from
the foliation, called the holonomy groupoid [61: a groupoid is a set G
with an inverse mep defined on G, but with a product map defined only
on a certain subset, the composable pairs, of G * G , where the inverse

and product maps satisfy the usual conditions.



In the case where the orbit space M/G is locally compact and
Hausdorff, the action can be studied via the space MG , and also
via the algebra Cg(M/G) of continuous functions on MG which tend
to zero at infinity. Even in the case where the orbit space does not
have the above property, it can be studied via a C algebra, written
GQM) x G [24]. Connes defines the C algebra of a foliation (V,F) ,

which is written C (V,F) [6].

The use of C algebras is a generalisation of the use of continuous
function algebras, since for any commutative C algebra A there is a
locally compact Hausdorff space A such that A is isomorphic to
Cq(A) by a mep which preserves the norm and is a *-homomorphism for

the involution.

In general C (V,F) and Cg(M) x g are noncommutative. However,
if the orbit space is locally compact and Hausdorff, the algebra
G@M) x G is equivalent to Cg(M/G) in an appropriate sense, that is,
the algebras are Morita equivalent. Similarly, if the leaf space V/F
is locally compact and Hausdorff, the algebra C (V,F) is Morita

equivalent to QOXV/F)

An example of a foliation whose leaf space is not Hausdorff is
given by the foliation of a torus by lines of irrational slope 0
since every leaf is dense, the only open sets in the leaf space are

the whole set and the empty set, and the leaf space is thus non-Hausdorff.



The C* algebra of this foliation has as its elements the formal
power series z a, m u|lUE , where the i ndetermi nates U,\ and Uc
are related by I~ =er’9 1M i , and the coefficients anm
satisfy the condition that (|n] + ImI)& Jan m|] is bounded for

each g« N [8].

Having obtained the algebras Gg(M) x G and C (V,F) , the am
is to use them as we use Cg(M/G) and Cg(V/F) , when the orbit space
and leaf space are locally compact and Hausdorff, to study the geometry
of the situation, for example, to obtain topological invariants. K theory
is defined for both algebras and spaces, and has the important property
that for a locally compact Hausdorff space X , K*(Cg(X)) = K (X) ;
the lower star in K*(Cg(X)) is justified because it is a covariant
functor of the algebra Cg(X) . Thus for an algebra A , it is K,(A)
which is analogous to the K-cohomology theory of a space, so we consider
K*(C (V,F)) and K*Cg(M) x G) . If two algebras are Morita equivalent,
their K-theories are isomorphic; hence if the orbit space is locally
compact and Hausdorff, K*(CQM) x G = K*(CQM/G)) = K*(M/G) . Similarly,
if the leaf space is locally compact and Hausdorff, K*(C (V,F) /;
M C O(V/F)) 1 K*(V/F)

Given a pseudo-differential elliptic operator P on a compact
manifold, its analytical index is defined to be the integer given by

dimension (kernel P) - dimension (cokernel P) . A topological index



may also be defined, and the Atiyah-Singer index theorem proves the
equality of these two indices [11. It is K theory which provides

the formulation for index theorems.

Connes and Skandalis in [11] generalise to foliations the Atiyah-
Singer index theorem for families [2]. Atiyah and Singer consider
families of pseudo-differential elliptic operators on compact manifolds
Xy , continuously parametrised by the points of a space Y , and
prove the equality of an analytical index and a topological index, both
defined in K (Y) . The definition of the analytical index follows
from reducing to a case where the vector spaces k.er and coker Py
are constant in dimension as y varies, giving vector bundles ker P
and coker P over Y , and thus the element [ker P - coker P] e K (Y)
Connes and Skandalis's theorem holds for those pseudo-differential
operators on a foliated manifold which are elliptic in the leaf direction,
and can thus be thought of as families parametrised by the points of the
leaf space. They show how to define an analytical and a topological
index lying in K*C (V,F)) , and prove that the two are equal. Ore
interesting feature of the theorem is that it holds even when the leaves

are non-compact.

Usually information about the indices would be obtained by applying
the chern character ch:K (Y) H (Y:Q) . Thus we would like to apply

a chern character to K*C (V,F)) : cyclic homology is defined to act



as a receiver for the chern character.

For a manifold M, its K-homology K*(M) is given in terms
of equivalence classes of pseudodifferential operators; see [3]
For an algebra A , K (A) can analogously be defined in terms of
certain operators on graded Hilbert spaces which have an action of

A by bounded operators [21,7].

There is a pairing Kq(A) B K°(A) “ml which is given, for a class
in K®A) represented by such an operator P , and a class in Kg(A)

represented by an idempotent e in the matrix algebra of A , by

<[P], Ce]> = index Pg ,

where Pg is a further operator constructed from P and e [7],

For example, if ec A, and P is defined on the Hilbert space H

with an action of A , then :eH *eH is defined by Pg(ex) = eP(ex)
This is an extension to the general case of the procedure, in the case

A =C(X) , for twisting an operator by a vector bundle. Here, if

Fg and F| are vector bundles on X , given D an elliptic pseudo-
differential operator on the smooth sections of the bundle,

D: C°(Fq) «C°(Fj)) , and given a vector bundle E , a choice of

connection on F, i E allows the construction of an operator

DB 1E : C'(FO BE)-* C~(F1 fi E) [3].



A trace on A gives a map Kg(A) “ml . However, there are
algebras A for which there exist an operator P , representing
a class in K°(A) , such that the map Kfl(A) «* C given by
[el = Index Pg , is not given by a trace. Thus an appropriate
generalisation of a trace must be defined. An n-trace is an (n+1)-
linear functional on A , or equivalently a linear functional on the

Afin+1

tensor product of (n+l) copies of A , .with the following

additional properties:

(a) t(a® a ... Ban) =(-1)"~1a ... Ban B a0)
(b) T(a0a]l] B ... a an) - T(acaaVe. .Ball) ... +(-l)n1x(a°a...8anlan)
+ (-D)n T(ana°fi ... Ban_1) =0

These n-traces are then used to define the cyclic cohomology HC (A)

and Connes defines a pairing HC (A) B KQ(A) -mC [7,8].

When the algebra has a topology, suitable continuity conditions must

also be imposed; these are discussed by Connes in [10].

Cyclic homology and cohomology can be defined for any associative

algebra A , and are written HC*(A) and HC (A) respectively.

Cyclic homology has relations with many other areas of mathematics,



A trace on A gives a mep Kg(A) “m1 . However, there are
algebras A for which there exist an operator P , representing
a class in K'(A) , such that the map KQA) “mC given by
Lel Index Pg , is not given by a trace. Thus an appropriate
generalisation of a trace must be defined. An n-trace is an (n+1)-
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and Connes defines a pairing HC (A) a Kq(A) - C [7,81.
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also be imposed; these are discussed by Connes in [101.

Cyclic homology and cohomology can be defined for any associative

algebra A , and are written HC*(A) and HC (A) respectively.

Cyclic homology has relations with many other areas of mathematics,



A trace on A gives a map Kg(A) m It . However, there are
algebras A for which there exist an operator P , representing
a class in  K~A) , such that the map Kg(A) = It given by
[el Index Pe , is not given by a trace. Thus an appropriate
generalisation of a trace must be defined. An n-trace is an (n+1)-
linear functional on A , or equivalently a linear functional on the
tensor product of (n+l1l) copies of A, A®+"

, with the following

additional properties:

(a) t(@da ... aan) =(-1)"~1a ... aan 8 a0)
(b) -riaV B ... a an) - T(a°aala2B..Ban) ... +(-l)n’1lt(a0a. ..aan_1an)
+ (-1)n T(ana°B ... Ban_1) =0 .

These n-traces are then used to define the cyclic cohomology HC (A) ,

and Connes defines a pairing HC (A) B Kg(A) Cc [7.81.

When the algebra has a topology, suitable continuity conditions must

also be imposed; these are discussed by Connes in [10].

Cyclic homology and cohomology can be defined for any associative

algebra A , and are written HC*(A) and HC (A) respectively.

Cyclic homology has relations with many other areas of mathematics,



including algebraic K-theory and homotopy-type invariants of

manifolds. We shall give a few examples.

Lie algebra homology

The algebra of (r*r) matrices over an algebra A becomes a
Lie algebra, denoted g£p(A) , by use of the Lie bracket Cx.y] =
Xy-yx . Taking the direct lim it under the inclusions gfr (A) -Zmgfr+—j(A)
gives the algebra g£(A) . Its Lie algebra homology H*(g£(A)) is a
Hopf algebra, with a comultiplication a induced by the diagonal:
elements x such that a(x) =x 8 1 +1 8 x are called primitives,
and form an algebra. Loday and Quillen [23] prove that for an associative

algebra A over a field of characteristic zero,

HC*.—, (A) i Prim H*(g£(A))

Now the homology of the general linear group GL(A) is also a
Hopf algebra, and its primitive part is isomorohic to rational algebraic
K theory, K*(A) 8 6. Thus the primitive part of H*(gE(A)) is called,
by analogy, additive algebraic K-theory. Loday and Quillen have
investigated a variety of analogies between algebraic K theory and
cyclic homology. Ore such is to consider what form of periodicity

relation might exist for algebraic K-theory emulating the Bott



10 -

periodicity for topological K-theory of Banach algebras: in cyclic

homology there is the periodicity operator S .

Maldhausen's A-space

Waldhausen approaches the problem of calculating the honotopy of
the space of pseudo-isotopies P(M) of a smooth compact manifold M,
by defining a space A(M) such that ~ (AM)AP = («+_2(P(M) ))8Hi (M:dj)
[27]. The definitiion of A(M) is arrived at by using algebraic
K-theory and the Quillen + -construction. Following a result of Dwyer,
Hsiang and Staffeldt [13] which relates the homotopy of A(M) to a lie
algebra homology group, Burghelea [4] has combined this with Loday and

Quillen’s result to prove that

t(AQMD 8 Q) 1 HCX(C(FiM:Q))

where CAMNM:Q) is the differential graded algebra of rational chains
on the loop space of M, with product given by the Pontryagin product.

This work is summarised by Cartier [5].

Equivariant homology

Closely involved in cyclic homology is Connesl category a , an
extension of the simplicial category a ; its definition and the

precise relation will be discussed in Chapter 1. Connes shows [9,



Theorem 10] that the classifying space of A is the classifying
space of the circle , that is, (P° . Jones [17] proves a

relationship between cyclic homology and equivariant cohomology.

Given a space X , the circle acts on MapJS1,X) =LX , the
free loop space, by considering S1 as a multiplicative group, T .
The equivariant cohomology of a space Z with circle action is given
by Hy(zZ) = H*ET *T Z) , where ET is a contractible space on which
T acts freely. The equivariant cohomology groups are modules over
Hj (point), which is isomorphic to the polynomial ring KCu], where

u is an indeterminate of degree 2. Thus by localising the chain

complex with respect to u , a theory Hy( ) may be constructed.

Let S (X) be the singular cochain complex of X : by using the
Alexander Whitney product, it can be made into an associative
differential graded algebra. The cyclic homology of this algebra,
HC*(S X) , is then defined. Cyclic homology is a module over KCu],
where the action of u is given by the periodicity operator
S:HCn(A) » HCn 2 (A) . The chain complex can then be localised with

respect to u to give a theory HC*(X)

The result is then: for a simply connected space X ,

*C_n(S*(X)) S flI(LX)
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If, for example, X is a smooth manifold, these groups are

related to the existence of closed geodesics on X .

The same approach gives a proof of a strengthened version of a
result of Goodwillie [15]. The theorem applies to an associative
topological monoid with unit, G . BG is the classifying space of
G. S*G) , the singular chain complex of G, is an associative
differential graded algebra by using the Eilenberg McLane shuffle
product S*(G) 8 S*(G) # S*(G « G) and the map induced by the product

G<G+ G. Then

HOn(S*(G)) * Hj(LBG)

The Novikov Conjecture

The Novikov conjecture can be reformulated in terms of cyclic
homology: the proof of the conjecture would then follow from as yet

unproved properties of cyclic homology.
First we state the Novikov conjecture:

Given M a smooth closed oriented manifold of dimension 4k , we can
define its signature to be the signature of the symmetric bilinear
form B on rational cohomology given by B(a,8) = <auB.[M]> . This
signature is the analytical index of the signature operator on M

The topological index can be expressed as <L(M),fM]> , where L(M)
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is the total L-genus of M, a homogeneous polynomial in degree 4k

in indeterminates Pj c I—Aﬁ(M:Q)

Let G=it"M) , let f:M >BG be the classifying map of the
universal covering of M, then the Novikov conjecture states that
for all a e H*BG:J!) , <LM) u f*(a),[M]> is an invariant of

oriented homotopy type.

A chern character may also be defined in homology,
ch : K*(X) - H*(X:Q) [33. Recall that DJ defines a class
[Diijl £ Ka(X) . Kasparov shows, using the index theorem, that
ch[Dﬁ] is the Poincare dual of the L-genus, which is written
PL(M) [22, 893. The higher signature is <L(M) u f*(a),[M]>
= <f*(a), L(M) n V> = <f*(a), PL(M)> = <a,f*DL(M)> , so the
Novikov conjecture is implied by the homotopy invariance of f*(DL(M))
Then, since the chern character is a rational isomorphism, f*(PL(M))
is homotopy invariant if and only if f*[D~] is homotopy invariant in

Kq(BG) B 6 .

Kasparov then constructs a map b:Kq(BG) »» Kg(Cr (G)) , where

*

Cp(G) is the reduced C algebra of the group G [defined in [24],
Chapter 7], and shows that ef*[D”"3 is homotopy invariant. Thus

the conjecture is implied by the rational injectivity of s

For an appropriate definition of the continuous cyclic cohomology



of a Banach algebra B , written HC (B) , there is a pairing
between KQ(B) and HC*B) tlO, Chapter 2]. Thus for xeHC (CrG) ,
we have a map Kg(Cr (G)) “ml given by Xx ‘< ,t> . The mep

y #<ey,T> from KQBG) to | then factors through H*BG:C) ,
by the Chern character. The map H*(BG:C) <« ff is given by pairing
with an element ex e H (BG:l) . Thus it seems reasonable to look for
an explicit mgp 8 : HC*C*G) -mH*(BG:(I) , such that the following

diagram commutes:

KqBG) ---*——— > Kqg(C*G)
ch + +  <»x>
H*(BG:C) —--———- > C
< ,0T>

The Novikov conjecture would then by implied by the surjectivity of e



of a Banach algebra B , written HC (B) , there is a pairing

between KQ(B) and HC*{B) [10, Chapter 2]. Thus for xeHC*(C*G)

we have a map Kg(Cr (G)) =1 given by x ‘m<x,x> . The map
y ‘m<By,T> from Kg(BG) to C then factors through H*(BG:t) ,
by the Chern character. The map H*(BG:C) -mC is given by pairing
with an element ex £ H*(BG:l) . Thus it seems reasonable to look for
an explicit map e : HC (CrQ) H (BG:l) , such that the following

diagram commutes:

Kq(BG) — £——— > Kq(C*G)
ch + +  <x>
H*(BG:C) ——-——- > |

< ,0x>

The Novikov conjecture would then by implied by the surjectivity of 0



81. Definitions.

Cyclic homology and cohomology were originally defined for algebras
[7.81. However they can be defined for a wider class of objects, and
since we will need to use examples which are not algebras, we will give

the most general form of the definition [9],

We need first to describe Connes' category A , which is an extension
of the simplicial category A . The objects of A are the same as those
of A, namely ordered sets n*= {0,1, n} , but the morphisms are
generated by order preserving maps and cyclic permutations. More precisely,
A(rnm) = A(E,m) * K(nJ , where K(ji) is the group of cyclic permutations
of m, and the composition law is given by the rules for composition of

generators given below.
The morphisms of A are generated by

a) the face megps 6 e A (n-1, n) , 0si sn, 6 the order

preserving injection whose image does not contain i

b) the degeneracy maps eA((+l, n) , 0si sn, the order

preserving surjection such that both o.() =i and o/i+1) =i
c) the cyclic permutation xn e A (£,nj , rn(i) * i*l » modulo n+l

The morphisms satisfy the usual cosimplicial relations [17, 81]

together with the following cyclic relations:



- 16 -

. 1 N

(i)  Tne6i =6i-1 Tn1 1si”n
™m0 T n

(i) Tne1 =°i-1 Tl lsisn

2
Tn °0 " °n Tl

A cyclic object in a category C is a contravariant functor A C
and a cocyclic object is a covariant functor A #C . Cyclic homology
is defined for all cyclic F-modules, cyclic cohomology for all cocyclic
F-modules. Since we shall use the composition rules for the structure
maps in calculations, we will give explicitly the definition of a cyclic

F-module.

A cyclic F-module E consists of a sequence E(n) of F-modules,
and structure meps di : E(n) -mE(n-1) , s. : E(n) mE(n+1l) ,
t : E(n) E(n) induced by the cyclic morphisms. These satisfy the

following rules for composition:

(1) ai 9y = dj-1 di P<
(2) si sj = sj+l si P'si
(3) di sj = sj-1 di b
=1 = i =j+l

= sj di-l



di *n

d0 *n

Si *n

sOtn =

(6) th4l = 1 .

- 17 -

(O l1sisn

. 1sisn
si-|

tn+l sn

We give two important examples:

Example 1(a)

An associative algebra A with unit over a field

cyclic

F-module A~ , where A”n)

F gives a

is the iterated tensor product

A®(n+") , and the structure maps are given by

di(a0 «eeex an) =

dn(a0 “eee8 an)=

s.(a0 8...B an)=

tn(ao B...B an)=

Example 1(b)

An example of a cyclic

a0 »eee gjai+i *eee* gn

ana0 8 al an-I|

aQ B...B 3] BL B aj+1... B an

an flaOfi ...B an

F-module which is not obtained from an
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algebra is Cn , defined as follows. On(n) = FA(m,n) , the free
F-module generated by A(m,ii) , with the structure naps acting by

composition on the left.

A cocyclic F-module P consists of a sequence P(n) of F-
modules, and structure maps 6" : P(n) eP(n+l) , > P(n) = P(n-1) ,
rn : P(n) “mP(n) , induced by the cyclic morphisms. These satisfy
the usual cosimplicial relations and the cyclic relations (i) - (iii)

given earlier.

The cyclic homology HC*(E) of a cyclic F-module E is defined
to be the homology of a double complex C*(E) , defined as follows

[23]. First we define the maps

b:E(n) - E(n-I)
i =0
N:E(n) - E(n)
D:E(n) - E(n) 0o=i- (-1)ntn
B:E(n) - E(n+1)

These satisfy the relations b* =0, B*=0, bB=-Bb [23,

1.3 and 1.4]. Then the complex C*(E) is



19 -

b +
E(2) = E(0)

E() <—g— E(0)
b +

E(0)

Observe that b is the usual simplicial or Hochschild boundary.

By analogy with the case E = , the complex

. — >E(+1) — > E(n) E(n-1) — > ..

will be called the Hochschild complex and written E* : its homology

will be called the Hochschild homology and written HH*(E)

This complex can be simplified by replacing each column by its
normalisation, that is, by dividing out by the degenerate subcomplex
D* , where D(n) c E(n) is spanned by the image of E(n-I) under the
degeneracy maps. Since B(D(n)) c D(n+1) , B induces a mep on the

normalised complex, given by tn+IsnN . The mep induced by b is

n

E (-1)'d. as before. Since the degenerate subcomplex is acyclic, the
i =0 1

quotient mep from the double complex to its normalisation induces an



isomorphism in homology.

The complex C*(E) can itself be thought of as a simplification
of a double complex D*(E) arising from work of Connes giving an
invariant description of cyclic homology and cohomology T91. We

define the map

b* : E(n) - E(n-I) , b = z (-)'d.

i =0 1

Then the complex D*(E) is

b+ -b'4 b+
E(2) <5- E@2) <—— E@2) <
b+ -b'+ b+
E(1) <—— E@1) < — E(1) <
b+ -b’l b+
EQQ) < —- E0) <~-- EQ0) <

The simplification arises because the alternate columns are
acyclic. A chain homotopy h between the identity map and the zero
map, that is, satisfying (-b’)h + h(-b") =1 , is given by
h = -tn+ : E(n) E(n+1l) . Thus eliminating these columns gives
a complex with the same homology, and this complex is C*(E) [23,

Proposition 1.5].



Given an algebra H without unit, it does not give a cyclic
F-module since there is no action of the degeneracy maps on AGn+" .
However, since the complex D*(E) does not involve degeneracies,
such a double complex may be defined for A , to give HC*(A)

An alternative definition is given by adjoining a unit to A to
obtain an algebra A+ . The reduced cyclic homology of a cyclic
F-module is defined to be the homology of the complex which is obtained
from the normalised complex of C*(E) by replacing E(0) with E(0)/F
We can then define HC*(A) to be the reduced cyclic homology of A+ ,
HC*(A+) ¢ Loday and Quillen prove that the two definitions agree

[23, Proposition 4.21.

The first column of C*(E) is a subcomplex E* of the double
complex. The quotient of C*(E) by E* is equal to the complex
C*(E) itself, after a degree shift of -2 ; we write C*E)[-2]
for the complex such that (C*(E)[-2])n = Cn_2(E) <+ We then have an

exact sequence of chain complexes

0 - E* - C*E) - C*(E)[-2] - O

giving rise to a long exact sequence in homology,

HH(E) -L> HON(E) -i-> HON_2(E) -§-> H_](E)



Note that this sequence includes a periodicity operator
S : HOn(E) % HOn_2(E) » which is given at the chain level by

moving a chain diagonally one column to the left and one row down.

The cyclic cohomology of a cocyclic F-module G is similarly

given as the homology of a double chain complex C (G) . This complex
is

bt bt bt

G2 = G(l) —-— > G(0)

bt bt

6(1) = G(0)

bt

6(0)
where b : G(n) =+ G(n+l) , b= 2z (-1l

i =0 1
2

B :6(n) - G(n-1) , B (+¢-1H)nitn-1.. .(-1)(n 1} )

(an.iTn)(1-(-1)\)

the Hochschild cochain complex G is

.- GM-l) — >G(n) — >G(n+l) — > —-—-



Note that this sequence includes a periodicity operator
S : HOn(E) # HOn_2(E) , which is given at the chain level by

moving a chain diagonally one column to the left and one row down.

The cyclic cohomology of a cocyclic F-module G is similarly

given as the homology of a double chain complex C (G) . This complex
is
b+
G(2) B ®G1) B =50

G(1) —2— > G(0)

b+
0)
where b : G(n) ‘mG(n+l) |, b = z (—l)il6’\
i =0 1
B : G(n) - G(n-1) , B=(1+(-N)n_1t

the Hochschild cochain complex G is

- G(n-l) — >G(h) — >G(nh+1) — > ..
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* *
G is a quotient complex of C (G) . There is a short exact

sequence of cochain complexes
0 - C*(G)[-2] - CX(G) “mG* =0
which gives a long exact sequence in homology
- HCn*2(G) — > HN(G) — > H(G) — > HOn_1(G) -

Here we have a periodicity operator S : HCn(G) “mHCn+2(G) , which
is given at the cochain level by moving a cochain diagonally one column

to the right and one row up.

Thus HC (A) is a module over the polynomial ring F[e] ,
where e acts by the periodicity operator and has degree 2 . As
explained in the Introduction, it is appropriate to regard F[e] as
the natural coefficients, and to look for the F[e>module structure
at the chain level. This is given by expressing C (G) as the graded
tensor product G*ip FCe] : so an element of Cn(G) is a sum

z9n_2i * 91 « where 9n24 £ 6(n—21) . The boundary is b + Be ;

that is.

(b +Be)(g i en) =bg 0 en + Bg fi entl
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We now wish to define a homology theory HC*( ) , which will
be dual to cyclic homology over FTel . Let D be the graded
integral domain F[e3, where here e has degree -2 . Define the

tensor product 8 of graded F-modules L and M by using the

direct product rather than the direct sum,

n L, BM,
i+j=n | J
Then for a cyclic F-module E , define HC*([E) to be the homology

of the complex C*(E) = E* Bp D, with boundary b + Be . Thus an

element of OCn(E) is a formal power series ze ~ 8 0 where

en+t2i £ E+2i)
Let K be the graded field of fractions of D, F[e,e

and set C*(E) = (E* flp K, b + Be)

C*(E)
Finally, set C*E) = — , C*(E) = E* 8 FCe.e'1] ,
eC*(E) ©FCHt
and we obtain the cyclic homology complex as defined before, with the
action of e inducing the periodicity operator.

Define the homology theories HC*(E) = H*(C*(E)) , HC*(E) = H*(C(E))

Then the short exact sequence of chain complexes
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0 - OC—~(E) - C*(E) - C*(E)/eCX(E) - O

induces a long exact sequence of homology theories

eee HC—+2(E) vHON(E) - HCn(E) -?-> HC—1(E) - ...

This can be related to the exact sequences involving Hochschild

homology by means of a braid:

We can also express the other theories explicitly in terms of

HC* . Given a D-module M, let o be the localisation at the
2

multiplicative subset {1,6,9 , .. > .

Lenina 1.1.

(a) C*(E) = 9-Ic;(E)



- 2

(b) HC*E) =e’1HQE)

Proof

(b) follows since taking homology commutes with localisation. [

lenma 1.2.

(@) C*(E) = QE) 8d K/eD

(b) There is a natural short exact sequence

0 - [HQE) 8d K/eDIn HN(E) - [TorD(HC*(E) ,K/eD) -0 .

Proof

(a) K/eD is generated over F by {e n, na0O} , and the

isomorphism is given on the generators by

( z a Be') 8e'nm | a. 8e"0
Osi«» Osisn

(b) This then follows by standard homological algebra, since D

is ifruicjid ideal domain [26, Theorem 5.2.8. p.222]. |

Lenina 1.3.

Let E be a cocyclic F-module, E the dual cyclic F-module.
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(@ C;(E) = Horn"C (E),D)

(b) There is a natural short exact sequence

0 - [ExtD(HC*(E),D)In+l - HC—E) + [HomD(HC*(E),D)In - O .

Proof

If A and B are graded D-modules, HomJJ(A.B) consists of

families of homomorphisms Am -« Bmn . We have

Homp[0] (E O FCel, F[el) = Horry(E ,F[O])

An element of Homp(E ,F[e]) consists of a family of homomorphi shs
fm: Em- F[elmn ; then f™ is only non zero if mn is even,
let mn =2p . Let g" be the element of HEfl given by the mep
EnmF . Then the family is equivalent to the power series

I 92p+tn ® e3 « Then taking e to have degree -2 , this is an element
of (E a FCO])n = (c;(E))n

(b) follows by standard homological algebra [26, Theorem 5.5.3,

p.243]. O



(@) C’(E) = Homn™C (E),D)

(b) There is a natural short exact sequence

0 - [EXtD(HC*(E),D)]Jml - HC—E) - [HomD(HC*(E),D)]JR - O

Proof

If A and B are graded D-modules, Hom”™A.B) consists of

families of homomorphisms Am % Bmn . W have

H°nFro1 (E 8 F[01, F[6]) * Hory (E

An element of Homp(E ,F[e]) consists of a family of homomorphisms
f'1: Bm ‘mF[e]ni'n ; then fm is only non zero if mn is even,
let mn =2p . Let g" be the element of Em given by the map
ET™aF . Then the family is equivalent to the power series

E"2p+th 8 eP ° Then taking e to have degree -2 , this is an element
Oof (E a F[e])n = (C.(E))n

(b) follows by standard homological algebra [26, Theorem 5.5.3,
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We have discussed the structure of HC*(E) as a D-module:
as the F-dual of the D-module HC (E) , it also has a comodule
structure over the coalgebra D . We shall now give the definition
of these terms, from [14]. We will rename the coalgebra D as G,

for clarity.

A coalgebra r over the ring F consists of an F-module r
together with a pair of morphisms e:r *F , 5:ir +r Oor , such

that the following equations hold:

(a) (e alr)e =1Ir =(Ir de)6

® ® a ir)e = (ir a 6)6

A r -comodule A is an F-module with a structure morphism

V : A+ ABpr satisfying the following:

(a) (iIAae) =iA

(b) (v aip) = (iA a 6)

The dual of F[e] has a coalgebra structure given as follows:
It is generated as an F-module by ~ » and the morphisms e

and 6 are given by

[00]
e(i=o Vi) =4

4M4) = T Y- Jay.
1
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Then C*(E) = E* Bp G is a6-comodule, with structure morphisms

v=1P 0%

Any G-comodule A is also a D-module, with an action defined

k
as follows. Given meA , let vim) =r Smi y, . Then using
K

condition (b) , (Vv 0O lIg)v = (@A™ 0 6)v , we obtain Si(Skm) = Si+k(m)
Thus e™m) =s’m is a well defined action of D. On C*E) ,

i
since v(a. 0y.) = z a. 0 y. .0y. , the e-action is given by
' ' j=Q ' BN J

eJ@8 )=a0y”™j =+ This agrees with the D-module structure

already obtained by identifying C*(E) with E*0 3~—1
eF[el



|2. Products

Given two cyclic F-modules P and Q, we define their product
PXQ by (¢ x Q)n) =P(n) 8 Q(n) , with the structure maps acting
diagonally. Our aim is then to define a product HC*(P) 8D HC—HQ) -“m
HC*(P x Q , by constructing a D-module chain map,

f : C*(P) 8d C*(Q) #C*(P x Q . The same methods enable us to
construct a D-module chain map g : C*P x Q -mC*(P) 8" C*(Q)
This gives, by duality, a product in cyclic cohomology,

HC*(P) 8D HC*(Q) - HC*(P x q)

The method used is a version of the acyclic models method; we
show that it is sufficient to construct a product on certain "universal
examples" or models. When this method is used to construct products in
simplicial homology, simplices are the models used; here we use the
cyclic objects Cn , where Cn(m) = FA(in,n) [Example 1.1]. We will
refer to Cn as the models for cyclic homology. These have the

appropriate universal property.

Llemma 2.1.

Let P be a cyclic F-module, x an element of P(n) , then
there exists a unique map of cyclic F-modules <x : Ch P such that

*A(An) =x , where in is the identity morphism in Cn(n)



Proof

Given y e A(nm) , let $x(y) =y*x . where y* s the
map P(n) # P(m) induced by the cyclic morphism y . Then extend

throughout FA(h,m) by linearity. |

Given Lemma 2.1, once we have defined f(in 8 im) for in £ Cn(n) ,
i e On(m) , naturality forces the definition of f on a general

element : for xc P(n) , y e Qm , define f(x Sy) = (*x08y)f(in0im)

In order to make it clear which of the complexes is being considered,
we will write elements of (P * Q)(n) , lying in C*P « Q , in the
form (xn,yn) , while writing elements of P(r) B Q(s) , lying in

C~(P) Bq C*(Q) , in the usual form xf | y$ .

In the remainder of this chapter, we shall construct a D-module
chain mp f : C*P) fIDC' (Q) =C*(P * Q . Since it is a D-module

map, it may be written z f. ek , where fn is a degree-preserving
k K

chain mep P* 0 Q* ¢« (P » Q)* . Then, since the Hochschild complex is
a quotient of the cyclic homology chain complex, P* B Q* is a quotient
of C*P) iDC*¥(Q) , and (P * Q)* is a quotient of C*P * Q)

The mep f will fit into the following commutative diagram:

C*(P) ODC~Q) -1 —>QP *Q

fo +

prOQ  —— > (P xQF



We will refer to f as a coextension of fg

We will prove the following:

Theorem A

Given any natural chain equivalence fg : Pt 8 Q*+ (P * Q)* «

such that in degree 0 , fg(Xg 8 yQ) = ’ there is a coextension

to a natural D-module chain mep f : C*(P) 8g C*(Q) = C*(P * Q

Theorem B

Given any natural chain equivalence gg : P » Q* + Pt 8 @ ,

such that in degree 0 , 9o(xo,yo® =x0 yO0 ’ tflere is a coextension

to a natural D-module chain mep g : C*(P « Q = C*(P) 8g C*(Q)

Theorem C

(i) The natural D-module chain mep f , with the conditions on

fg given in Theorem A, is a chain equivalence.

(ii) The natural D-module chain mep g , with the conditions on

gg given in Theorem B, is a chain equivalence.

Theorem D

(i) The natural chain equivalence f , with the conditions on

fg given in Theorem A, is unique up to chain homotopy.



(ii) The natural chain equivalence g , with the conditions on

given in Theorem B, is unique up to chain homotopy.

Theorem E

(i) The product in cyclic homology induced by f is associative

and graded commutative.

(ii) The product in cyclic cohomology induced by g is

associative and graded commutative.

First we need to calculate the homology of the models, which are
in fact not acyclic: this means that the acyclic models method will
be supplemented by direct calculation in the low degrees where the

homology is non zero.

Lemma 2.2.

(a) The Hochschild homology of the models i& given by

H—|n(Ck) =F if n=0 or 1
=0 otherwise
(b) HCH&) = F if n=1

0 otherwise.



Proof

(a) Define the cyclic sets Am by Am(n) = A(n,m) ; then an is
the free cyclic F-module generated by this cyclic set. Since any
cyclic set is a fortiori a simplicial set, it has a geometrical

realisation. The Hochschild homology of Ck will then be given by

the simplicial homology of the realisation,

Ixk] = U xk(n) *
n (x,e*y) = (e*x.y)

where e* is a map induced by any simplicial morphism. We will show
that |Ak| is homeomorphic to SI l<(<A . This is proved in [121; we

follow the proof given in [171.
First we observe that the simplicial set A is generated using
the operations di , S, and tm on the identity map i.K in A (k) ,

where these operations satisfy the usual cyclic relations.

k
We then construct a simplicial set i , by giving a triangulation
of Rx arr . Let (v.)._n . be the vertices of Ak . Let the
vertices of the triangulation be (i,vr) , where i is an integer.

The vertices are given an ordering by (i,vr) < (j,vs) if either

i <j or i =) and r <s . The qg-simplices of the triangulation



(i.v ), (i,Vv )... (i,v ), (i+l,v ) ... (i + 1, v
rs rs+l rq 0 rs-1

where rg <rj ... <r , or of the type

(i.v ), (i.v ).. (i,v ), (A+1,v ) ... (i+1, v )
rs rs+l rq-I ro rs

where rQ<r} .. <rg-l

Then Ek is the simplicial set generated by this triangulation

of IR x Ak .

We define an operation Bg on the q simplices of £k as
follows. |If the last vertex of o is (i,vm) , then the vertices
of BCP are the same as those of o , except that (i,v ) s
replaced by (1-1,v ) , which then becomes the first vertex of 8qo .

It can be checked that 8q satisfies

(1)

(i) si eq = Bg+l Si-1

SO Sq = B+l Sq



where cL and are the usual face and degeneracy operations.

That is, Bg satisfies all of the usual cyclic relations except

Now note that any (k+1) simplex of £ can be expressed as

3|(+| g ['k s+ where i.k = {0} x ak , and that every simplex in the

triangulation is a face of such a simplex. Thus the simplicial set

(

z" is generated using the operations d,, Sj and 8Q on the simplex

i., , Wwhere dl. ,SJ. and 6q satisfy all the cyclic relations except

K
>V' - ''m

Thus Ak is obtained from £k by identifying B"l and 1 .
Since 8qg+M translates a g-simplex by -1 , |xk]| is obtained from
|£k| =IR x ak by identifying any two points whose F coordinates

differ by an integer. Thus |xk| is homeomorphic to SI I§<a

k
Note that the non-degenerate (k+1) simplices of Je | are

i k+1
{8k + 1V k 8k+Isk+I1-iik * «” 6k+l so V * corresponding in

+
|Akl to {t~rs kil e the non-degenerate terms

which occur in the operator B.
e.g. k =2

-
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The proof of part (b) is obtained by substituting this result

k
for HH,(C ) in the long exact sequence relating HC* and HH* . @O
We now prove the existence of the chain map.

Lemma 2.3.
There exists a natural D-module chain map
f : C*(Ck) C*(C2) C*(Ck x C*) which coextends the simplicial

shuffle product.

Proof

We shall refer to the boundary in both complexes as b + Be
The complex C*(Ck) BQ C*(C*) is naturally isomorphic to C B C* B D
C*(C x c ) is isomorphic to (C x C)* fi D. W are constructing a

D-module map, so we write f =Efk e , where fk is a mep

C 8p C* » (Ck x C4)* which raises degree by 2k . Since the shuffle
product descends to the normalised complexes, we will work with these

for convenience.

In order for f to be a chain map we require

(b + eB)(e fkek)(xfly) = (e fkek)(b + Be)(xfly)



¥
Equating coefficients of o , this becomes

w bfk = fkb - Bfk-1 +V i B

where f ~ is taken to be 0 . W use (i) to define fk(x 8Yy)
inductively, as follows. Assume by the inductive hypothesis that
fj is defined for all i < k . W construct fk(x O0y) by induction
on the degree of x 8y . By naturality, it is sufficient to construct

f on the terms i 0 i_ . W assume f'k is defined for all elements

K n m
of degree <qgq , and wish to define (in0im) where nHm=gq .

The chain Z = (fkb - Bfk» + fk | B)(2 1l i ) is then well-defined
We check, using equation (i) and the relation bB=-Bb, that bz =0
bz = C(bfk)b + B(bfk_1) + (bfk_1)B](in®im)

[(fkb-Bfk-I+fk-IB)b + B(fk-Ib-Bfk-2+fk-2B)

+ (fk-Ib-Bfk-2+fk-2B)B](Inflim)

= [-Bfk-1b—fk-I1bB+Bfk - Ib+Bfk-2B+fk - 1bB-Bfk-2B] (i nflim)

=0

The Hochschild homology of (Cn « GQm) is obtained from the Kunneth
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theorem for simplicial complexes, and Lemma 2.2.

HK(Cn x Qn) = F if k=02

=F» F if k=1

1
o

otherwise.

Thus, since the degree of Z = (n+m) + 2k - 1 , we have, since bZ =0 ,
W such that Z =bwW , provided that (+m) + 2k -1 >2 , and we can
then define fk(i Bi ) =W. The cases where n+m+2k-1s2 must
be dealt with directly. Since we have already chosen f* satisfying

(i), this leaves the construction of f* on elements of degree 0 or 1 .

(@) fl(iqgfi iQ : This must satisfy

bf1(10 8 = (-Bfo + foB” "0 8

' Miso”o,tiso’o + N iso™o,so’0™ + “so’0,tisoioN

This expression contains all three non-degenerate 1-simplices in

|onxoI :glxgl

ting * (KWL -W*=-)



- 40 -

We see that either of the non-degenerate 2-simplices,

(t2S1s0i0*tls1s0i0” and (t2sl1s0i0,t2sl1s0i0) is a Possible

choice for f (iQBiQ) . We choose f+(iQB iQ = (t2s1sQ Q.t%s]sQiO)
(b) fi(ig B in) : This must satisfy

bf,(iG®i]) = (-Bfn + fnB + f1b)(in8il)

f(sisoiQ" 2SI *s1sQi0,t2501 1" +725150i0"S0i 1A

"(t281 0i0,Sli TMM2sl Ni0, 281 i 1M+7t2S1 S010, 25011

t 2SI S0i 0, t2S] SOdo1~ ~t2S1 Di0*t2S1 OdI 113 *

+

Consider the non-degenerate 3-simplices in |a”xx = X X

Note that the pair of terms coming from Bf* have a common boundary,
as do the pair from fO(Bio 8 1j) « and the Pair from fo”~O 8 Bii) »
and that these three "squares" form an open prism whose boundary is
fA(iQB bi.j) , That is, writing t* for 72S1S0"0 * the above

expression consists of the following simplices:



UA t

(i,

cll t<

-a

o~ rvUu~n ci, t,s.<i*-ii)

Cfc* t1S*.s.4%«>

m«Vi
W*«;

O *iN**) *

ia .tis*i*»)

r vin

Thusthe terms of (fB - BfQ + f1b)(iQ a i~) form the boundary

of a solid prism, and give its decomposition into three 3-simplices:

"t 3s2sl s0i 0’ t3sl s0i In H ) - (t 2,t2sQ1)

+ (t2»s0’1) " ~t2,t2sls0dl*1~

(t3s2sl s0i 0, t35250i In > (t2’t28| 1~'At2,t2501n

+ (/\2’/\2%/\1/\ ” 21 l 1

At 35251 s0i 0*t3s2sl i 14 b> (1»t2slil)*~t2,t2sl 1A

+ (t2,t]s1sQd0i 1) - (t~tg Sjij)

L)
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so fi170 8 M = (t3S2S] S0i0,t3S| SO1IN + ~t3S2S| S0i0,t3S2S011 ~

+ (t3s2sIsOiO, 13828l i 10 *

(©) 8 i0) : This must satisfy

bfl (ii®i0)

(fOB * Bfo + flb)(il8i0)

2
i ~ A A
A boS| A AISONT A +"SO’\l»t2) (siii.t2)-(tgSNiM»t2)

+ (t2soil ’t2~ + ~t28Isada | t7) " (N2S1sON AL A

This is the boundary of a prism in [x* « xB| , Wwith a decomposition

into three 3-simplices, whose boundaries are:

"t 3sls011*

(t3s2s0i | *

(t3s2slir

So we have
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Collecting the formulae together, and applying them to arbitrary

zero and one dimensional classes, we have

fIrx0 * V. = (t2sls0x0’t2sl soyo"

f1(x0 vyl = ’~t3S2S| Dx0,t3SI SOyl ~ + At 3S2S| SOX0’ t 3S2S0Oy i

+ (t3s2s1s0x0,t3s2sly 1)

AL(X1  yor = "At3S2SIXI*t3S2SI SO + At3S2S0XI |, t3S2SI SOy

+ ~t3SI S0X1,t3S2Sl soyIn

If we are working in the non-normalised complex, B contains
degenerate terms, and we have to modify the formulae by adding
degenerate terms, as follows:
add to f.](xOay0) the term (s3SgXg” s q)

add to f4(x-j8yq) the terms (S2s™"X" »s2s-jsyq) + (shsgX”™,s2s q)

+

(sOt 2S0XI ,SOt2S| SOyO°

add to f] (xo®y-]) terms  (s2s"SQyQ,s2s”y”N) + N

+

~sOt 2SI SOxO,s0t2s0y 1N



Lemma 2.4.
Any natural chain equivalence $g : (Ck)* 8 (C*)* ‘m(Ck x c*)*

such that <0(xo ® Yq) = (xO0’y0® * can be coextended to a natural
D-module chain map $ : C*(Ck) 8g C*(C8) » C*(Ck x c4)

Proof

By the same argument by acyclic models as in the previous lemma,
it is sufficient to construct 4i(x 8 y) , where the degree of x 8y
is 0 or 1. Given any two natural chain equivalences
fo*0 : E* ®G* %3 (E * G)* , where E and G are simplicial
F-modules, and fg and <g satisfy the given condition, there is a
chain homotopy h between them, bh + hb =<4Q - fp - Here fg is

the shuffle product.

We wish to construct 4i(Xg 8 yQ) such that

b*I<x0 8V ="' % (X0 8 yO} + *0OB(X0 8 y0}

- B(fQ+bh+hb)(x08y0) + (fO+bh+hb)B(x@y0)

(-Bf0+f0OB)(x08y0) + [bBh-Bhb+bhB-hBb](x08y0)

bf~(xg8yg) + b(Bh+hB)(Xg8y0) .

So we can take ~(XgByg) = fAXgByg) + (Bh+hB)(Xg8y0)



- 45

Then on a chain x fty of degree 1, we require ~ to satisfy

b& (xBy) = (-B*0 + $B + “"bHxfly)

[-B(fO+bh+hb) + (fQtbh+hb)B + (fABh+hBJbDfxfly)

[(-BfQ+fOB+f*b) + bBh-Bhb+bhB-hBb+Bhb+hBb](xfly)

Cbfl + b(Bh+hB)](xfly)
So we can take $.j(xfly) = (f* + Bh+ hB)(x fly). O

We will consider now the construction of a chain inverse for f
So we construct a natural D-module chain map g:C*(Ck><C)

< (c k) ad c;(c£)

Lenma 2.5.

L kN
There exists a natural D-module chain mep g:C*(C *C )
— k — O
o C*(C ) fID C*(C ) which coextends the Alexander-Whitney product.

Proof

¥
Write g =z g e . In order for g to be a chain map we require
k k

(i) bgk = -Bgk_1 + g~B + gkb

As in Lemma 2.3, we construct g by the method of acyclic models.
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We can use equation (i) to construct 9k(in 8 im) by induction on

k and on ntm , provided that we can start the induction by con-
structing g-|(i Qio) and .

We require:

bgl (i0*i0) = (gOB * Bg0Xi0*i0)
= + 108tisolo + soa0flio + 10as0i04

+Vo8io+ i00tl1s0L0 + i0as0101

So we can take g”ig.ig) =0 .
We require:
bgl(il,il) = (gnB - Bga + Q’\ﬁiT, !.—r)
= IdiiiBt2soar ilstlil+V | sl1+t2Slsiad0sr dl 118s0V |

soti liadoli " tl 11fls0d01l ]

-[ti s0dO1i 8 il +s0dO1li ail +dOiiat2s01lr dO1l 8sOtl 1i +t2s111Bd1i ]

+ sOtl 118dli1 + 118tl sodoi 1J

= b[i 18t2s0i 1-t2s1i 18i1*t1i18s0t1lil - SQ t~fli 1]

2
So we can take g~/iN.in) =C178t2s0i 1-t2s1i”8i1-tj iN8sOt™M-Sg” i118i1] . O
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There is an exact analogue of Lemma 2.4; any natural chain
equivalence YO:(Ck*C*)* - Ck B C* , such that YO(Xp,y0) =xQ 8yQ,
can be coextended to a natural D-module chain nap y:C*(l(:/*C(): ) =
C*(Ck) Bp C*(C*) . As before we take =9 + (Bh+hB) to start

the induction.

We now wish to show that the maps f and g are chain equivalences.

First we prove the following lemma.

Lenma 2.6.

Let fp be a natural chain equivalence (Ck)* fi (C5* =% (Ck x Ce)*
such that fp(x0By0) = (x0,y0) , gQ be a natural chain equivalence
(CkxCa)* - (Ck) B (CL)* such that g0(Xp,y0) = xQByQ . Let f be
a natural coextension of fQ , g a natural coextension of gQ . Let
emfg - 1 , a natural chain map, \;:C{(CkxCi) # C*(CkxC*) . Then

there exists a natural D-module chain map J = rjne ,

J : C*(CkxC*) = C*(CkxCl) , such that =0 and J is chain homo-
topic to W/
Proof

¥
Write ¥ = BJke ; then > = fpgQ - 1 . By the Eilenberg-
Zilber theorem, there exists a chain homotopy h:(CkaC)* > (CkaI’)*

such that i(p =fQp - 1 =bh + hb .



To construct J , set jQ=0 , - (Bh+hB) , Jn ="

for all n>1. Then 4 -J = G{k-jk:ek

=*0 + [bi - ji 2D

= bh+ hb + (Bh +hB)e

(b+ Be)h + h(b + Be)

=3h + h3
So a chain homotopy between and J is given by h , where
h(ek 0 (x,y)) = ek 0 h(x,y)

In order toprove that J is achain map, it is sufficient to
prove that - J isa chainmap, since 4 is givento be achain
map. That is, we need to show that 3(ip-J) = ( J)3 . However,
3 (ip9B) =3@Bh +h3) =3n3 = (Bh + h3)3 = (-3 . |

The Eilenberg-Zilber theorem can be used again to prove an exact
analogue of Lemma 2.6. Given g and f satisfying the conditions of
Lemma 2.6, there is a natural D-module chain map K = Ek..e’ :C*(Ck)0DC*(CE)
iC;_(Ck) 0Q C*_(Cn) , such that kQ =0 and K is chain homotopic to

gf - 1.

We now prove that these meps are indeed chain equivalences.
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Lenina 2.7.
(1) Any natural D-module chain nap f:C*(Ck) C*(C*) »
C*(C *C) , which coextends a natural chain equivalence

fo:C* ® " (C x C)* such that "g(xg ®"0" = (xg»yQ) * ~ a

chain equivalence.

k o]
(ii) Any natural D-module chain nap g:C*(C x C ) “m
k .
C*(C ) C*(Cp) , which coextends a natural chain equivalence
gn:(Ck * C*)* “mCk B C* such that g0(x0,y0) =x, 8vy, , is a chain

equivalence.

Proof

Let * =gf -1 ; by Lenna 2.6, $ is chain homotopic to $ ,
where =0 . Let e=fg -1 ; again, e is chain homotopic to
X , where xQ =0 . Thus we wish to construct chain homotopies h

and j such that 3h +h3 =* , 3] +j3 =x

k
We will look for a mgp h of the form h(e B x By) =

’I’ ké" Bh .(x By) ; note that we do not require h to be a
i =0 k*1

D-module map. Equating e-coefficients in the equation 3h + ha = $ ,

we obtain the following:

(1) bhk,j + hk.j b + Bhk,j-1 + hk+1,j—1 B * *
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We rewrite this as

) oy i= kg b T T e =1 B)

where hk is taken to be 0 .

We wish to construct h. .(x 8 y) by induction, using equation
(2). First, hk 0(xQ 8 yQ is defined, then equation (2) can be used
to construct hk g(x 8 y) by induction on the degree of x 8y . Next,
equation (2) is used to define hk j(xQ8 yg) by induction on | ,
and finally to define h.K»J.(x 8y) for all x 8y by induction on

the degree of x 8y , and on j

Thus under the inductive hypothesis that thX(X 8y) s
defined for all k , forall t <j , and for all x 8y of degree
<(q , the right hand side of equation (2), Z , is defined on
i B > where n+ m=o0 . W now check that this is a cycle for b.
Applying b, and using the relations bB = -Bb and b$j + Bty i =

-B+ *.b , we obtain
J 1 J

bZ=b*j ' (bhk,j>b + B (bhk,j-I> * <bhk+,j-1>B

b<j + [-*j+hk,jb+Bhk,j- 1+hk+Ifj_iB]b + Br<*'j-rhk,,j- ib-Bhk,j-2

" hk+1,j-2B] + G<p-1+hk+1,j- Ib + Bhk+1,j-2 + hk+2,j-2BIB

= Cb<pj—<(jb+B4j_1-j 1B] + Bhk J _1b - - Bhk J . 1b

" Bhk+1,j-2B + hk+1,j- IbB + Bhk+1,j-2B

=0



Thus, since bz =0, Z =bN and hK»J.(x 8y) =W, provided
that the degree of bh. .(x By) is 2 3 . Thus we need to construct
directly hk Qx 8y) , for x 8y of degree s 2, and hk ~"Xg 8 yQ)

These must satisfy the equations

(i) (bhk 0 + hk ob)(x 9y) =0 , where degree (x 8y) 5 2 .

(i1) (bhk,l+hk,Ib + Bhk,0+hk+l ,0BA e 8 "0 8 ='M9 8’08~

Now *1(ek8i0Bi0) lies in ekl 8 [(C°)* 8 (C°)*](2) ; HH2(C°8C®)
is isomorphic to F , with generating cycle Big 8 Big . So

4’\(ek 8 ig 8 ig) is a linear combination of ek+1 8 Big 8 Big

and a hochschild boundary, which can be dealt with in the term
bhk .je 6 ig 8 ig) . Thus it is sufficient to construct hk Q

satisfying the following equations:

(i) (bhk,0 + hk,0b)(x 8 >) =0

If k+1
(iii) (BhkfO + \ +1>0B)(6 8W =6 8 Bi0 8 Big

A solution for this is given by hk Q(ek 8 x 8y) =kek 8 Bx 8y



We check (i); let a = (-1)de9ree x

(bhk g+h™ gb)(ekBx8y) = b(kek8Bx8y) + hk g(ek8bx8y) + aek8x8by)

kek8bBx8y - akek8Bx8by + kek8BbxBy

+ ake 8BxBby

We check(iii):

<Bhk,o+hk+i, 0 B><ekflioBic>

kB(ekfiBio8 io)+hk+i, o (ek+I8Bioflio+ek+I8iofIBio)

-kek+18Bi08Big + (k+1)ek+1BBigBBig

ek+l 8 BigBBig

We now construct the chain homotopy j such that 3j +ja =X

Again we look for a mep of the form j(e k8(x,y)) = | ek+i 8j. .(x,y)
i =0

The construction by induction goes through as above, again provided that

we can construct jk Q to satisfy the following equations:

(iv) (b-ik,0 + jk,0b)(ek 8 =0 » for xiy such that
degree x8y s 2 .



53 -

(v) (Bjk,0 + ~k+1 OB~ 0k8MO'iO~ = 9k 1 8 fo(BIO 8 BiG> *

Here fg(Big 8 Big) is the generating cycle for the Hochschild

homology of (C® x C®) in degree 2 . These equations are satisfied

by setting jk o =f0 bk 0 90 * Then» usin9 the equations bfQ =fQ ,

bgQ=ggb and bhk Q+ hk gb =0 , we check equation (iv):

b(f0 hk,090) + (fO hk,090"b = fO(bhk,0)90 + fO hk,090b

-f0 hk,0b90 + f0O hk,090b

= —f0 hk,090b + fO hk,090b

=0

k k
To check (v), we calculate jk Qe 8 (ig.ig)) and ~k,0"9 8 (i -])

explicitly:

Jk,(/0k 8 ke 8V Bi0O8V

jk,O(Ok 8 <ll*11)) " kOk 8 tfo(BV | 8 il) + fO(Bil 8 dlV 3
Thus Bjk,0(ek 8 (10*10)) = kek+1 8 B(fO(Bi0 8 V *

L.1 2 .
ke 8 (tgS~tgSgJit-iSglg.ig)



k+1 2 . 2
= ke B((t2sisoio,t2slso’0)“(t2slsO O,t2sl sGO"

= —kek+l 8 fO(Bi0O 8 Bi0)

Is ¥xI
'mk+.0 B9 8 (iO»iO> = jk+1,0n9 8 (BV BIC>

(k+1)ek+18[fO(BdOBi08Bi0)+f0(B2i 08d1Bi0)]

(k+1)ek+l 8 fO(Bi0 8 BiQ)

since do”IsO=7"» so BdoBIO =BIO’

k k+1
Thus (Bjkio+ k+l ,0B~9 8(i0,i0™~ =9 8 fO(Bi0O8Bi0) * as re(luired-

O
Lenma 2.8.
. k — n

Any two natural D-module chain maps from C*(C )8gC*(C ) -»

k o
C(C x C ) , which are coextensions of natural chain equivalences
satisfying the conditions of Lemma 2.6, differ by a chain homotopy.
Proof

The proof is standard, but we give it for completeness. Given
two such maps, f and 4 , we wish to show f - 4 is chain homotopic

to zero. However, if k is the chain homotopy between 4g - 1 and O ,
h the chain homotopy between yf -1 and 0 , where g is a chain

inverse for 4>y a chain inverse for f ,
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—y
A
1

4f - 1) - (X + k3f

(3 + h3) - (3k + k3)f

<ch - kf) + (§h - kf)s

so $h - kf is the required chain homotopy.

There is an obvious analogue of this lemma:

Lemma 2.9.

Any two natural D-module chain maps from C*(C" * Cf) to
C*(Ck x C') , which are coextension of natural chain equivalences

satisfying the conditions of Lemma 2.6, differ by a chain homotopy.

Proof

As for Lemma 2.8.

Corollary 2.10.

The product in  HC*( ) induced by f is graded commutative.

Proof

Consider the diagram

c;(p) abc*(q) -*> ci(p * a)
S+ *T

CX(Q) 8d Ci(P) -t—>QQ x P)



where S(a 8 b) = (-1)de9ree a degree b b Ba ~ T(c,d) = (d,c)

In order to show that the product is graded commutative up to chain
homotopy, we need to show that there is a chain homotopy h such
that Tf - fS =3 + ha . However, Tf - fS =T(f-TfS) , and

TfS is an alternative choice of product C*(P) Bp C*(Q) = C*(PxQ) ,

so by Lemma 2.8, there is a chain homotopy | such that

f -TfS maj +Ja . Then Tf -fS = a(Tj) + (Tj)a

Corollary 2.11.

The product induced in cyclic cohomology by g is graded

commutative.

Proof

As in Corollary 2.10, the existence of a chain homotopy k such

that dT - Sg = 3k + k3 follows from Lenma 2.9. O

Lemma 2.12.

The product f is associative.

Proof

To show that the product is associative, we need to construct a

chain homotopy h such that

f(f(xfiy)fiz) - f(x fi f(yBz)) = (3h+h3)(xByflz)
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We will look for a chain homotopy of the form h = Ehke
s
Substituting for this, and for f =re f* , in the equation, and
writing  f..(f~fil) (xiy8z) for f~(fj (x8y)8z) , we obtain on

equating coefficients, the equation
(i) bhk = -(hkb+Bhk_i+hk_iB) + iy k.i(fiai) -¢ fu Il <V

We wish to construct hk by induction on k and the degree of
x By fl z . Assume (i) holds for j <k , and for elements of
degree <m . Let the degree of x 8y fl z equal m ; then the
right hand side of (i) is defined, let it be called Z . W check

bz =0 :

R
1

—(bhk)b+B(bhk_1)-(bhk_1)B + J(bfk_i ){fl«l) - E(bfR_~)(1Bf1)

[(\ b+Bhk-1+hk-1B - ffk-i(fi81)b + Efk-i(1Bfi>b3

+ [B(~hk-Ib-Bhk-2*hk-2B + fk—1-1<fiBI> ¢ Ifk-I-i(1Bfi) ]
- [<hk-Ib+Bhk-2+hk-2B * 5fk-I-i(fiB1l) + ~k-I-i*18"
+ f(fk-ib + V 1= iB - Bfk-I-i)(fi81)

:(fk.,b * Vi- iB - BV 1-i)(1Bfi)
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[Bh 1b-hk_1bB-Bhk_1b-Bhk_2B + h~AbB + Bhk_2BI

+ Ifk-ib<fi81) ' Efk-ib<l8fi> + ~k-i-iB(fi8l)- ~k-1-IB(18fi)
—1f~AfA 1jb  + ~ k_i(18fi )b’ Efk-1-1 (fi81)B + Mk-i-1 dafi >B
= Zfk.i(bf.«l) - zfAOBbf.) + rfk.1.1(Bflil) - zfAO BB f.)
- *V < fib81l> + - Efk_i_1(f1BBI) - E*k_i 4(1@HB)
=0 .

Now since we are constructing h in the model complex C*C*cxC™Cm) ,
where the columns have Hochschild homology equal to the simplicial
homology of |C" x x cm| = X X X X X , and are
thus acyclic in degrees greater than 3 , the equation bZ =0 implies
Z = bV provided that the degree of Z is strictly greater than 3 .
So we need to construct hk directly when k =0 , and on elements of
degree 0 and 1 for k =1 . W do so for the product constructed

in Lemma 2.3.

We now show that the shuffle product is associative at the chain
level, so we can take hg =0 . We are considering "shuffles", order-
preserving maps n n i]i+ mim , which are bijections on

(n_ -{0} j1 (M -{0}) . Hence for associativity, it is sufficient to
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show that a product of shuffles (jiJdt m)£ £~ n +m+ p restricts

to a shuffle mJLR- m#p , and thus occurs as a product of shuffles

£XL (MJIE) ‘mn+m+p .

(a)

We now consider the construction of M

h-(iocaioaiQ) . Write 1t for .. .Salqg . Recall
2

fl(i0ai0) =(V V =« V W = (i0“i0) « Then we have

fQ(fi (loaio) ® "o = (t2°t2°1°
fo(iOafl(ioaio)> = (t2*t2)
W W V  0i0) = (t2*t2*t2)

f1(i0fIf0(i0ai0)) = (t2»t]-t]) e

So we require

bh1(i0ai0ai0) = (t2,t~i) = (i,t2,t7)+(t2,12,t2) - (t2,t2,t")

b(-(t3,t],tl))

Thus we can take h-j(igBigSig) = -(t3.t5,t3)

(b)

hj (i-jfi@Bio) » Recall f-](@ii®IQ) = -A3S2/111*A3) + ABA2*QAL *A3N

Then we have

+ M 3S1S0i 1ft3™r ° W \Y% =110SG 0O -



60 -

forO "NyiVv ~("3S2S1’ 13" )+("3s2s0 11*t3*1)+(t3si SOL*t3* 1"

n A~ 3 1 A E3A"Ns1s0] Lt 3, t 3N

w w BV = 7nt3S2slil, t3,t3M+"t352S01 | ,t3,t3)+(t3SI0il ,t3,t3)

v~V V V » *(t3S2Sl 11 ,t3°t3 N t3S280i | *t37t3)+(t3SI D11*t3°t3) -
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So (i $®io®"0) t4s3s2sl | **4**4N + (t4s3s2s011° **4"
' MA4s3sl sOir t4,t4N + ™M4s2S| il
fc) hT@mO®il4,io)

Similarly, we require

1P W W =
| (t3,t352S0i 1t3)-(t3,t3S1S0i1,t3)+(t3,t3S1S0i 1t3)"(t3*t3S2S0i1,t3)
+(t37t3s2s0i |
(L*t3s2slil t3*t 3s2sl 11, t3~+"t 3, t3s2S| SOdOi | t3,t3s2sli1’t3"
+(t3»t3s2s111»1)3
-[ (1t 3s2s0ile t3 ~ t3't3s2s0'l, t3)+(13,t35251i 1,t3)-(t3,t35251" , t 3)

+(t3,t3s2s01l ' t3)]

~L(1»t3s1sQi 1,t3)- (13, t3s1s0i 1,t3)+ (t3,t3s1sQi 1, t3) - (3, t352s0i 1, t3)

+t 3,t3s1s0i |

= JASAISgiL, )+ (, t8S3S2SiiJ, ) - (, tAS3S2Sgii, )-( ,tAS2SiSpiAth) ]



- 62 -

So we take ' + (VthngS".t;‘I“)’
(t4,14S3520i | " (t4*t4s2sisoil

(d) h,(i0aitail)

Finally, we require

bhl (i 0®10@11) =

t (1et3»t3s1s0i 1)-(t3.13.t] s 1s(i 1)+(t3.t] ,t3S 1s0i 1)- (13,13, t35251s0d1i 1)
+(t 3»t 3»si s0i 1)]

+[(t3,t3,t3s2s1i1)-(t3,t3,t3s2s0i 1)+ (t3,t3,t3s2s0i 1)-(t3,t3,t3s2s0i 1)

+(t3,t3's2slV ]

-[(1,t3>t3s2s0i 1) - (13,t3,t3s2s0i 1)+ (t3,t3,t3s1sQi 1) - (t3,t3, t3s1s0i 1)

+73,t3's2s0i I~

—[(1+t3»t3s2s1i 1)- (13,13, t3s2s1i 1)+ (t3,t3, t3s2s1i 1)-(t3,t3,t] s251s0d0i 1)

+(t3,t3,t3s2s] " 1~
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.2
—b[(t4,i2,{} 5251501 1) +(£2, 1] tjs 352501 1)- (£ 4, tF. ¥ 3150i 1)
"(t4>t4>t4s3s2siti)] *
So we take =(VtJ.tJs" s W tJ.tJ.trs ™)

_(t4»t4»t4s3sls0ii) _ (t4»t4»t4s3s2siii) -

Lerma 2.13.

The product induced by g is associative.

Proof

We introduce first further notation; given (x,y) e (PxQ)(n) ,

9k(x,y) « TP()iQ(n+2k-i) , we write this as g (X,y)
i K

=?2 YKitMx,y) ® YR(r 2k-i) (x.y) - Then for associativity, we
require, given (x,y,z) e (P x @ x R)(n) , a chain homotopy h such
that

i e : e e . . .

() k [i,;,e,r,s 1Kif, > 1"'S i ><* I(<lly ) 'z)) 1Y kiilr (k_t)'B)

<YM ) ((X.y).2)) « Y'<JI21-“)((x,y).2)



P(n+2j-y)
. Yi
j.y.6,t,U
= 3h + ha
As before, we look for a chain homotopy of the form h =1 h"e

and again we can use the method of acyclic models to construct h
inductively, provided we can construct directly hg , and h* on
elements of degree 0 or 1 . We work with the product given in

Lenmma 2.5.

hg is zero since the Alexander-Whitney product is associative
at the chain level; given a simplex OP+9+r e Qp+q+r(p+qg+r) , let

xN(op+q+r) be the front i-face of the simplex, pj(ap+q+r) be its

back j-face, then the associativity follows from Pq(Xptq)°P+P+r

(a) h+4 : since 91 =0 * takin9 the component of
equation (i) with e coefficient e° , we require
lv'o* O’ 0

so we take hl\gila,*ia.ia) =0 .
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_dolu8 M1I®t2%011 ' tlilBsOtl U~ + Att2Slilflll * sOtlilBil~

, o 0. JrOrO0, o
%>§ )(I.’!i—(ln vIV))\Og .r(J)fX{s SRIE I)/({/ RN b

(]
I *I»r *5

AC°(3-i-j)( (C°xC°)(3-1)(i - i n
“YO, T tYl,s VOV OV

iia[dliiat2sOir tlilBil+t2S0i 1Bdlil]+tli 1B[-dlilBsCtlil _tlilflsOdOi |
*so V [Bdo V
+ t25lilBIL dOiail"iiadliil + SOtl1B: dOi IBil —ilBdliil

Thus, taking the component of equation (i) with e coefficient O,

we require

bhl (ii,ii,il)=[tji-i*s0d011Bii+tii i 1BdQi A 1®s0t§i]Bdli 1

dliIBsCtlilBil + doilfisOtli 1Bii 1

+[-d1i 1BtliiasOt 1i 1+dOi 1flt1li i asOt 1i 1+t1i Jid 1i 1BsOt 1i 1
-t 1 BdOL~O 111 * tl 11Btl 11Bs0d0 111

bt- ViBso V iBIli " tiliBtiiiBsotili] -
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So we take hj(Lj,17,1%) = -11i lasQt li-|@&i - ~ ‘'« D

Products in cyclic cohomology.

Given an algebra A over F , we obtain a cyclic F-module A1,
and a dual cocyclic F-module A*1) , where (A1) (n) = Homp(A**(n),F)
The cyclic cohomology of A 8 B is obtained from the cocyclic F-module
(A"a b¥)* , rather than the product of cocyclic F-modules (A**) « (B”) ,
and the two are not in general isomorphic. We write C (P) for

C*((P«i)*) , C*(P) for QP*%*)

A product in cohomology is thus obtained by dualising over D the
map g:C*(A 0 B) C*(A) Op C*(B) , to give amgp C (A) 0QC (B)
+ C((Ai B) . This is a natural D-module chain map, inducing a product
in cohomology which is associative, graded commutative, and unique as a

coextension of the product in Hochschild cohomology.

However, in order to obtain amgp C (Al B) + C (A) 0QC (B) by
dualising f , we require that either C*(A) or C*{B) be of finite
type over D, for then HorD(C*(A) 0Q C*(B) ,D) = C (A) 0QC (B)
For the Kunneth theorems, this conditon may be weakened. We require
either HC*(A) or HC*(B) to be of finite type, for then there is a
chain complex C of finite type which is chain equivalent to C*(A)

(respectively, C*(B)) : this is proved in [26, Lentma 5.5.9, p.246].
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Products in cyclic homology.

The product in cyclic cohomology C (E) 0Og C (F) »C (E 0 F)

induces a dual coproduct in cyclic homology C*(E 0 F) » C*(E) Dg C*(F)

In looking for a product in cyclic homology, we see that since
C*(E) = E* 0 K/eD , the difficulty arises because K/D is not a ring,
that is, there is no well-defined multiplication in the coefficients.
There is an analogy here with (/2 homology, and we adapt the product
used in that case. The product is x !y + x uiy , where 6 is the
Bockstein homomorphism 8:Hn(X : (J/2) = Hfi_1(X : Z) , and the product

uses the module multiplication Z 0 (J/Z = (J/Z

Thus, given cycles for cyclic homology represented by x e (C*(E)OgK/D)n
y £ (C*(F) 0Q K/D)m » we construct a product by first applying B to vy
to obtain an element of (C*(F))mtL , and then multiplying x and By
by using the product f:C*(E) 0Q C*(F) “mC*(E x F) , and the module
action DO K/D =+ K/D . Then we obtain a product I—Cn(E) OB I—Cm(F)
% HOnHNE x F) . We check that this agrees with the product defined
by Loday and Quillen in [23, Chapter 3], that is (xOe_1)0(y0e”J)

# fg(xOBy)0e 1 if j =0, O otherwise, where fp is the shuffle
product.
Take cycles represented by x =zx"0e 1, y =Ty0e J . Now

B[yl = [Byg] e H i(C*(F)) , and for this class to be a fcycAt*, we
require bBy®» =0 . Then our product, f(x0OBy) , gives
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[E Ef.(x. 0 Byn) B e 1]. However, we can show that this agrees
i k u

with the product of Loday and Quillen by constructing a chain
homotopy. Loday and Quillen prove that for any a e E(n) ,

6 « F(m) , Bfp(a 8 {*) = fg(Ba 8 Be) : thus the map <49 defined
by <gx 8 y) = fg(x 8 By) is a chain map. Similarly, <k 8Yy)
= f(x 8 By) is a chain map, so we require a chain homotopy h

satisfying 3h + ha =$ - $g . We look for one of the form

h = Ehe then equating coefficients, the equation becomes

(i) bhk = -hkb - hk.,B - Bhk_1 + *k

(i) bhQ = -hob

Thus we can take hg =0 , and since the right hand side of
equation (i), Z , satisfies bZ =0 , we can use the equation

to construct hk(x 8 y) by induction on k and on the degree of

x 8y , provided that the degree of Z is s 3 . But (iQ8iQ)
= f](1g 8 Big) , of degree 3, thus the induction proceeds. Hence

the products are chain homotopic and so agree in homology.
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Loday and Quillen prove that this product is associative, and
graded commutative provided that the field has characteristic zero.

The associativity also follows from the associativity of f , and

the graded commutativity can be proved for all fields as follows.

Given cycles x e HCn(A) , y t HOm(B) + represented by

i x.ie 1, i » Wwe wish to show

(i) f(x 8 By) - (_i)degree x degreey Tf(y 8 Bx) . 0 .
Thus we wish to find a chain z such that
(ii) ? (fO(xiBBy0)-(-1!x]|>,Tf(yi8Bx0))8e’i 3z

Let z =(-1)'xl t z.8e_i

00 k
Let Eo= i S.g) W V W

k+(n-1)

Let z, = z A . . for n >0 .
L k=0 ° 0 fk<xi 8 yk+(n-I)-1>

We now wish to calculate az ; the term with e coefficient

K
bzQ + Bzj = Zo 1 (bfk+l + Bik>(xi 8 *k-i>

= 7 .
k=0 i,rzo(fk+|b + fkB>=xi 8



= kB .fO(-fk+i B(xTflyk+i- i) + fkB(xi ay k-i>>

foB(xoByo>= fo<BxoByoH -D V xoBByc> m

The term with e coefficient eb is

» k+p-1 k+p
bv Bzp+i =kfOo (~ 0 bfk(x 8yk+p-i-i)+ Bfk (xi Byk+p-i)

p-I ® k+o
= 1M0bfO(xi fiyp-1-i)+kfO ~ Obfk+l (xi Byk+P-i)+Bfk (xi Byk+P-i)

p-I <€ k+p
i TobfO(xiiyp.i.i)+k,o ilofk+1b(xiByk+p.i )+fkB(xi Byk+p.i)

p-I ® k+p
itofOf»(x, V i -1 )+kS0O » O-fk+iB{xiByk+i+p-i)+fkB(xiByk+P-i)

N O[- V Bxi+ IByp-1-i > H ) Ix] fO(xi BByp-i) ]+

+ J O[fO<Bxi Byp-i)+(-1) Ix Ifo(xi BByp-i):!

(- 1) [X|fO(xp»By0) - fO(Bx08yp) . Q

Finally, Loday and Quillen's result that Bfg(xBBy) = fg(BxBBy)

can be used to prove the following Lemma
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Lemma 2.15.

The following diagram is commutative

CHCX(P) aD HC*(Q) In - « — > HC~(PxQ)
+BSB +B

CHC*(P) 8D HC*(Q)In.2 -2-> HCn_i(P»Q)

where a is the Loday Quillen product.

Proof

This follows from the commutativity of the diagram

BosBv— « > VBosB/
+B8B t B

(zxiae”i1)a(tyjBe”™) —-——-———- > r fQ(x* 0 By0O)Be-1 - O

Module Structures in Cyclic Theories.

Lenina 2.16.

Given a cyclic F algebra E , HH*E) is a module over HC*(E)

and IB is a module map.
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Proof

We use the inclusion mep | : I—Cn(E) ->H-|n(E) to define the
action. Given [x] e HHh(E) » tyl £ HC—(E) » then ClyD e HHM(E)
and [fO(x8ly)l e HHh+m(EXE) ° and usin9 the multiplication vy
in E we obtain [yfg(x8ly)] £ HHnHV E) ¢ Denote this element
[y(x)]. Then given z c HC'(E) , (y uz)x = yfQ(x8I(y u z))
= yfO(xoavifO(ly81z)) = pfO(yfO(x08ly)8lz) = yfO(y(x)8lz) =z (y(x))

To show that IB is a module map, we require [IByfg(x8ly) ]
= [yfg(IBxBly) 1 in HH*(E) . We have constructed f* such that

bf](x8ly) = fAb(x8ly) - IBfQ(x8ly) + fOIB(x8ly)

Since x and |y are Hochschild cycles, b(x8ly) =0 . Since Bl =0
from the long exact sequence relating HC* and HH* , IB(x8ly) = IBxBly

Thus, in Hochschild homology,

[0] = -riByfO(x8ly)] + [yf*B x8ly) ] . a

By FL9]-duality we obtain the following lemma:

Lemma 2.17.

* *

HH (E) is a module over HC (E) , and IB is a module map.
Loday and Quillen prove in [23, Proposition 3.41 the following

Lerma 2.18.

HH*(E) is a module over HC*([E) , and | is a module map.
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83. The chern character.

The preceding chapter makes it clear that the theories HC*( )
and HC*( ) have products with very different properties, and that

only the theory HC*( ) has a degree-preserving product

HCT(A) 8d HCj(B) - HC7+j(A S B)

Thus, since the product in K-theory is similarly degree-preserving,
K..(A) B Kj(B) KM(A 8 B) , HC* ) is the only possible receiver
for a multiplicative chern character ch:K*(A) 3 HC*(A)

Karoubi [19] gives a definition for a chern character into cyclic
homology HC*( ) , and this can be modified, using a theorem of Jones
[17], to give a chern character ch:K*(A) =+ HC*(A) . The definition
involves a composition of several maps, so we discuss these first

individually.

(A) The Hurewicz homomorphism.

Higher algebraic K-theory is defined by K~A) = wMBGL(A)+) ,
where BGL(A)+ is described as follows. The group GL(A) is the
direct limit lim dk(A) , under the inclusions GLk(A) * GLk+1(A)
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given by a+ (J 8 , BGL(A) is its classifying space. The

Quillen + -construction is then applied, which abelianises the
fundamental group of BGLA while leaving its integral homology
unchanged, by adjoining 2 cells to kill the generators of

[GL(A), GL(A)] ., and 3 cells to "neutralise"” the 2 cells as
far as the cohomology is concerned. The space BGLA+ is a homotopy

commutative and associative H-space.

The Hurewicz homomorphism W : n™X) +» (X) fits into a
conmutative diagram with the products in homotopy and homology as

follows [28, Lemma 3.18]:

W.(X) 8 itj(Y) ———=> *1+j(X a Y)
+hi 8hj *hi 4]
(X) 8 Hj(Y) -———==> H.+j(XA Y)

The product in K-theory is given by the composition of this smash
product with a mep y* : ~(BGLiA)* a BGL(B)+)> w.(BGL(A8B)+) , defined
as follows. The obvious map GL(A) x GL(B) GL(ABB) induces a map * .
BGL(A)+ x BGL(B)+ = BGL(A8B)+ . Then given a basepoint Xg for BGL(A)+
and a basepoint yg for BGL(B)+ , there is amp y ,

y : BGL(A)+ x BGL(B)+ - BGL(A8B)+ , given by

y(x,y) =x*y - xQy - x*yQ + xQy0 ,
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which is homotopically trivial on the wedge BGL(A)+ v BGL(B)+ and

thus induces a mep y : BGL(A)+ a BGL(B)+ “mBGL(A8B)+ .

Thus we have a commutative diagram

iri (BGL(A)+ 8 Tij(BGL(B)+) “miri+ j (BGL(A)+ABGL(B)+) 1*-> wi+ j(BGL(ASB) +)

Ahi @j i + +hi +j

Hi (BGL(A)®)B Hj(BGL(B)+) - H.+j(BGL(A)+aBGL(B)+) **-> H.+j(BGL(A8B)+)

Using the isomorphism Hi (BGL(A)+) = HABGLfA)) , we have a

multiplicative map (A) ¢ HABGLTfA))

(B) Amep 4 : H'BG) - HCT 2,(KTGD) ; here G = GL(A)

This replaces the map in Karoubi's construction defined into

HCi+ 2 I(K[G]) *

The construction involves an equivariant homology theory G*

related to the usual theory H* and its localised version H* by a

long exact sequence

o <<*>-_«:<*>-n;.2(z) . g;.i(z) -...



Let the space BG have the trivial circle action, and let u

be an indeterminate of degree - 2 . Then we have an inclusion
BG) - (H*(BG) 8 k[ul)..a =gT_2i(BG) , and a map gT_2ji(BG) -
GI_2t(LBG) , induced by the inclusion of BG as the fixed point

set in the free loop space LBG , with the usual circle action.

Then, writing S*(G) for the chain complex of G, made into
an associative differential graded algebra by using the Eilenberg
McLane shuffle product, we can define HC*(S*G) . Jones constructs
in [17] an isomorphism GI_2f(LBG) = HC7_2]i(S*G) . Finally, there is
a mep of differential graded algebras KkEG] ‘mS*(G) , where K[G]
has zero differential, which is a chain homotopy equivalence and
induces an isomorphism HCS?(S*(G)) = HCJ:.(k[GI) ; see [17, §&7].
Thus we obtain the map : HNBG) -“mHC™ 2~N(K[G])

In order to show that P is multiplicative, it is sufficient to
show the multiplicativity of the mep e : gT(LBG) “mHC.j(S*(G)) , that
J J

is, to prove the commutativity of the diagram

GI(LBG)8K[U]Gj(LBG") - gT+ (LBG * LBG') - gT+j (LB(G * G*))

HC7(S*(G))8d HC7(S*(G*)) - HC7+[(S*(G)BS*(G')) = HC +j(S*(G * G1))

Recall that HC*(S*(G)) is the homology of the double complex
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C*(s*(G)) fl k[u] , with boundary b + Bu , where u is an in-
determinate of degree -2 , and C*(S*(G)) is the Hochschild complex
of the algebra S*(G) . ¢l(Z) is the homology of a double complex
S*(Z) 8 k[u] , with boundary b + Ju , where J is defined, given
the circle action f : T * Z %27 and the shuffle product

9 :S*¥T) aS*(ZZ) - SX(T x 2 , by J(x) = (-1)'xIf*e(zax) , for z
the fundamental 1-cycle in S-|(T) : see [17, 84].

Jones shows that these two double complexes are naturally chain
equivalent, so a natural product defined in one theory induces a
natural product in the other. Then, by the uniqueness of the con-
struction of the product proved in Chapter 2, any product defined
using the models will agree with the induced product, ensuring the

commutativity of the diagram.

© A mep : HCT(K[G])) - HCT(MA)
Here the infinite matrix algebra MA is the direct limit Iim M (A)
k K

under the inclusion M(A) Mk+-J(A) given by a 3@ 9 , and

MA is obtained from MA by adjoining a unit.

The mep $ : K[G] MA defined on the generators over k , by

(9 =9 . is an algebra homomorphism.
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The induced map < is multiplicative as a map between functors
of the algebra A , by the naturality of the product and the

commutativity of the diagram

krGLA] 8 K[GLBI — ~ — > MA 8 MB
4 4

kK[GL(A8B)] —-— *——— > M(A8B)
(D) The induced map Tr* : HCJT(MA) —*HC&.(A) , Where TrrMA 3 A is
the trace map.

This is multiplicative as a map between functors of the algebra

by the naturality of the product and the comnutativity of the diagram

MA 8 VB — > ABB
4 4
M(AS8B) — ————> A8 B

Then by composing the maps (A) - (D) we obtain the following:

Theorem 3.1.

There is a multiplicative chern character ch:K"(A) HC™ 2a(A)

defined as the composition

K.(A) = Tt.(BGLA+) HABGLA) -& HCT_2j (K[GLAL) **->

HGi- 2t(MA) — * HGI- 2t(A) »
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84. Kunneth Theorems.

Let P and Q be cyclic F-modules. In Chapter 2, we constructed
a natural chain equivalence between C*(P) Bg C*(Q) and C*(P x Q
The chain equivalences are D-module maps, and hence extend to give
natural chain maps between C*(P) fIDC*(Q) and C*(P x Q . These
meps are also chain equivalences, since the chain homotopies constructed
in Lenma 2.7 also extend to C*(P) C*(Q) and C*(P x Q . Then,
using standard homological algebra for complexes over a principal ideal

domain [26, Lenma 5.3.1, p.228], we obtain

Theorem 4.1.

Given cyclic F-modules P and Q

(i) There is an exact sequence of D-modules

0 - (HC;(P)BDHC;(Q))n HC~(PxQ - [Tor*HQp),HC;(Q)- 0

where f* is the product induced by the natural chain map f

(ii) There is a D-module isomorphism

(HC*(P) 8D HC*(Q))n = HCn(P x Q . |

We obtain a Kunneth theorem for the cyclic cohomology of algebras

by dualising the chain equivalences as discussed in Chapter 2.
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Theorem 4.2.
Let A and B be associative algebras over F .

(i) If one of HC*A) , HC*B) is of finite type, there is an exact

sequence of D-modules

0  (HC*(A)S8DHC*(B))n -3I> HON(A8B) - [TorD(HC*(A) ,HC*(B) In+l - 0

where g* is the product induced by the natural chain map g .

(ii) If one of HC*(A) , HC*B) is of finite type, there is a D-module

isomorphism

(tiC*(A) fiD HC*(B))n = HOn(A 8 B) . O

We now consider a Kunneth theorem for cyclic homology. Given cyclic
F modules P and Q , we have a chain equivalence between

C*(P) 8q C*(Q) and C*P x Q , that is, betweenP* 8 Q* 8 D and

(P x Q)a 8 D .This extends to a chain equivalence between P*8 Q* 8 K
and (P x Q)* a K. Hence there is a chain equivalence between the

quotients, P* 8 Q* 8 K/Dand (P x Q# 8 K/D .
K/eD may be given acoalgebra structure, with a coproduct

0O =m=mE e ie , when it is isomorphic to the coalgebra G ,
i =0
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which is the dual of the algebra D . Eilenberg and Moore in [14]
define an extended comodule over an F-coalgebra r, with coproduct &
to be a tensor product A Spr , where A is an F-module, with
structure morphism v = 1" fi 5 . They prove in [14, Proposition 2.1]

that for an extended comodule A fiF r , and any comodule B ,

(A fiF r)Dr B=A8p B .

Thus, since C*(P) is an extended comodule P* fiF G, we have
C*(P)2g C*(Q) =P, I (j, i G . Thus the chain equivalence between
the quotients P, ! Q, 8 G and (P * Q)* 0 G is a chain equivalence

between C*(P)Dg C*(Q) and C*(P * Q) .

We can now dualise over F the steps of the proof of the Kunneth
short exact sequence for complexes which are D-modules, to obtain a
dual short exact sequence for complexes C and C which are comodules

over G:

0 - [Cotorg(H*(C) ,H*(C*))*n+i - ~(COQC1l) - (H*(C)OQH*(C'))n -0

Combining this with the chain equivalence, we obtain the following

theorem:
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which is the dual of the algebra D . Eilenberg and Moore in [14]
define an extended comodule over an F-coalgebra r, with coproduct 6
to be a tensor product ABpr , where A is an F-module, with
structure morphism v = 1~ B 5 . They prove in [14, Proposition 2.1]

that for an extended comodule A Bp r , and any comodule B ,

(A flF r)Dr B =ABp B .

Thus, since C*(P) is an extended comodule P* Bp G, we have
C*(P)[dg C*(Q) =P* B Q* B G . Thus the chain equivalence between
the quotients P, l Q* B G and (P * Q)* B G is a chain equivalence

between C*(P)Dg C*(Q) and C*(P * Q) .

We can now dualise over F the steps of the proof of the Kunneth
short exact sequence for complexes which are D-modules, to obtain a
dual short exact sequence for complexes C and C' which are comodules

over G :

0 - [CotorG(H*(C),H*(C1))]n+] - HACDgC1) - (H*(C)nQH*(C*))n - O

Combining this with the chain equivalence, we obtain the following

theorem:



- 83 -

Theorem 4.3.

Given cyclic F-modules P and Q , there is a short exact

sequence of G-comodules
0 -[CotorG(HC*(P),HC*(Q))]n+1 - HOn(P*Q) - (HC*(P)DGHC*(Q))p - O .

The remainder of this chapter will be concerned with producing
a re-expression of this sequence in terms of the D-module structure
of HC*(P) and HC*Q) . We obtain the following short exact

sequence:
0 - (HC*(P)BDHC*(Q))n_1 2 HCn(P*Q) - [TorO(HC*(P),HC*(Q)]In_.2 - 0 ,
where a is the Loday Quillen product.

lenrma 4.4 F

There is a natural D-module isomorphism
TorD(HC*(P),HC*(Q))n_2 = (HC*(P)Og HC*(Q))n

Proof

From the definition,

HC*(P)DgHC*Q)  Ua.Qb.EHC*(P)aFHC*(Q): ivaifibi - Eaifivi = 0}
i1 1 h



Recall the notation Va. = E S a. fly. thus we can rewrite this
1 k 1 *

as

Evai.Bk?.—la.Bvb = E ESka.&y.flb. - E Ea.fly,fISkb.
: ik ik

' 1K 1 1K 1

Recall that a D-module structure was induced from the G-comodule

structure by ek(a) = Ska . So we can rewrite the cotensor product as

HC*(P)OGHC*(Q) ={Eai flb.t HC,(P)BFHC*(Q): ze~flb.-a.fle® =0 for all k)

However, given that E ea™Bb.. - a*leb.. =0 , then E eza’\flb’\—a’\Bezb/\ =0

if and only if E (eBl - Ifle)(ea.jflbj) =0 . Similarly, given that
i

| a.Bb. £ ker (edfll - IBeJ) for all j <k , the equation

E ekaiBb. - aiflokbi = 0 holds if and only if ek lanflbi lies in

ker(efll - Ifle) . Thus we have
HC*(P)QgHC,(Q) = {Ea.flb. £ HC*(P)BfHC*(Q): £ ker(efll-Ifle ), for all k}.
Now consider TorD(HC*(P),HC*(Q)) ; in order to calculate this we

need to resolve HC*(P) as a D-module. Consider the generators of



HC*(P) as a free F-module. These can be placed in families related
by the action of 8 , that is, (ia“K£” : 6a“ =" . Note that

the families either contain a single element, a* such that ea™ =0 ,

or contain a non-zero element for each i £IN, so a“ corresponds
to a8 1 for some ae F, and the family (a“} corresponds to a
set of generators for K/8D as an F-module.

13

Let HC*(P) be the free D-module with one generator c*“ for

each of the a“ . Define amgp d : HC*P) * HC*(P) by d(c*) = a“
Define a mgp $ : HC*(P) = HC*(P) by <c*) =8c*-c“_1, putting
&(c*) = 0c* 1f a“ satisfies 0a“ =0 . Then we have

xX a a X/xaa. : :
d«(cl) = d(eci-cii) = eai-ai 5 = ai_1l-ai_1 =

We now wish to show that the elements (ec*-c* ”) generate the kernel

of d .
n
Take = f.c® t kerd , so this corresponds to E f.ae J e D,
o= J i=I 3

n .
+ f—.aOn_J £ OnD . We want to show that there exist coefficients g®
=i J
n n
such that E V =t g.(ec“-c .) . In the right hand side of this
=1 J =3 J J

expression, the coefficient of c¢* is gn© if i =n, gte-g.+1 if

i <n . Thus we wish to show that there exist g* such that fR = gn0 ,

fi =W [
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Now we have a(fn + ffl_Je ... £(en) , which implies
that tnf(e) , so fn =g~re . Then, since a(gn+f j+f £0 + eee
fle"-2) £ (e"'1) , we have gn+f@l] £ (¢), so f~ = gn_..e - gn

We can continue in this manner to obtain the required equations for all

i, 1<i <nl

Thus the following sequence is exact:

0 - HC"(P) HC"(P) HC*(P) - 0

Thus we have the following:

CKTorD(HC*(P),HC*(Q)hHC;(P)BDHC*(Q)">HC;(P)aDHC*(Q)NUHC,(P)aDHC*(Q)

Note that in HC*(P)8D HC*(Q) , ekafl8 = afleke , so we can obtain a
representative of any term which has no power of 6 in the first
component, that is, a representative of the form 1 aifloi where

ai £ HC*(P) , bi £ HC*(Q) . Thus there is an injection

i : HC:(P)fID HCX(Q) - HC*(P)8f HC*(Q)
We now have a commutative diagram
Hc:(P)fID hc*(Q) - HC*(P)fIF HC*(Q)

+e81 +(1f10-9B1)

hc; (P)bd HC*(Q) HC*(P)8p HC*(Q)
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since = i((E6ai-ai_1)ibi ) = Ea.fleb.-eanflb. = (Ifie-efil )Eaiibi

From this we see that ker(<t>81) = ker(IBe-eBl) . Then, since <8 is a

D-module map,

ker(«.81) = {Ea”b. e HC*(P)BFHC*(Q) :EOkai 8b. e ker(e81-18e) for all k)

Thus we have Torp(HC*(P),HC*(Q)) = (HC*(P)Dg HC*(Q)) , and since ¢

increases degree by 2 , we have, as required,

TorD(HC*(P),HC*(Q))n_2 = (HC*(P)D HC*(Q))n . O

There is a similar result for the other term of the short exact sequence.

Lemma 4.5.

There is a natural D-module isomorphism

CotorG(HC*(P),HC*(Q))n = (HC*(P)BD HC*(Q))n_2

Proof

To calculate Cotor, we need an injective G-comodule resolution

of HC*(P) : we use the following
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\

0 - HC*(P) — HC*(P)fip G — HC*(P)Bp G - 0

where (Cz”™ B y"IBy”) = CZakflyk]flYf_1 - trakBYk_-[]Byl .

We check exactness: certainly imv, ¢ ker $ . Suppose JZ[%aJ,kByRSB)j'

e ker ¢ , that is, E([za" -Cza» "D B yN =
Then, since Cza® k®&k”™ t 0, we have zza™ kB"kByj._1-a® * " B yj =0
Evaluating coefficients ofy”By”"

, a k =a-1 k1

Evaluating coefficients ofYk -|flyj « a*k = a1l k"

Proceeding like this, we obtain a. . =a. . for all i , -—jsisk
m
Thus we can rewrite _zCz aj',kByl/<\|Byj; as z[ z anﬁyi.]Bym_i
k mi=0
Then, since v”~) = £ Y*~i®Yi element lies in the image of v
i =0

We then have the following exact sequence:

(M1C*(P)SgHC*(Q) N"—>HC*(P)BpHC*(Q)"i>HC*(P)fIFHC*(Q)":0otorG(HC*(P),HC*(Q))->0 ,

by using Eilenberg-Moore's Proposition 2.1 [14], (Aflp G)OgB = AfipB

Then to calculate 4C1 , we need to use Eilenberg and Moore's isomorphism

explicitly. The mep AflpB » (AflpG)DG B is 1 B , and the inverse



- 89

mep (A8p6)C"B ‘mASpB is 1M 8 e 8 Ig . Thus the induced nmep

HC*(P)8p HC*(Q) - HC*(P)8p HC*(Q) is

7 akBYK3B[3, BYim] IHC.(P)8vQ: 41, aKkaYK]8YicEbn8YmM i]
- TtEak8yk] 8 Yi 8 ]
~fC* kAk=1T~ ififfm 8W
~HC»(P)8e81HC»(Q)

_>[Eq<.8Yk,]8[Ebm8y el i-C (a.@Y,ik_iL n8 [rbn§3Yrr]1]1]
k m - k m

- HC*(P)8F HC*(Q)
Thus CotorQ (HC*(P),HC*(Q)) = — "~  —————

* HC*(P)8F HC*(Q)

<1 IEaksr)r/]ik i8 rE_b n{Bym_F]—[EakSy K F]S[E]bnﬁyn:;' >

Letting a = [Ea'éY"kD , B = [rEan?yﬁ] > and rewriting in terms of the
D-module structure, using 6y =y ~ > we have

HC*(P)8p HC*(Q)
CotorG(HC*(P),HC*(Q)) =
<aB80B - 6a86>

- HC*(P) 8d HC*Q)
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Since ¢ decreases degree by 2 , we have

CotorG(HC*(P),HC*(Q))n 2 (HC*(P)BD HC*(Q))n_2 . 0

The natural isomorphism (Tor® (HC*(P),HC*(Q))p_2 = (HC*(P)["HC*(Q))p
can be composed with the coproduct mep HP(P*Q) +» (HC*(P)I™® HC*(Q))p to
give a natural D-module mep HCp(P*Q) = (TorD(HC*(P),HC*(Q))p_2
Similarly, the natural isomorphism (CotorG(HC*(P),HC*(Q))ptl = (HC*(P)80HC*(Q)) _1

can be composed with the map from the Kunneth short exact sequence
i< (CotorG(HC*(P) ,HC*(Q) )p+" = HOp(P*Q) to give a natural D-module mep
(HC*(P)8d HC*(Q)p_.j HCp(P*Q) . We will show that this agrees with the

Loday Quillen product map

Lerma 4.6.

The following diagram commutes

Proof

N is the mep induced in homology by the chain map xfly “mxBay -m
f(xflay) . Let x =rx.jBe"l , y =Ly”e'l , then [xIflEay] =
[rx~fle-1] B [Byg] . We showed in Chapter 2 that xfly - f(xBBy) agrees

with the Loday Quillen product. D
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So, applying Lemmas 4.4 - 4.6 to the short exact sequence
0 - CotorG(HC*(P),HC*(Q))n+1 4 Hon(P*Q) - (HC*(P)[™ HC*(Q))n - O

we obtain the following theorem.

Theorem 4.7.

Given cyclic F-modules P and Q , there is a short exact

sequence of D-modules

0 - (HC*(P)8OHC*(Q))n_1 -2-> HCn(P.Q) - TorD(HC*(P),HC*(Q))n_2 - O

where a is the Loday Quillen product.
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So, applying Lenmmes 4.4 - 4.6 to the short exact sequence
0 - CotorG(HC*(P),HC*(Q))n+1 tl—Cn(P*Q) - (HC*(P)Cfe HC*(Q))n - O

we obtain the following theorem.

Theorem 4.7.

Given cyclic F-modules P and Q , there is a short exact

sequence of D-modules
0 - (HC*(P)«xDHC*(Q))n_1 -2-> HCn(P*Q) - TorO(HC*(P),HC*(Q))n_2 - O

where a is the Loday Quillen product.
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55. The cyclic cohomology of polynomial algebras and their quotients.

In this chapter, we will endeavour to use our knowledge of products

to calculate some examples.

(A) F[x] . F of characteristic zero

The cyclic homology of this algebra is given by f23, Theorem 2.91,

but we include it for completeness, since our method is different.

Lenma 5.1.

The Hochschild homology of F[x] is

HH(F[x]) Ftx] if n=0 or 1

=0 otherwise.

Proof

Let R=Ftx] , A = R8pR = F[s,t]

Then a projective resolution of R over A is given by

0-R*4- A< A* 0

where 4(s) = x = $(t)



- 03 -

Applying the functor R8" - to the resolution, we obtain

R < R<0

Thus the only non zero Hochschild homology groups are HHQR) = R,
HH(R) - R.

Llemma 5.2.

(a) HC*(R) = F[e] ©F[x]/F

(b) HC*R) = Fte.e"1]

Proof

We use the long exact sequence relating Hochschild and cyclic

homology:

0  HDER-HHO (RK(WICi(R)+-HH1(R) <— HCgfRJIACARAHAR)” (R)
I I I [

R R R 0

First observe that HCq(R) = HHg(R) = R .

Now for all commutative algebras we have

HOO(A) * A



HHi (A) = = {zaidxi :d(xy) = xdy+ydx) , the module of Kahler differentials,
HGj (A) = nJ/dA
B : HCq(A) “miH™NA) , that is, B:A = , is the derivative.

(See 23, Example 2, Proposition 1.11.3

Since the mgp d(x*) = ix» A has kernel F on F[x] and is sur-
jective, we obtain HCYR) =F , HCMR) =0 .

Then since Hh(R) =0 for n >1 , the long exact sequence becomes

a succession of periodicity isomorphisms,
* 0 mHON_2(R) - Hn(R) =0 & ..

Thus HC2n+1(R) =0, naO, H2nR) =F, ns1.

By considering the dual of the long exact sequence, we obtain cyclic
cohomology:
HCn(R) =R if n=0
= F if n=2m, m>0
0

otherwise.

Here S:HC2n(R) HC2n+2(R) is S(@) =a if n>0 . S:HC°(R) - H2(R)
is S(aQtax+...) =aQ . Note that every element of HXRn(R) lies in

the image of S(")
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We will now calculate the cup product in cohomology. Since the

cup product HC2m(R)8p|6j HC2n(R) -mHC2"m+M\(R) is an F[e]-module map,
SATal uS()rbld = S*ntm[a u b] . Thus the product is determined by

the product HC®R)8p HC®R) = HC®R) , which is multiplication in the
ring R . n

We can then use the Kunneth theorem to calculate the cyclic cohomology
of F[x,,... x ] .
Lemma 5.3.

For F of characteristic zero

(a) HC (FCXj,... xnl) =F[e] 8 Ffx™... x ]

where A denotes A/F

() HC*(F[x1...XnD) = F[e,e_1]

Proof

Both parts are proved by induction on n . The case n =1 is
covered by Lenma 5.2, and the induction step is proved by using the

Kunneth Theorem 4.1, since F[x.j,.x ] =F[x1 .... xn 4] 8p Frxn]

Part (b) follows immediately from

HC*(F[xr ..xn] Bf F[xn]) = HC*(F[xr ..xnl) 8F[Q] HC*(F[xn3)

m FCe.e"11 8Ff0] Fte.e"1]



For (a), the Kunneth short exact sequence is

O*[(HC (F[x1..xn_1])8F[e]HC (F[x])ImHI(F[x1,..xn]KTorF[e](HC (FCx"-.x"

HC*(F[xn])Jm1 - 0

The Tor term gives F[x- ...,xn] in degree 0 , which hence doesn't con-
tribute, and the tensor product term gives (F[e] ® F[x,...x ])m as

required. |

We can also use the Kunneth theorem to calculate the cyclic cohomology

of A[x",— xnT, where A is any algebra over F .
Lenma 5.4.
Given A an algebra over F , writing R =FTX, ...,xn]

(@) There is a short exact sequence

0 - HOM(A) 9 (HOM A2 8rR) - HOMA[X-, ...x 1) ker Sm-’l 8R+0
SHC~NA) h 1 n
where Sm] =S : HI'1M) - HC'F*1n)
(b) HC*ALXI .... xn]) « HC*(A)
Proof
These results follow from the Kunneth theorem since A[Xj,... xn] =

A 8f F[x~.. xn] . Part (b) follows immediately from
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HC (A[x-],.. xnD « HC (A) 8p[e] HC (FCx,,. -X,,])

= HC (A) 8F[91 F[e,e 1]

The Kunneth theorem gives a short exact sequence:

0 - (HC*(A)8FL6 JF[O0TeR)m=HRNi(Arx1,..xn]) rTorF[el(HC*(A),F[ei9R)imL - O

Since eR =0 , the terms in the tensor product represented by

[l Br ¢ HONA) 8 R are zero if [a] lies in the image of S, so

[a] = era'] . Thus this term contributes
.m.
HOMA) ® (HC 8 R
SHOMA(A)
To calculate Tor.chO,,J(HC (A),R) , we use the following projective

resolution of R over F[e]

0 %Fe] 8R -2"-> FCe] 8 R-*> R »0

where $(en8r) = en(r) . We then have the exact sequence

O*TorF[el(HC*(A),R)-4iC*(A)8Fre](F[e]8R)-*HC*(A)eFrO](F[ei8R)+HC*(A)8Fre]R - O

Thus Torp|Qj(HC*(A) ,R) consists of terms [a] 8 (1 8 r) such that
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the equivalence class of [a] 8 (9 8 r) contains 0 ; but this
class is also represented by [S(a)] 8 1 8 r) . Thus the Tor tern

is isomorphic to (ker S 8 R)ym’ . |

(B) FCx.x"1]

This is the field of fractions of the graded algebra FTx]

Again, F is of characteristic zero.

Lenma 5.5.

The Hochschild homology of F[x,x ~1 is

HH(F[x,x'1]) = Ftx.x"'1] if n=0 or 1

0 otherwise.

Proof
Let R=FCx.x'1], A=R8R.

A projective resolution of R over A is given by

O0<R<4-A <xISt"™ A* O

where <4fs) =x = $(t) . For s ~-t ~e ker $, (s "t

(s-t)(s’2+t’2+s—3t+st*3+ ---) . Then applying R , We obtain

R<-9- R 0, thus the result follows. O
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Lemma 5.6.

(@ H (F[x,x ~]) =FTel18 E(y) ®R , where degree of y =1

(b) HcVcex.x'1]) FCe.e"1]8E(y).

Proof

We use the long exact sequence

(M1CO (R)~41HO (R)-HM1C1 (R)-HHHL(R) <— HCq(R)-HHC2(R)-HHLR(R) + ...

R R R R 0

Again, B is the derivative. Thus HXR(R) = ker B=F ,
HCMR) = coker B = x_1F = F . Then since Hh(R) =0 for n > ,

the long exact sequence becomes a succession of periodicity isomorphisms,

0 - HN(R) - HN+2(R) - O .

Thus HCn+2(R) = F , HX2n+](R) =F , for all n .

We will now calculate the cup product in HC (R) , Since every
element of HX2n(R) lies in the image of HC°(R) under , the
product

I—[2n(R)8rrrLaO J.I—(:’Zm(R)—HC2(n+m)(R) is given by Sn[aJuSm[b] = SnHVaub]
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Thus it is determined by the product HC°(R) 0 HC°(R) - HC°(R) , which

is multiplication in R .
Since HC2n+1(R) = SAMHCAR)) , the product
HC2n+l (R)Or e HC2m+\R) mf HCMntm+l) (R) is determined by the product

HCAR)Opjf He\r) 3 HC2(R) . By using the explicit form of the cup
product given by Connes in [8, Chapter 1], we see that given

t,$ eHcV) ,
TUS$S =TV $ + T ($V t)

where T is a mep switching factors. Then, since + v $ and * v t

lie in H2R) , and HR2R) =0, xu $=0.

Similarly, the product H2n(R)BRO]HCZM+1(R) - HC2(n+m)+1(R) is
determined by the product HCANR) B HCMNR) #Hc\r) . The cup product
is always a coextension of the Hochschild product: in this case, since
I : HC®R) # HH®R) and | : HCAR) Hh\ r) are both injections, it
is equal to the Hochschild product. This is the F-dual of the shuffle
product in homology, which can be calculated by observing that the
generators over F for HHYR) = R, {x1}~ 1 » can be
represented by the cycles [x1 B x] in the standard bar resolution form
of the Hochschild complex. Then the shuffle product of [x11 e HHq(R)
and [X-flx] e HHj(R) is [xi+"Bx] t HH™R) , corresponding to the

generator x*J in R . Thus the required product is multiplication in R
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Thus, setting y to be a generator of HC (R) , we obtain the

stated result. O

Lemma 5.7.
(@) HC*(FIx1,...xn,x™ ...xpl])=F[el8E(yl,...yn)8F[x1, ..Xn.xil.."'1]

(b) HC*(F[x1,..xn,x*1.m'1]) = F[e,e-1] 8 E(yr ..yn)
where each y» has degree 1.

Proof

The proof is by induction on n , using Lemma 5.6 for the case

n=1, and the Kunneth theorem to prove the inductive step.

(b) follows from HC*(Frx1.. .xp,..x "1])=HC*(F[x1..xn_1,. D8pl 0

= (FCe,e-1 IS E(yl,..yn_1))8F[e](Fre,e’1] 8 E(yn))
- F[e,e-1] 8 E(ylt..yn) .
(a) follows from the short exact sequence:
0 - (HC*(F[xr .x"111)8FrOJHC*(F[xn,x’1])n - HCAFCX,.. .x“1]) -

TorF[e]J(HC*(F[xr .x*11]),HC*(F[xn,xpl])ml -0

The Tor term contributes nothing, the tensor product term gives the

required answer. |

D
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Lenma 5.8.

For any algebra A over F

(b) There is a short exact sequence

BR %0

O_*_[HC*(A)8E(y,1.. .yn)]m>(l-0/ |A.(A)8RHiCm(A[x1 nX - .Xﬁl])H<erS|,n_1

Proof

Using the Kunneth theorem and induction on n , as for Lemma 5.4. O

(c) A , F of characteristic zero.
(xn)
Lemma 5.9.

The Hochschild homology of R = F[xl/(xn) is given by

I
)
-
=
I
o

H (R)

= R/x if n=2m
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Proof

Let R=F[x]/(xn) , A=R9 R, so A= "
F (sn)+(tn)

A projective resolution of R over A is given by

0 R<— A ) A A A <MNiL A -

where <i(s) = x = Ht) , N=sn"+sn2t + .... stn’2 + tn1
Taking R8.- , we obtain

Thus HHQR) = R, HEn+2(R) = xR , HELN+1(R) = R/xn1 . 0

In order to calculate the shuffle product in Hochschild homology,
which we will use later, we need a chain mep from the resolution given

above to the usual bar resolution.

0 R<—* sx(s-n R82 <JLN pgp R82

I I +fl +2 +f3

0 HR <-il er <bl_ R83 <-Al R84 b _ R85
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Proof

Let R=FCx]/(xn) , A=RfIFR, so A= b
F (sn)+(tn)

A projective resolution of R over A is given by

0-R<=+A A AIXN> A<iiL A=

where <Hs) = x = &) , N =sll + sn 2t + .... stn~2 + tn_l
Taking RBA—~ , we obtain

Thus HH(R) = R, HH2n+2(R) = xR , HH2n+](R) =R/xn 1 . O

In order to calculate the shuffle product in Hochschild homology,
which we will use later, we need a chain map from the resolution given

above to the usual bar resolution.

0 R <_i_ rsz R82 <JIN R82 ¢ llz 1) Rre2

I I *f | +f2 *f3

0 R <-Al rs2 <—Q*—— R83 <-H R84 <_tl'__ R85
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Such a chain map is given by

jHn-1+2(m-1)-Za-

WXI BI(]):n_lll)& BZI S8 B Bx ixex

n-1 . am jtn-1+2(m-1)-Ea.
ZITH-F'(XlBXIA): Z x'Sxflx ~Bx. B nBx8x
ai =1

and this induces a map of generators of Hochschild homology

i p+n-1+2(m-)- z a

ii 1 d a
Hem(R) [xpl t Zx 1-0 Bx Bx...fix Bx]
«1-1
n-1 p+n-l+2(m-Ily-Eai a, a
KN R [xpl] [ Zx fixflx *...Bx mnfc<]

We can now calculate the shuffle product on generators in the standard
bar resolution form, which gives the following product on the generators

[x1] £HHN(R)

- tx1+J] otherwise.



105

Now recall Lenma 2.15: if v is the product in Hochschild
cohomology, HH (A) is a module over HC (A) by the action t=) =$v It
for t cHC (A) , € c HH*(A) , and IBK|vlit) = B v It

Lemma 5.10.
Hon(F[x]) FIXI i n=o0
(xn) (xn)
= 0 if n=2pH
= Vv if n=2p+2 , where V is an

n-dimensional vector space over F ,

Proof

Label the generators of V by {x”"li=0 n_i <+ The Pre°f is by
induction on the degree of the cohomology group. We will take the
following as the inductive hypothesis: HNR) =0 if n =2pH ,
Hn(R) =V if n=2p+t2 , and B:HH2p+1(R) - H2p(R) satisfies

Bix1l> = <xi+1> , for all p <p’

Consider the long exact sequence:

0 - HC°(R)->HHO (R->CMICL(R)->HHL(R) — > HC°(R)-HC2(R->HR2(R) -

We have HC°(R) = HH°(R) = R . Here BHH*(R) » HC°(R) is the F-dual
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of the derivative, so B<x’> = <x’+"> . B is injective, and so

HCMR) =0 . This starts the induction.

Now consider HZ2p (R) : by the inductive hypothesis, HC2p~\r) =0 ,
so we obtain from the long exact sequence relating Hochschild and cyclic

cohomology, the following short exact sequence:

0 - H2p_ 1(R) JL HC2p' 2(R) H2p(R) — > HEp(R) - 0

Il Il 1

Now since 1 surjective, HC2p(R) contains a subspace isomorphic to
<X,...xn"™> | and since B<x"> = <xi+~> by the inductive hypothesis,

ker S =<x,...,xn"™>, ImS =<1>, so HCp[R) = <I,x,..xn

Now consider HXRp+MR) : by using the inductive hypothesis, we

obtain the exactness of the following:

0 - HC2p+1(R) —> HH2p+1(R) — > HC2p(R)

Thus HX2p+1(R) = 0 would be implied by B injective, and it is
sufficient to prove that B<x> = <x”> for all i . Consider those
elements of 1$v T , where « . HhVk) . * ¢ HC2p(R) . Recall
Bl<t>v T =!le¢vIBt . Since Bi *0 in HC(R) and

I : HC°(R) “mHHNR) is an isomorphism, IBt/ 0 .
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Take € such that 1$c<x>, and tc<x> , for 0si s n-3

SO IBt ¢ <xN > . Since the Hochschild product is given by multipli-

cation in R, 1$ v t c <xi+1>, 14V 1Bt c <x1+2>, and since

i sn3, both kv t and 1$ v 1Bt are non-zero. Then since
1$v Bt = IB(l+Vv t) , we have B<x1+> = <x1+2> , for all
i £(0,1,... n-3}y , thatis, i+l e {1,2,.. n-2} . Hence it remains

to show that B<l> = <¢ .

Take 1 £ HRp+1(R) , x £ HC°(R) , then Ix in HH°’(R) is non
zero. Then 1viIx /0, 1viIix =< . Now IB(1) v Ix =
IB(L v IX) ¢ IB<x> ¢ <x >, and IB(1) v Ix is non zero. So

IB(1) c <> , B<Il> =< . |

Llerma 5.11.

(a) HC*(™-ip) = Fle.e-1]
(xn)

(b) HC*("") =F[0] « C® R, 1
(x") p=0 Zp

where R” denotes a copy of R/F in degree 2p . The 9 action is zero

on each of these terms, and the product i"p m  "2(p+m) 'S

multiplication in R .

Proof

lote from the previous proof that S:HCZp Z(R) iH'ép"R) has kernel
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<X,... xn > , and 1 e HR2p(R) is in the image of HC®R) under
S<P> . Write Iq for 1eHCPR) ; given 1~ |, 12p , 1™ ul2p =
u = sBfPd 0 u 1Q) = SMp(10) = 12(m+D) + since the
product HCMR) 0 HCMNR) = HC®R) is given by multiplication in R .
Given 12n, x1 e HZ2p(R) , 1 0x1 =SmM(I0) ux1 =1Qu Sn(xi) =0

Recall that we have a coextension diagram for products

HC2m(R) a HC2p(R) — ————> HC2(m+p)(R)
*181 * |
HPMR) 8 H2p(R) — ——— > HH2AMHPA(R)

Given xi t HC2mR) , xi e HC2p(R), with neither i or j =0

then from the proof of Lemma 5.10, j(x1) = x1 , I(xJ)

&

require  j(x1 u xJ) =x1H , thus x1u xJ =x1+H . O

Lemma 5.12.

Given any algebra A over F

(a) 2 HOM(A)
*")
(b) There is a short exact sequence

» U,-m—Zi/A. 3y = 00
O-HCm(A)®( 9 HC m2\2 aiw - Hom( » - ® Ker S ,aR +0
i=0 SHOm 21 2(A) 21 (xn i =0 m2l 1 2
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where Sm2il =S : HOM'2l_1(A) = HOx 21+1(A)

Proof
(a) follows from the Kunneth theorem,
HC"(~2) 2 (HC—(A)aF[e]fIC—"EMS) * HOMA)iF[e] Fce.e-"]
V) (x)

For (b), the Kunneth theorem gives a short exact sequence
O-(HC*(A)8F[e;)(F[el9(eR2.))) m-HCOM(~ )~ | TorF[O]J(HC*(A),F[eie(9R2i))IMH1
)

Since 0"2n =" * %he terms in the tensor product represented by

[2] 8 r c HOm 2p(A) 8 R2p are zero if [a] =Ea‘] . To calculate
T°rF[e](H™ (A),R2i) we use the usual projective resolution of R

over F[e] ,
0>FCe] 8R ~-> F[el 8R-$>R-0

where $(en8r) =en(r) . Thus TorF.Q-|JHC (A),R.~) consists of terms
Cal 8 (1 8 r) such that the equivalence class of [a] 8 (e 8 r) is

zero, that is, [Sa] 8 1 8 r) is zero, so TorFfeH4HC (A),R2i)mHl =

* ker Sm-2i-1 8 *2i *



(D) ' f a polynomial.
(f)

First we factorise f(x) into irreducible factors, f(x) =
m
(x-an) . Then we use R/l nJ =R/l ®R/J for any ideals | and

J of aring R such that | +J =R, to write

c o
() 1 ((x-a.) )
Llemma 5.13.

For algebras A and B over a field of characteristic zero,
HNn(A ® B) = HCn(A) 9 HOn(B)

Proof

We will use the chain complex for cyclic homology with boundaries
b, -bb, N and D ; this complex is defined in Chapter 1.

C*(A) 9 C*(B) is a subcomplex of C*(A 9 B) with quotient

complex P =

P < p2<JL p

v2 2
b i -b'+ b+

i A R
b + -b1* bi

N
Vo pO < Pn



(A9B)Siul

where Pn
A8"1' ® BSn+l

For example Pgq =0 , =A8B 9 B8 A .
The boundary maps are induced from those on C*(A 9 B) . By inserting
an extra column R* = +

P2/ImD

b+

P~A/ImD

b+

0

to the left of P , we form a new complex Q whose rows are acyclic

* +
P2/7mD<— _ pp <— P2 <
b+ b+ -b’ +
P.j/ImD<—. o, Pl<JL
b+ b+ -b'f
0 4 po<J L
Q contains a subcomplex POIl , where (p™+")ntm = pntl m o

and the quotient complex is R . Thus we have a short exact sequence

O ‘mPOI] *Q=*R *0

giving a long exact sequence in homology



- (AjppB)ar>fl
n Aflnil ® BSn+1

where P For example Pg =0 , P|] = A8B ®B3 A .

The boundary maps are induced from those on C*(A ® B) . By inserting
an extra column R* =1t

P2/ImD
b+

P~AmD

to the left of P, we form a new complex Q whose rows are acyclic

+ +
Q P2/lmD<— P2 p2
bf b+ -b'+

Pl/ImD<— PL <7t .

bf b+ b+
@] < Lo po
Q contains a subcomplex POIl , where (p[+*)njm=pn+l m *

and the quotient complex is R . Thus we have a short exact sequence

0 P[+]3Q R -0

giving a long exact sequence in homology
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e« HN(P[+I]) - HN(Q) - HA(R) - H_1(P[+I]) - ..

Thus, since Q is acyclic, H(R) = Hn(P)

The cyclic permutations act on Pn by rotating the factors, so

the complex R , with Rn = Pn/ImD , Is

0-A8B <— ASAaBSASBSB <— ABA8A8B ft ABASB8B ft ASBB8B8B <—

with  R(n) = E A®” 8 Bn’ , The induced boundary b is given on
i =0
an element of Afll+1 8 Bn1l by (IjE (—l)idiL , I ={0,..i,i+2,..n-1}
i

that is, any face mep which would involve multiplying an element of A

with one of B is omitted.

We will construct a chain homotopy s:R(n) = R(n+1) such that

bs + sb =1 .
Let s(aQ 8.. 3i 8 b.+1..8bn) = 1A 8 a0...8ai8bi+1..a bn

Then, since dn+" does not occur in bs ,

» W » , | * - 'a “ I>*0I>- -V

Also, sb(aQ..8ai8bi+1.,bn) = 1A 8 b(ag...an) . Thus sb +bs =1 as

required, and we have a chain homotopy between the identity mep and the
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zero mpon R . Hence H*(R) =0, and so H*(P) =0 . Then from

the short exact sequence
0 #C*(A) ® C*(B) C*A9B)+P+0

we obtain the long exact sequence in homology
- Hh(C*(A)9C*(B)) * Hh(C*(A9B)) - Hnh(P) - Hh_](C*(A) 9 C*(B)) -
So P acyclic = HNA 9 B) = Hp(A) 9 HOh(B) . O

Then by applying Lemma 5.13 to the algebra 51*1 = ® 5L*3 m. ,
(0 i (x-BIl) )

and using induction on i , we obtain HC (9 51*1 m. )=BRHC (5L*i m. )
S ((x=Qi) 1) i n ((x-ai) ")

Thus writing =R, we have HZ2n(R) =R, HXE2n+i(R) =0

We could repeat the proof of Lenma 5.13 in the cohomology complexes,
to obtain HCn(A) 9 HOn(B) = HCn(A 9 B) , with the isomorphism induced
by the inclusion of complexes C* (A) 9 C* (B) +C*(A S B) . Thus the
product obtained on HC (A) 9 HC (B) is that induced by inclusion from

* .
the product on HC (A 9 B) . So in this case, for R =% ,  We have

(f)
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HC*R) =C[0] 9 ( 9 fL.)

i=0 61
HC*(R) = CCe.e'l]

We also have
Lemma 5.14.

For any algebra A over | ,
(@) Ham(~ ~ ) = HOM(A)

(f)

(b) There is a short exact sequence

O*HIM(A)«( 9 Hom~ ~ X 9 R-HOM("i)- ® i _
i=0 SHC'1A17A(A) (f) i =0 ker Sm-2i-1 8 R- 0

where SP.2i.1 =S : HOM2I_1(A) - Hi'21+1 (A)

Proof

Exactly as for Lemma 5.12.
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