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NOMA-Enhanced Computation Over Multi-Access
Channels

Fangzhou Wu, Li Chen, Nan Zhao, Senior Member, IEEE, Yunfei Chen, Senior Member, IEEE,
F. Richard Yu, Fellow, IEEE, and Guo Wei

Abstract—Massive numbers of nodes will be connected in
future wireless networks. This brings great difficulty to collect a
large amount of data. Instead of collecting the data individually,
computation over multi-access channels (CoMAC) provides an
intelligent solution by computing a desired function over the air
based on the signal-superposition property of wireless channels.
To improve the spectrum efficiency in conventional CoMAC, we
propose the use of non-orthogonal multiple access (NOMA) for
functions in CoMAC. The desired functions are decomposed into
several sub-functions, and multiple sub-functions are selected to
be superposed over each resource block (RB). The corresponding
achievable rate is derived based on sub-function superposition,
which prevents a vanishing computation rate for large numbers
of nodes. We further study the limiting case when the number
of nodes goes to infinity. An exact expression of the rate is
derived that provides a lower bound on the computation rate.
Compared with existing CoMAC, the NOMA-based CoMAC not
only achieves a higher computation rate but also provides an
improved non-vanishing rate. Furthermore, the diversity order
of the computation rate is derived, which shows that the system
performance is dominated by the node with the worst channel
gain among these sub-functions in each RB.

Index Terms—Achievable computation rate, limiting rate,
NOMA, sub-function superposition, wireless networks.

I. INTRODUCTION

In 5G and the Internet of Things, tens of billions of devices
are expected to be deployed to serve our societies [1]–[4]. With
such an enormous number of nodes, the collection of data
using the conventional multi-access schemes is impractical
because this would result in excessive network latency with
limited radio resources.

To solve the problem, a promising solution is computation
over multi-access channels (CoMAC). It exploits the signal-
superposition property of wireless channels by computing
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the desired function through concurrent node transmissions
[5]–[19]. Many networks computing a class of nomographic
functions of the distributed data can employ CoMAC [5]. For
example, wireless sensor networks can use the framework of
CoMAC since it only aims to obtain a functional value of
the sensor readings (e.g., arithmetic mean, polynomial or the
number of active nodes) instead of requiring all readings from
all sensors.

Analog CoMAC was first studied in [6]–[10], where pre-
processing at each node and post-processing at the fusion
center were used to resist fading and compute functions. The
designs of pre-processing and post-processing used to compute
linear and non-linear functions have been proposed in [7], and
the effect of channel estimation error was characterized in [8].
In order to verify the feasibility of analog CoMAC in practice,
software-defined radio was built in [9]. Also, the authors in
[10] studied how to compute multiple functions over-the-air
with antennas arrays at devices and the access point, where
different linear combinations with arbitrary coefficients for the
Gaussian sources were computed. In summary, the simple
analog CoMAC has led to an active area focusing on the
design and implementation techniques for receiving the desired
function.

Since analog CoMAC is not robust to noise, digital CoMAC
was proposed to use joint source-channel coding in [11]–[20]
to improve the equivalent signal-to-noise ratio (SNR). The
potential of linear source coding was discussed in [11], and its
application was presented in [12] for CoMAC. Compared with
linear source coding, nested lattice coding can approach the
performance of a standard random coding [13]. The lattice-
based CoMAC was extended to a general framework in [15]
for relay networks with linear channels and additive white
Gaussian noise (AWGN). In order to combat non-uniform
fading, a uniform-forcing transceiver design was given in [14].
Achievable computation rates were given in [15]–[17] for
digital CoMAC through theoretical analysis.

The implementation of CoMAC faces several practical is-
sues. One is the synchronization of all active sensors required
for coherent combining at nodes. The frequency synchro-
nization has been solved by an attractive solution, called
“AirShare”, which was developed in [21] for synchronizing
nodes by broadcasting a reference-clock signal. To cope with
the phase offset, a design has been proposed to estimate
synchronization phase offset and to equalize the corresponding
error in [22].

Especially in wide-band CoMAC (WB-CoMAC), the sys-
tem has to face more issues caused by orthogonal frequency-
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division multiplexing access (OFDMA) such as peak-to-
average power ratio (PAPR) and inter-carrier interference.
Considering the influence of PAPR, [23] suggests that block
coding provides a way to tackle the PAPR problem. [24]
provides a method to replace the conventional constellations
by lattice codes that satisfy some geometrical properties,
e.g., reducing PAPR or reducing average energy. Since the
implement of CoMAC is based on lattice codes [15], the
CoMAC system with low PAPR is desired by choosing a
well-designed lattice code. The inter-carrier interference for
OFDMA uplink has been extensively researched. Many works
provided promising solutions to suppressing the influence of
the inter-carrier interference [25], [26]. Since the inter-carrier
interference is caused by the carrier frequency offset that exists
in OFDM instead of CoMAC, the conventional schemes can be
used in WB-CoMAC to remove the inter-carrier interference.

Besides, the computation rate of digital CoMAC eventually
goes to zero in the fading multi-access channels (MAC) as the
number of nodes increases. This is a serious issue that digital
CoMAC endures. In order to avoid the vanishing rate, narrow-
band CoMAC (NB-CoMAC) with opportunistic computation
has been studied in [17]. WB-CoMAC with sub-function
allocation has been extended in [20] against both frequency
selective fading and the vanishing computation rate.

To the best of our knowledge, all the aforementioned
CoMAC works only considered the use of orthogonal multiple
access (OMA) for functions by transmitting the function in
different resource blocks (RBs), i.e, time slots or sub-carriers.
Non-orthogonal multiple access (NOMA) is well-known for
improving spectrum efficiency but has never been considered
in CoMAC [27]–[29]. Different from NOMA for information
transmission, NOMA-based CoMAC (NOMA-CoMAC) su-
perposes multiple functions instead of different bit sequences
from different nodes in each RB. Also, nodes with disparate
channel conditions are allowed to be served simultaneously in
conventional NOMA to improve the performance, whereas the
node with poor channel condition only makes the computation
rate vanishing in NOMA-CoMAC system since the function
computed by nodes requires the uniform fading. It suggests
that the direct use of NOMA in CoMAC system is not suitable.

Motivated by the above observations, in this work, we
propose a NOMA-CoMAC system through the division, super-
position, SIC and reconstruction of the desired functions. The
analytical expression for the achievable computation rate with
sub-function superposition is derived based on nested lattice
coding [16]–[19]. Furthermore, several limiting cases are con-
sidered to characterize the lower bound of the computation rate
and the diversity order. Our contributions can be summarized
as follows:

• Novel NOMA-CoMAC. We propose a NOMA-CoMAC
system with sub-function superposition. Unlike NOMA
systems for information transmission, NOMA-CoMAC
decomposes the desired functions into several sub-
functions, superposes these sub-functions with large
equivalent channel gains in each RB, executes the process
of SIC and reconstructs the desired functions at the fusion
center.
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Fig. 1. Framework of narrow-band CoMAC

• Improved computation rate. The analytical expression
of the computation rate of NOMA-CoMAC is derived.
Using the closed-form expression, the power allocated
to each node can be calculated directly with low com-
putational complexity. Compared with the conventional
CoMAC schemes, both achievable computation rate and
non-vanishing rate with massive nodes are improved.

• Limiting cases. We characterize the lower bound of the
computation rate with an exact expression as the number
of nodes goes to infinity. It provides a straightforward
way to evaluate the system performance. As the power
of each node goes to infinity, we obtain the diversity order
of the computation rate of NOMA-CoMAC. It shows that
the node with the worst channel gain among these sub-
functions in each RB plays a dominant role.

The rest of the paper is organized as follows. Section II
introduces the definitions and the existing results of NB-
CoMAC and WB-CoMAC. In Section III-B, we first provide
the system model of NOMA-CoMAC and then summarize the
main results of this paper. Section IV presents the proposed
NOMA-CoMAC with sub-function superposition in detail and
analyzes the computation rate. Section V focuses on the
performance of the proposed NOMA-CoMAC, which includes
power control and outage analysis. Simulation results and the
corresponding discussion are presented in Section VI, and
conclusions are given in Section VII.

II. PRELIMINARIES

We introduce two typical CoMAC frameworks in this
section, and review the main results of several previous
works. We define C+(x) = max

{
1
2 log(x), 0

}
and dxe =

min {n ∈ Z|x ≤ n} as the ceiling function. Let [1 : n] denote
a set {1, 2, · · · , n} and (·)T represent the transpose of a
vector or matrix. For a set A, |A| denotes the cardinality
of A. Let the entropy of a random variable A be H(A) and
diag {a1, a2, · · · , an} denote the diagonal matrix of which the
diagonal elements are from a1 to an. A set {x1, x2, · · · , xN}
is written as {xi}i∈[1:N ] or {xi}Ni=1 for short.

A. Narrow-Band CoMAC

As shown in Fig. 1, the node i draws data from the
corresponding random source Si and obtains a data vector
si with length Td. The node i encodes the data vector si with
length Td into the transmitted vector xi with length n. All the
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nodes transmit the vector over the air simultaneously. At the
fusion center, the received vector y is the superposition of all
the transmitted vector from all these nodes. After decoding,
the desired functions are obtained. Since the length of the
data vector of each node is Td, the number of the desired
functions computed at the fusion center is also Td. si[j] is
the j-th data of the i-th node from the random source Si,
s[j] = [s1[j], · · · , sK [j]] is the j-th data of all K nodes and
si = [si[1], · · · , si[Td]] is the data vector of node i. Each data
si[j] belongs to [0 : p − 1], which means that it is mapped
to a number between 0 and p − 1 through quantization. Let
sr = [S1, S2, · · · , SK ] be a random vector associated with a
joint probability mass function psr(·) as s[j] is independently
drawn from psr(·).

A function f(sr) with respect to the random source vector
sr is called the desired function. Its definition is given as
follows.

Definition 1 (Desired Function). For all j ∈ [1 : Td], a
function with independent variables {s1[j], s2[j], · · · , sK [j]}
is called the desired function with the form as

f(s1[j], s2[j], · · · , sK [j]) = f(s[j]), (1)

where s[j] is independently drawn from psr(·). Every function
f(s[j]) is seen as a realization of f(sr). Thus, the fusion center
computes Td desired functions when each node gets data from
each random source for Td times.

Remark 1 (Typical Desired Functions). As studied in [19],
CoMAC is designed to compute different types of de-
sired functions. There are two typical functions that we
focus on. A function f(s[j]) whose values are in the set
{
∑K
i=1 a1,isi[j], · · · ,

∑K
i=1 aLs,isi[j]} is called the arithmetic

sum function, where al,i ∈ R is the weighting factor for node
i, and Ls belongs to N. The arithmetic sum function is a
weighted sum function, which includes the mean function for
all K nodes f(s[j]) = 1

K

∑K
i=1 si[j] and the function for the

active node only f(s[j]) = {s1[j], s2[j], · · · , sK [j]} as special
cases. Apart from this, a function f(s[j]) with values in the set
of {

∑K
i=1 1si[j]=0, · · · ,

∑K
i=1 1si[j]=p} is regarded as the type

function where 1(·) denotes the indicator function. As pointed
out in [30], any symmetric function such as mean, variance,
maximum, minimum and median can be attained from the type
function.

In order to be robust against noise, we use sequences of
nested lattice codes [15] throughout this paper. Let si denote
the data vector for the i-th node whose length is Td. After
encoding si, it is mapped to xi = [xi[1], xi[2], · · · , xi[n]]
as the length-n transmitted vector for node i. At the fusion
center, the received vector with length n is given by y =
[y[1], y[2], · · · , y[n]] and decoded into Td desired functions.

Considering the block code with length n, the definition of
computation rate [5], [16], [17], [19] can be given as follows.

Definition 2 (Computation rate). The computation rate spec-
ifies how many function values can be computed per chan-
nel use within a predefined accuracy. It can be written as
R = lim

n→∞
Td
n H(f(sr)) where Td is the number of function
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Fig. 2. Framework of wide-band CoMAC

values, n is the length of the block code and H(f(sr)) is
the entropy of f(sr). Apart from this, R is achievable only
if there is a length-n block code so that the probability
Pr
(⋃Td

j=1

{
f̂(s[j] 6= f(s[j]))

})
→ 0 as n increases.

B. Wide-Band CoMAC

As shown in Fig. 2, we provide a simplified explanation on
the implementation of WB-CoMAC. Each node draws data
from the corresponding random source and obtains a length-
four data vector. At the fusion center, four desired functions
needs to be computed. Unlike NB-CoMAC, only part of nodes
participate in the computation in each sub-carrier. Thus, the
four desired functions are divided into eight sub-functions,
and allocated to eight sub-carriers. The fusion center receives
a superposition of the OFDM symbols and obtains eight sub-
functions. At last, the desired functions are reconstructed by
these sub-functions.

The sub-function is only part of the desired function which
is computed by a subset of nodes. Assuming that a sub-
function is computed by M chosen nodes and the number
of all nodes is K, the desired function is split into B = K

M
parts.

Definition 3 (Sub-Function). Let

τu = {x ∈ [1 : K] : |τu| = M} (2)

denote a set where each element x is the index from the M
chosen nodes. Suppose that

⋃B
u=1 τu = [1 : K] and τu

⋂
τv =

∅ for all u, v ∈ [1 : B], a function f
(
{si[j]}i∈τu

)
is said to

be a sub-function if and only if there exists a function fc(·)
satisfying f(s[j]) = fc({f({si[j]}i∈τu)}u∈[1:B]).

Remark 2 (Detachable functions). From the definition of
the sub-function, both arithmetic sum functions and type
functions are detachable functions. Assuming K nodes are
divided into B = 4 parts, we have f(s[j]) =

∑K
i=1 aisi[j] =∑4

u=1

∑
i∈τu aisi[j] where

∑
i∈τu aisi[j] represents a sub-

function. Also, for the type function, we have f(s[j]) =∑K
i=1 1si[j]=b =

∑4
u=1

∑
i∈τu 1si[j]=b where

∑
i∈τu 1si[j]=b

represents a sub-function. To restructuring the desired function
f(s[j]), the fusion center has to obtain the four sub-functions
first.
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C. Existing Results

The computation rates of NB-CoMAC and WB-CoMAC are
given as follows.

Theorem 1 (Rate of NB-CoMAC). As shown in [17, Theorem
1], for any M,B ∈ N satisfying MB = K, the ergodic
computation rate of NB-CoMAC is given by

R =
1

B
E

C+

 1

M
+
|hIM |2KP

ME

[
|hIM |2

|h|2

]

 , (3)

where K is the number of nodes, M is the number of the
chosen nodes to compute a sub-function, |hIM |2 is the channel
gain of the IM -th node, IM is the M -th element of the set
of the ordered indexes of channel gains {Ii}i∈[1:K] such that
|hI1 |2 ≥ |hI2 |2 ≥ · · · ≥ |hIK |2 and h is used to represent a
representative coefficient without loss of generality..

Theorem 1 considered the NB-CoMAC with flat fading, [20]
expanded it to a WB-CoMAC with frequency-selective fading
to focus on high-speed transmission.

Theorem 2 (Rate of WB-CoMAC). As mentioned in [20,
Corollary 2 and Eq. (27)], for any M,N ∈ N satisfying
K = BM , the ergodic computation rate of WB-CoMAC over
frequency selective fading MAC is given by

R =
1

BN
E


N∑
g=1

C+

N

M
+

KP |hIgM |
2

ME

[
|hIgM |

2

|h|2

]

 , (4)

where N is the number of sub-carriers, |hIgM |
2 is the channel

gain of the IgM -th node at the g-th sub-carrier and IgM is the
M -th element of the set of ordered indexes of channel gains
{Igi }i∈[1:K] at the g-th sub-carrier such that |hIg1 |

2 ≥ |hIg2 |
2 ≥

· · · ≥ |hIgK |
2.

One sees that both CoMAC schemes in the above only
consider the use of OMA to transmit a function in each RB.
This results in low spectrum efficiency. Since NOMA can offer
extra improvement in spectrum efficiency, we apply NOMA to
CoMAC to improve the computation rate. Thus, we propose
a NOMA-CoMAC system with sub-function superposition,
where each sub-carrier can serve these sub-functions with
large equivalent channel gains simultaneously. It can not only
achieve a higher computation rate but also can provide an
improved non-vanishing rate with massive nodes.

III. SYSTEM MODEL & MAIN RESULTS

In this section, we first provide the system model of NOMA-
CoMAC, and them summarize the main results of our paper.
The comparison between NOMA-CoMAC and existing results
is further presented.

A. Novel NOMA for Wide-Band MAC

The framework of WB-CoMAC discussed in Section II-B
will be used to transmit multiple functions simultaneously
in each sub-carrier using NOMA. We consider an OFDM-
based system with N sub-carriers during Ts OFDM symbols
while the length of the block code is n. In each sub-carrier, L
functions are chosen to be transmitted. Then, the m-th received
OFDM symbol at the fusion center can be expressed as

Y[m] =

L∑
l=1

K∑
i=1

Vl
i[m]Xl

i[m]Hi[m] + W[m], (5)

where m ∈ [1 : Ts], Ts = d nN e, K is the number of
nodes, the power allocation matrix of node i is Vl

i[m] =
diag

{
vli,1[m], · · · , vli,N [m]

}
whose diagonal element is the

power allocated to compute the l-th function at each sub-
carrier, Xl

i[m] = diag
{
xli,1[m], xli,2[m], · · · , xli,N [m]

}
is the

transmitted diagonal matrix of node i to compute the l-th func-
tion, a diagonal matrix Hi[m] = diag {hi,1[m], · · ·hi,N [m]}
is the channel response matrix of which the diagonal element
is the channel response of each sub-carrier for node i and the
diagonal element of W[m] is identically and independently
distributed (i.i.d.) complex Gaussian random noise following
CN (0, 1).

Assume the frequency synchronization and the phase syn-
chronization are carried out based on the schemes proposed
in [21], [22] respectively and the carrier frequency offset is
solved by the scheme proposed in [26]. Based on Eq. (5),
the received signal in the g-th sub-carrier at the m-th OFDM
symbol can be given as

yg[m] =

L∑
l=1

K∑
i=1

vli,g[m]xli,g[m]hi,g[m] + wi,g[m], (6)

where vli,g[m] is the power of node i allocated in the sub-
carrier g for computing the l-th function, xli,g[m] is the
transmitted symbol of node i for the l-th function in the g-
th sub-carrier from the transmitted vector xi, hi,g[m] is the
channel response of the sub-carrier g for node i and wi,g[m]
is i.i.d. complex Gaussian random noise following CN (0, 1).

R =
ML

KNTs

Ts∑
m=1


N∑
g=1

min
i∈[1:L]

C+


N

M
+

N min
u∈Ml

[
|hIgu [m]|2PIgu [m]

]
1 +N

L∑
j=i+1

min
u∈Mj

[
|hIgu [m]|2PIgu [m]

]




 (7)
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B. Main Results

In the OFDM-based system, all nodes are sorted by their
channel gains in each sub-carrier, and the ordered nodes are
divided into B = K

M ∈ N parts to compute B sub-functions.
Only the first L ≤ B sub-functions with large equivalent
channel gains are chosen to be superposed in a sub-carrier.
Then, the computation rate of NOMA-CoMAC is achievable
with the limit of large n.

Theorem 3 (Rate of NOMA-CoMAC). For any M,L,N,K ∈
N satisfying L ≤ B and K = BM , the ergodic computation
rate of NOMA-CoMAC over wide-band MAC is given as
Eq. (7), where K is the number of nodes, M is the number
of chosen nodes to compute a sub-function, L is the number
of chosen sub-functions in each sub-carrier, N is the number
of sub-carriers, Ts = d nN e is the number of OFDM symbols,
Mx = [M(x− 1) + 1 : Mx] is a set including the indexes of
the chosen nodes to compute the corresponding sub-function,
Igu[m] is the u-th index of the ordered indexes of K nodes in
the g-th sub-carrier at the-m OFDM symbol, |hIgu [m]|2 is the
channel gain of the Igu[m]-th node in the g-th sub-carrier at
the m-th OFDM symbol and PIgu [m] is the power allocated
to node Igu[m].

Proof: Please refer to Section IV for proof.

Remark 3 (Property of NOMA-CoMAC). Theorem 3 presents
a general rate that can be used with power control. It shows
that the rate of NOMA-CoMAC is determined by the sub-
function with the slowest rate among the L sub-functions
in every sub-carrier since the desired function cannot be
reconstructed unless all sub-functions are received at the fusion
center.

Remark 4 (Generalization of rates for NB-CoMAC and
WB-CoMAC). The rate of NOMA-CoMAC in Theorem 3
generalizes the rates of NB-CoMAC and WB-CoMAC. By
setting L = 1 in Theorem 3, we can obtain the rate of WB-
CoMAC in Theorem 2. The rate of NB-CoMAC in Theorem
1 can be also obtained by setting L = 1, N = 1 in Theorem
3.

In the proposed scheme, we choose the first L sub-functions
with large channel gains in each sub-carrier. Since the super-
position transmission of too many sub-functions makes SIC at
the fusion center difficult, only two sub-functions (L = 2) as
a pair are chosen to be transmitted in a single sub-carrier.

Corollary 1 (Rate of NOMA-CoMAC with average power
control). Considering an OFDM-based system where each
sub-carrier serves a sub-function pair (L = 2), the ergodic
computation rate of NOMA-CoMAC considering the average
power control, i.e, E [Pi,g[m]] ≤ P

N for node i, can be obtained
as

R =
2

BN
E

∑N
g=1 C

+

N

M
+

2P K
M |hIgM |

2

Γ +
√

Γ2 + 4P K
M |hIgM |

2$1,g

 ,
(8)

where Γ =
|hIg

M
|2

|hIg
2M
|2$2,g +$1,g and $l,g = E

[
|hIg

Ml
|2

|h|2

]
.

Proof: Please refer to Section V and Appendix A for
proof.

Corollary 1 provides an easy way to allocate the power into
each sub-function when average power control is considered
since the power allocated to each node can be calculated
directly using the closed-form expression with low compu-
tational complexity.

Similar to the previous works, the rate of NOMA-CoMAC
in Corollary 1 can also prevent the rate from vanishing as
the number of nodes K increases. Nevertheless, the previous
works only verified the non-vanishing rate through simulation
and did not obtain its exact value through mathematical analy-
sis. We characterize the lower bound of the computation rate as
the limiting rate. It can be used to calculate the accurate value
of the non-vanishing computation rate with given parameters.

Corollary 2 (Limiting Rate of NOMA-CoMAC). As K
increases, the computation rate of NOMA-CoMAC approaches
an exact value which is only determined by r = M

K and can
be given as

R(r) = 2rC+

 N

rK
+

2Pξ1−rξ1−2r

r∆M +
√

(r∆M)2 + 4r$1Pξ1−rξ21−2r

 ,

(9)
where ∆M = $1ξ1−2r + $2ξ1−r, $l = E

[
|hIMl |

2

|h|2

]
,

F|h|2(ξx) = x and F|h|2 is the cumulative distribution func-
tion (CDF) of |h|2. For i.i.d. Rayleigh fading, F|h|2 is the
CDF of the exponential distribution with parameter one, i.e.,
F|h|2 = 1− exp(−x) and ξx = − ln(1− x).

Proof: Please refer to Appendix B for proof.

Remark 5 (Determination of the Number of Nodes in Each
Sub-Carrier). Making Mg , the number of nodes in the g-th
sub-carrier, adaptive that maximizes the computation rate is

TABLE I
SUMMARY OF RATES OF NB-COMAC, WB-COMAC AND NOMA-COMAC

CoMAC Scheme Achievable Rate Limiting Rate

NB-CoMAC R =
1

B
E

[
C+

(
1

M
+

|hIM |2KP
M$1

)]
[17] R(r) = rC+

(
1

rK
+
ξ1−rP

r$1

)
WB-CoMAC R =

1

BN
E

 N∑
g=1

C+

(
N

M
+
KP |hIg

M
|2

M$1,g

) [20] R(r) = rC+

(
N

rK
+
ξ1−rP

r$1

)

NOMA-CoMAC R =
2

BN
E

 N∑
g=1

C+

N

M
+

2P K
M

|hIg
M
|2

Γ +
√

Γ2 + 4P K
M

|hIg
M
|2$1,g


 R(r) = 2rC+

 N

rK
+

2Pξ1−rξ1−2r

r∆M +
√

(r∆M)2 + 4r$1Pξ1−rξ21−2r
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quite challenging because it depends on K and P as well as the
ordered channel gains. Such an integer optimization problems
is combinatorial in nature and therefore hard to solve for large-
scale problems. To make the problem more tractable, we only
consider the case where each Mg is equal to the same M and
derive the optimal M as K is extremely large by setting the
first derivative of R(r) in Corollary 2 to zero with respect
to r. It is shown that the proposed NOMA-CoMAC attains a
non-vanishing computation rate even if K tends to infinity.

Note that previous works only proved that the computa-
tion rate was non-vanishing through simulation. Corollary 2
provides the lower bound of the computation rate of NOMA-
CoMAC, which is easier to evaluate the performance. Using a
similar proof of Corollary 2, we can obtain the limiting rates
of WB-CoMAC and NB-CoMAC.

Remark 6 (Limiting Rates for NB-CoMAC and WB-Co-
MAC). No exact lower bound of the computation rates and
their limiting rates are available in previous works. Hence, we
derive the exact expression of these limiting rates, which can
calculate the exact values of these non-vanishing rates with
given parameters. Following a similar proof, the limiting rate
of WB-CoMAC in Theorem 2 can be obtained easily as

R(r) = rC+

(
N

rK
+
ξ1−rP

r$1

)
. (10)

It also generalizes the limiting rate of NB-CoMAC in Theorem
1 as N = 1. Unlike conventional works with respect to a
series of random variables and M , these limiting rates are
only determined by M ( or r).

In conclusion, we summarize these achievable computation
rates and limiting rates in Table I.

IV. PROPOSED NOMA-COMAC SCHEME

In this section, we first introduce our framework of NOMA-
CoMAC through sub-function superposition. Based on the
proposed scheme, we further derive the computation rate step
by step.

A. Proposed Scheme

As shown in Fig. 3, we provide a simplified description of
the proposed scheme in a hybrid OFDM-NOMA system.
• Sub-Function Process. In each sub-carrier, we sort all

the nodes depending on the corresponding channel gains.
Then, every M nodes in such an order compute a function
which is regarded as a sub-function in Fig. 3(a). Referring
to Definition 2, τ denotes the set whose elements belong
to these indexes of M nodes to compute a sub-function
f
(
{si[j]}i∈τ

)
. Then, let the set

S = {τ ⊆ [1 : K] : |τ | = M} (11)

include all the possible sub-functions1, and the cardinality
of S is |S| =

(
K
M

)
.

1For easy presentation, we use the element τ ∈ S stands for the sub-
function f

(
{si[j]}i∈τ

)
which is computed by these nodes in τ .

• Superposition Process. As shown in Fig. 3(a), let the
worst channel gain in the sub-function stand for the
equivalent channel gain of the sub-function. Then, we
sort all the sub-functions in each sub-carrier according
to these equivalent channel gains. Only the first L sub-
functions are chosen to be simultaneously transmitted,
which is seen as a superposition. Then, one possible
superposition can be defined as

δ = {τ1, · · · , τL : τu ∩ τv = ∅, |δ| = L} , (12)

where u 6= v, u, v ∈ [1 : L] and sub-functions τu, τv ∈ S.
All the possible superpositions are in a set

H =

{
δ ∈ S : |H| =

L−1∏
l=0

(
K −Ml

M

)}
. (13)

• SIC Process. As shown in Fig. 3(b), all the OFDM
symbols are received at the fusion center. Each sub-carrier
contains a superposition with L sub-functions. Through
SIC given in [15], we can obtain all the sub-functions.

• Reconstruction Process. As mentioned in Definition 2, all
the sub-functions need to be reconstructed at the fusion
center. The set

X =

{
ϕ = {δ1, δ2, · · · , δD} : δu ∩ δv = ∅,

D⋃
u=1

δu = [1 : K], |ϕ| = D =
B

L

} (14)

contains all the possible combinations whose element ϕ
can reconstruct a whole desired function, and the cardi-
nality of X is |X | =

∏L−1
l=0

(
ML−Ml

M

)∏D−1
d=0

(
K−Md
ML

)
.

After all the sub-functions are collected in Fig. 3(b), we
can recover the desired functions by using the relationship
between the sub-functions and the desired functions.

B. Computation Rate of NOMA-CoMAC

As shown in Fig. 3, the desired function is divided into B ∈
N parts, and each part can be regarded as a sub-function which
is computed at the fusion center individually. In each sub-
carrier, L sub-functions are chosen to be transmitted. Based
on those definitions in the previous sub-section, we use the
following parts to derive the computation rate step by step.

Rate of Sub-Function τ . As mentioned in Fig. 3(a), L sub-
functions are chosen for the g-th sub-carrier at the m-th OFDM
symbol to be transmitted. The l-th sub-function is computed
by M nodes whose indexes are in the set {Igu[m]}u∈Ml

at
the fusion center.For the sake of fairness, we assume the
bandwidth of the hybrid OFDM-NOMA system with N sub-
carriers is the same as the mentioned conventional CoMAC
system. The bandwidth of each sub-carrier is 1

N of the total
bandwidth, and the noise power in a sub-carrier scales down
with the number of sub-carriers N . Then, the computation rate
of the l-th sub-function in a sub-carrier at the m-th OFDM
symbol can be given as follows.

Lemma 1 (Computation Rate of a Sub-Function). With the
limit of large n and L sub-functions in the g-th sub-carrier,
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Sub-Function Process

Sub-Function 1

… 

Sub-Function l

Desired 

Function

… 

Sub-Carrier 1 …

OFDM Symbol

Sub-Carrier N

Superposition Process Fusion Center

Sub-Function 1

… 

Sub-Function L

Superposition 1

Sub-Function 1

… 

Sub-Function L

Superposition 1

(a) Sub-Function Process and Superposition Process.

Reconstruction Process

Desired

Function

Fusion Center

Superposition 1

Sub-Function 1 

detection

…

Sub-Function 1 

removed
Sub-Function 1

Sub-Function L

detection Sub-Function L

…

SIC Process for one of superpositions

(b) SIC Process and Reconstruction Process.

Fig. 3. Design of NOMA-CoMAC

the instantaneous computation rate of the l-th sub-function at
the m-th OFDM symbol with AWGN whose variance is 1

N
can be express as

Rl,g[m] =
1

N
C+


N

M
+

N min
u∈Ml

[
|hIgu [m]|2PIgu [m]

]
1 +N

L∑
j=l+1

min
u∈Mj

[
|hIgu [m]|2PIgu [m]

]
 ,

(15)
where |hIgu [m]|2 is the channel gain of the g-th sub-carrier for
the node Igu[m], PIgu [m] is the power allocated to the Igu[m]-th
node in the g-th sub-carrier and Ml is the set including the
index of the chosen nodes to compute the l-th sub-function
(See Eq. (7)).

Proof: As demonstrated in [15], CoMAC can subtract part
of the contribution from the channel observation to compute
several functions at the fusion center based on successive
cancellation. Let h denote the channel vector and al denote
the coefficient vector to compute the l-th function. From [15,
Theorem 12], the computation rate of the l-th function from
the channel observation with a noise variance of σ2

Z can be
express as

Rl = C+

(
P

|αl|2 + P‖αlh−
∑l
j=1 aj‖2

)
, (16)

where αl is the scalar parameter to move the channel coeffi-
cients closer to the l-th desired function. By giving the optimal

αl following [15, Remark 11], 1
N of the noise variance and

the i-th element of the coefficient vector

al[i] =

{
h[i] i ∈ {Igu[m]}u∈Ml

0 otherwise
, (17)

the computation rate of the l-th sub-function in single sub-
carrier can be given as

Rl = C+

(
N

M
+

NP‖al‖2

1 +NP
∑L
j=i+1 ‖aj‖2

)
. (18)

Then combining Eq. (18) with [16, Theorem 3], the com-
putation rate considering fading channel and power control at
the t-th time slot is further expressed as

Rl[t] = C+

N

M
+

N min
u∈Ml

[
|hIu [t]|2PIu [t]

]
1 +N

∑L
j=l+1 min

u∈Mj

[
|hIu [t]|2PIu [t]

]
 .

(19)
Since the propagation time of a sub-carrier symbol in

OFDM needs N time slots as mentioned in [20, Lemma 1],
Rl,g[m] for the l-th sub-function in the g-th sub-carrier at the
m-th OFDM symbol is 1

N of Rl[t]. In conclusion, Lemma 1
has been proved.

Rate of Superposition δ. Compared with conventional
CoMAC schemes, each sub-function in the same sub-carrier
has to face inter-function interference in NOMA-CoMAC,
which causes the different computation rates of different sub-
functions in the same sub-carrier. Lemma 1 demonstrates the
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rate of the l-th function in the g-th sub-carrier is a part of the
sum rate of the superposition of the L sub-functions in single
sub-carrier. From Fig. 3(a), it shows that we need to determine
the sum rate of all the L sub-functions in a superposition since
those sub-functions are transmitted as a whole.

Lemma 2 (Computation Rate of a Superposition). As the
limit of large n, the instantaneous computation rate of the
superposition of L sub-functions in the g-th sub-carrier at the
m-th OFDM symbol with AWGN whose variance is 1

N can
be express as

Rδϕ,g[m] = min
l∈[1:L]

Rl,g[m] (20)

Proof: The rate of the superposition of L sub-functions is
determined by the minimum Rl,g[m] for all l ∈ [1 : L], since
each sub-function is a part of the original desired function
and the desired function can be reconstructed if and only if
all parts have been received at the fusion center.

Rate of Combination ϕ. In the hybrid OFDM-based NOMA
system with N sub-carriers, the number of OFDM symbols Ts
is at least n

N
2. It also implies that the number of all the sub-

carriers during Ts OFDM symbols is n, and each sub-carrier
serves one superposition δ ∈ H. We define a setMϕ including
those sub-carriers that serve the combination ϕ and a set Mδ

ϕ

containing the sub-carriers that serve the specific superposition
δ in the combination ϕ. Since the superpositions and the
combinations in practice are random depending on channel
realizations, it causes that |Mϕ| and |Mδ

ϕ| are stochastic. As
the limit of large n, the setMδ

ϕ andMϕ contain, respectively,
|Mδ

ϕ| = n
D|X | sub-carriers and |Mϕ| = D|Mδ

ϕ| sub-carriers
referring to [20, Lemma 2]. Then, the transmission of the
specific superposition δ in the combination ϕ totally occupies
T δϕ = d |M

δ
ϕ|

N e OFDM symbols3.

Lemma 3 (Computation Rate of a Combination). The average
rate for computing those sub-functions in the combination ϕ
during Tϕ = DT δϕ OFDM symbols can be given as

Rϕ =
1

Tϕ

T δϕ∑
m=1

1

N

N∑
g=1

Rδϕ,g[m]. (21)

Proof: According to Eqs. (5) and (6), the received signal
in the g-th sub-carrier for the superposition δ based on the
combination ϕ can be given as

yδϕ,g[m] =
∑
τl∈δ

∑
i∈τl

vτli,ϕ,g[m]xτli,ϕ,g[m]hτli,ϕ,g[m] + wτli,ϕ,g[m]

(22)

=
∑
τl∈δ

∑
i∈τl

xτli,ϕ,g[m]h
′τl
i,ϕ,g[m] + wτli,ϕ,g[m], (23)

where m = [1 : T δϕ],τl contains the indexes of the l-
th sub-function in the superposition δ and h

′τl
i,ϕ,g[m] =

|hτli,ϕ,g[m]|
√
P τli,ϕ,g[m] is equivalent channel.

2In order to simplify the derivation, the number of OFDM symbols in
Eq. (5) is given as n

N
instead.

3Although these superpositions are sent separately in different sub-carrier
in different OFMD symbol, we can consider that they are transmitted centrally
when obtaining the achievable rate.

Depending on the conclusions of Lemmas 1 and 2, and
Eq. (23), we can obtain the average rate for computing
the superposition δ in the combination ϕ during T δϕ OFDM
symbols

Rδϕ =
1

T δϕ

T δϕ∑
m=1

1

N

N∑
g=1

Rδϕ,g[m]. (24)

Then, the average rate for computing those sub-functions in
the combination ϕ is expressed as

Rϕ
(a)
=

1

D
min
δ∈ϕ

Rδϕ
(b)
=

1

D
Rδϕ, (25)

where condition (a) follows because of the similar result to
Lemma 2 and condition (b) follows as each average rate Rδϕ
approaches the same value with the limit of large n.

With the help of Eq. (21) and the length of the transmitted

vector |Mϕ|, the length of the data vector is Uϕ =
Rϕ|Mϕ|
H(f(sr))

as the same as the number of the desired function values
reconstructed by combination ϕ (see Definition 2). Uϕ is only
the part of all the values of desired function Td, and the exact
number of desired function values for all ϕ ∈ X during Ts
OFDM symbols is

Td =
∑
ϕ∈X

Uϕ. (26)

Finally, with the help of Lemmas 1, 2, and 3, the compu-
tation rate of NOMA-CoMAC based on Definition 2 can be
given as

R = lim
n→∞

Td
n
H(f(sr))

= lim
n→∞

∑
ϕ∈X

Rϕ|Mϕ|
H(f(sr))

n
H(f(sr))

=
ML

KN

1

Ts

Ts∑
m=1

N∑
g=1

Rδϕ,g[m]. (27)

In conclusion, the rate in Theorem 3 is achievable as n
increases.

As the number of sub-carriers and users are increasing,
the estimation error of channel state information (CSI) could
be more severe. In the following remark, we provide some
discussion on the impact of the channel estimation error.

Remark 7 (Computation Rate With Imperfect CSI). The
channel estimation error could be more severe as the number
of sub-carriers and users are increasing. As pointed out in
[31], the channel estimation error in the g-th sub-carrier is
often measured by the mean square error (MSE), which can
be defined as

MSEg = E

[
1

K

K∑
i=1

∣∣∣h′i,g − hi,g∣∣∣2
]
. (28)

We choose to characterize the estimation error as additive
Gaussian noise. The estimated channel response is h

′

i,g =
hi,g + ei,g , where the estimation error ei,g , independent from
hi,g , is a complex Gaussian random variable with zero mean
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and a variance, σ2
e , equal to MSEg .4. Following the similar

steps of Lemma 1 and the derivation of the computation
rate with imperfect CSI in [33], the rate Rl,g[m] considering
imperfect CSI can be rewritten as

R
′

l,g[m] =
1

N
C+


N

M
+

N min
u∈Ml

[
|hIu [m]|2PIu [m]

]
1 +N

∑L
j=l+1 min

u∈Mj

[
|hIu [m]|2PIu [m]

]


×

1 +
L∑
j=1

∆2
j [m](

1

min
u∈Mj

[
|hIu [m]|2PIu [m]

]
M

+2 + min
u∈Mj

[
|hIu [m]|2PIu [m]

]
M)

]−1)
,

(29)
where ∆j [m] = α

′

j [m] − αj [m] is the instantaneous MMSE
coefficient error and

α
′

l =
Ph

′T
al

1 + P
∑
i∈{Igu[m]}u∈Ml

|h′ [i]|2
. (30)

Finally, with the help of Lemmas 1, 2, and 3, the compu-
tation rate of NOMA-CoMAC with imperfect CSI is given
as

R
′

=
ML

KNTs

Ts∑
m=1

N∑
g=1

min
i∈[1:L]

R
′

l,g[m]. (31)

One can observe that the computation rate will reduce when
the variance of the estimation error, σ2

e , increases. When the
number of nodes to compute a sub-function increases, the
computation rate will also reduce. For a special case with
perfect CSI, i.e., σ2

e = 0, the MMSE coefficient error ∆j [m] is
equal to zero, leading to the rate with perfect CSI as Theorem
3. Also, by setting L = 1 and N = 1 and considering non-
fading case, it is reduced to the rate in [33].

V. PERFORMANCE OF PROPOSED NOMA-COMAC
SCHEME

In order to discuss the performance of the proposed scheme,
in this section, we first derive the achievable computation rate
of the proposed NOMA-CoMAC with average power control
based on the general rate in Theorem 3. We further analyze
the outage performance and obtain the diversity order for the
corresponding rate.

A. Average Power Control

We consider an average power control method where the
average power of each node in each sub-carrier is no more
than P

N for all g ∈ [1 : N ], i.e., E [Pi,g[m]] ≤ P
N . Let Pi,g[m]

4To simplify the analysis, we assume MSEg in each sub-carrier is the same
one. This simplified model has also been used in the literature (for example,
[32]).

represent the transmitted power in the g-th sub-carrier at the
m-th OFDM symbol for the node i, and it can be express as

PIgi [m] =


βl,g[m]

KP
|hIgMl [m]|2

|hIgi [m]|2

N

L∑
l=1

βl,g[m]$l,g

i ∈Ml,∀l ∈ [1 : L]

0 otherwise

,

(32)

where $l,g = E

[
|hIg

Ml
[m]|2

|h|2

]
= E

[
|hIg

Ml
|2

|h|2

]
as a constant,

βl,g[m] can be regarded as the power factor to compute the l-th
sub-function in the g-th sub-carrier and the detailed derivation
is given in Appendix A. By putting Eq. (32) into Eq. (15),
the rate of the l-th sub-function Rl,g[m] in Lemma 1 can be
rewritten as

Rl,g[m] =
1

N
C+

(
N

M
+

PK|hIgMl [m]|2βl,g[m]

M
∑L
l=1 βl,g[m]$l,g +

∑L
j=l+1 PK|hIgMj [m]|2βj,g[m]

)
.

(33)
We work on maximizing the instantaneous rate of each

OFDM symbol to improve the ergodic rate since the rate in
Theorem 3 can be regarded as the mean of the instantaneous
rate. Then we formulate the following optimization.

Problem 1.

maximize
βl,g [m]

N∑
g=1

min
l∈[1:L]

Rl,g[m]

s.t. βl,g[m] ≥ 0 ∀l ∈ [1 : L]

Because the superposition transmission of too many sub-
functions brings the difficulty of SIC at the fusion center and
makes the mathematical analysis hard, we choose two sub-
functions as a pair to be transmitted in single sub-carrier. By
setting L = 2 in Problem 2, the relationship between β1,g[m]
and β2,g[m] can be obtained as

β1,g[m] =

(√
(Υ[m]$2,g +$1,g)

2
+ 4P

K

M
|hIgM [m]|2$1,g

+$1,g −Υ[m]$2,g

)
β2,g[m]

2Υ[m]$1,g
,

(34)

where Υ[m] =
|hIg

M
[m]|2

|hIg
2M

[m]|2 and the detailed derivation is given

in Appendix A.
Therefore, based on Theorem 3 and the increasing n, the

ergodic computation rate of NOMA-CoMAC with a sub-
function pair

R
(a)
=

2M

KNTs

Ts∑
m=1

[
N∑
g=1

R1,g[m]

]
(b)
=

2M

KNTs

Ts∑
m=1

[
N∑
g=1

R2,g[m]

]
(35)

is achievable, where the conditions (a) and (b) follow because
R1,g[m] = R2,g[m] with the given optimal power allocation
factors β1,g[m] and β2,g[m] in Eq. (34). As a result, Corollary
1 has been proved.

Note that the power allocated to each node for computing
the corresponding sub-function in Eq. (32) is a closed-form
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expression with the given relationship between β1,g[m] and
β2,g[m] in Eq. (34). It implies that the allocated power can be
calculated directly with low computational complexity. Hence,
the power control method is suitable to be deployed in a
system that requires low latency.

We provide a signaling procedure to use the power control
method as follows.
Step 1. The fusion center broadcasts a pilot signal to all nodes,

and each node calculates its own CSI simultaneously.
Step 2. The fusion center collects the N channel gains from

each node.
Step 3. The fusion center calculates the Ml-th channel gain

|hIgMl [m]|2 in the ordered channel gains and obtains
the set {Igi [m]}i∈Ml

including M indexes with large
channel gains at the g-th sub-carrier.

Step 4. The fusion center broadcasts each |hIgMl [m]|2 and the
ID5 of {Igi [m]}i∈Ml

to all nodes for l ∈ [1 : L].
Step 5. At the same time, each node finds each set with

the corresponding ID in its memory, and calculates
the transmitted power through Eq. (32) as βl,g[m] is
obtained by the nodes itself.

B. Optimal Power Control

Recalling Theorem 3, we formula an optimization problem
considering L = 2 as follows.

Problem 2.

maximize
PIg
i
[m]

2M

KN

N∑
g=1

min [R1,g[m], R2,g[m]]

s.t.

N∑
g=1

Pi,g[m] ≤ P ∀i ∈ [1 : K] (36)

.

Eq. (36) is difficult to solve, because the min function
is nested inside the log function, and the ordered indexes
also bring difficulty. We introduce two K × N sub-function
allocation matrix, ω1 and ω2 to make it tractable. Each
element in the sub-function allocation matrix is given as

ωlIgi ,g
[m] =

{
1 i ∈Ml

0 otherwise
∀g ∈ [1 : N ], l ∈ {1, 2} .

(37)
Furthermore, mini∈Ml

[
|hIgi [m]|2PIgi [m]

]
in Theorem 3

implies that the computation rate of the l-th sub-function is
only determined by the node with the minimum product among
the chosen nodes in Ml. This means that other nodes do not
need to put much power to this sub-carrier except for the
node with the minimum product, and the unused power can
be allocated to other sub-carriers to improve the rate. Thus,
we use the level ηlg[m] to replace the min function by making
|hIgi [m]|2PIgi [m] = ηlg[m] for all i ∈ Ml in the g-th sub-
carrier.

5Because all the possible sets
{
Igi [m]

}
i∈Ml

are known and can be stored
in the memories of the nodes and the fusion center, we only need to broadcast
an ID of it instead of all the elements in the set.

Then, by converting the max−min optimization to a max
optimization though relaxation, Problem 2 is rewritten as
follows.

Problem 3.

maximize
η1g [m],η2g [m]

2M

KN

N∑
g=1

C+

(
N

M
+Nη2g [m]

)

s.t.

N∑
g=1

Gi,g
(
η1g [m]ω1

i,g[m] + η2g [m]ω2
i,g[m]

)
≤ P ∀i ∈ [1 : K]

C+

(
N

M
+N

η1g [m]

1 + η2g [m]

)
≥ C+

(
N

M
+Nη2g [m]

)
,

where ηlg[m] ≥ 0 and Pi,g[m] ≥ 0 are necessary, Gi,g[m] =
1/|hi,g[m]|2, Pi,g[m] = Gi,g[m]ηlg[m]ωli,g[m] and ωli,g[m] is
the element of the sub-function allocation matrix in the m-th
OFDM symbol.

Since Problem 3 is concave and has a unique maximum,
we introduce the Lagrangian multipliers {λi} to formulate the
Lagrangian function. By setting the first derivative of it with
respect to η1g [m] and η2g [m] to zero for each g, g = 1, · · · , N ,
we have the optimal solutions as η∗1g[m] = η∗2g[m] + η∗2g[m]2

and

η∗2g[m] =
1

4

(√
(1 + ϕ[m])2 +

16M

Kε1[m]N
− 4 + 4ϕ[m]

M
+

4

M2
− M + 2 +Mϕ[m]

M

)+

,

(38)
where ε1[m] =

∑K
i=1 λiGi,g[m]ω1

i,g[m], ε2[m] =∑K
i=1 λiGi,g[m]ω2

i,g[m] and ϕ[m] = ε2[m]/ε1[m].
While η∗1g[m] and η∗2g[m] satisfy

K
max
i=1

[
N∑
g=1

Gi,g
(
η1g [m]ω1

i,g[m] + η2g [m]ω2
i,g[m]

)]
= P, (39)

the optimal power in each sub-carrier of each node is

P ∗i,g[m] = Gi,g[m]
(
η∗1g[m]ω1

i,g[m] + η∗2g[m]ω2
i,g[m]

)
. (40)

C. Outage Probability and Diversity Order

It is worth obtaining the outage probability and the diversity
order for NOMA-CoMAC system, which can help us to
analyze the performance theoretically. An exact expression for
the outage probability and the diversity order are provided in
the following corollary.

Corollary 3 (Diversity Order of NOMA-CoMAC). The out-
age probability for NOMA-CoMAC with a sub-function pair
transmission in the OFDM-based system can be given as

Pout =

{
1−Θ

M−1∑
u1=0

K−2M∑
u2=0

(
M − 1

u1

)(
K − 2M

u2

)
(−1)K−2M+u1−u2

×

[∫ ∞
ξ
P

∫ φ2

φ1

Ex1(x)dxEx2(y)dy

+

∫ ∞
ε
RT

NPβ2M

∫ ∞
φ3

Ex1(x)dxEx2(y)dy

]}N
,

(41)
where Θ = K!

(M−1)!(M−1)!(L−2M)! , Ex1(x) = e−(M+u1)x,

Ex2(y) = e−(K−M−u1−u2)y , φ1 =
εRT

Nβ1,gP
+
εRT β2,g

β1,g
|hIg2M |

2,
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Fig. 4. Comparison between NOMA-CoMAC and conventional CoMAC
schemes versus the number of all nodes K, SNR = 10 dB

φ2 =
β2,g

β1,g
|hIg2M |

2 + NP
β2,g

β1,g
|hIg2M |

4, φ3 =
β2,g

β1,g
|hIg2M |

2 +

NP
β2,g

β1,g
|hIg2M |

4, ξ =
εRT−1+

√
4ε
RT

β2,g
+(εRT−1)2

2N and εRT =

2
RTKN

2M − N
M .

The diversity order achieved by NOMA-CoMAC with a
sub-function pair transmission is given by

− lim
P→∞

logPout
logP

= N︸︷︷︸
o1

· (K − 2M)︸ ︷︷ ︸
o2

(42)

Proof: See Appendix C.
Corollary 3 illustrates that the diversity order in our pro-

posed NOMA-CoMAC with a sub-function pair transmission
consists of two parts. The first part o1 is achievable benefiting
from the OFDM design, and the superposition of the first
L = 2 sub-functions brings the gain as the second part o2.
Furthermore, the part o2 shows that the node with the worst
channel gain in these two sub-functions plays a dominant role.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results of the computation rate
based on NOMA-CoMAC are provided and compared with
the conventional CoMAC schemes. Besides, the outage perfor-
mance of NOMA-CoMAC is demonstrated, and the accuracy
of the derived analytical results are verified through Monte
Carlo simulation. For easy presentation, the abbreviation for
average power control and optimal power control are APC and
OPC, respectively.

A. Computation Rate

We compare the conventional CoMAC schemes, i.e., NB-
CoMAC and WB-CoMAC, with NOMA-CoMAC in Fig. 4.
We see that NOMA-CoMAC can improve the computation
rate over the conventional CoMAC schemes as the number of
nodes K is small. When K increases, all the rates shown in
Fig. 4 are decreasing but keep a non-vanishing rate. Compared
with the conventional CoMAC schemes, the proposed NOMA-
CoMAC can provide an improved non-vanishing rate. It also

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

Fig. 5. Computation rates of NOMA-CoMAC versus SNR and the number
of sub-carriers N
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Fig. 6. Computation rates of NOMA-CoMAC versus the number of chosen
nodes M , SNR = 10 dB

verifies the limiting rates in Corollary 2 and implies that the
exact non-vanishing rates as the lower bounds can be obtained
without any simulation using Corollary 2. As for the impact
of the estimation error, the computation rate decreases as σ2

e

increases. When K becomes larger, the gap between the rate
with perfect CSI and the one with imperfect CSI also becomes
larger. This is because, for a large K, M will become larger
and then enlarge the impact of estimation error (referring to
Eq. (31)).

The relationship between the computation rate of NOMA-
CoMAC and SNR is shown in Fig. 5. When SNR increases,
all three rates with different N increase. When SNR is small,
the number of sub-carriers plays the main role to improve the
rate since the increasing N can reduce the equivalent noise
power. However, when SNR increases, the contribution of
N becomes smaller and can be ignored compared to SNR.
Hence, all three rates are asymptotically equal. From Corollary
2, the asymptotic rate with increasing SNR can be given as
2rC+(P

1
2 ξ

1
2
1−r).

Fig. 6 illustrates that the computation rate of NOMA-
CoMAC referred to Corollary 1 versus the increase of the
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Fig. 7. Comparison of computation rates between NOMA-CoMAC with OPC
and NOMA-CoMAC with APC.
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(a) the outage probabilities with different sub-function pairs.
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(b) the outage probabilities with different number of sub-carriers.

Fig. 8. Outage probabilities with different sub-function pairs and different
number of sub-carriers.

number of chosen nodes M . It shows that the rate in Eq. (8)
does not increase monotonically as M increases. The reason
is that the rate gain 2M

KN increases with M , whereas the
worse channel gain |hIg2M [m],g[m]|2 becomes vanishing as M
increases. Hence, there is a trade-off between the rate gain
and the worse channel gain. It also implies that there is an
optimal M that achieves the maximum rate. In addition, with
the increase of the number of sub-carriers N , the rate can be
improved because the equivalent noise power of lattice code
decreases.

As shown in Fig. 7, the comparison of the computation
rate between NOMA-CoMAC with OPC and NOMA-CoMAC
with APC is given. When the number of nodes K increases,
both rates will decrease and eventually keep stable. How-
ever, NOMA-CoMAC with OPC provides a higher rate than
NOMA-CoMAC with APC. It shows that the computation
rate is further improved by optimal power control and a non-
vanishing computation rate is also provided as K increases.

B. Outage Performance

As mentioned in Corollary 1, NOMA-CoMAC only chooses
a sub-function pair to be computed in a single sub-carrier.
Fig. 8(a) shows the outage performance of different sub-
function pairs with the same first sub-function including
l ∈ [1, 2], l ∈ [1, 3], l ∈ [1, 4], l ∈ [1, 5]. One can ob-
serve that the outage performance of the sub-function pair
l ∈ [1, 2] is always superior to that of other sub-function
pairs. Furthermore, the outage performance of different sub-
function pairs with the same second sub-function including
l ∈ [1, 5], l ∈ [2, 5], l ∈ [3, 5], l ∈ [4, 5] is also demonstrated
in Fig. 8(a). We can see that the outage probabilities for all
five sub-function pairs have the same diversity order while the
sub-function pair l ∈ [1, 5] offers a constant performance gain
over the others. As shown in Fig. 8(b), both the diversity order
and performance gain increase as the number of sub-carriers
increases.

Based on Fig. 8, we can see that the first function in the sub-
function pair determines the performance gain. The diversity
order depends on the second function of the sub-function pairs.
Hence, the sub-function pair chosen in Corollary 1 outper-
forms any other sub-function pair. Besides, the figures above
verify Corollary 3 where the diversity order is only associated
with the sub-function with poorer equivalent channel gain in
the sub-function pair, and the diversity order increases as N
increases.

VII. CONCLUSION

In order to provide extra improvement in spectrum effi-
ciency, we have proposed a NOMA-CoMAC system through
the division, superposition, SIC and reconstruction of the
desired functions. Unlike those NOMA designs for infor-
mation transmission, the proposed NOMA-CoMAC aims at
computing functions over the MAC through superposing sub-
functions. The expression of achievable computation rate has
been derived based on nested lattice coding. It not only
improves the spectrum efficiency but also enhances the non-
vanishing rate via sub-function superposition. Furthermore, we
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have considered some limiting cases to find more insights.
As the number of nodes goes to infinity, we have obtained
the exact expression of the limiting computation rate which
characterizes the lower bound of the computation rate of
NOMA-CoMAC. It can be used to evaluate the performance
of the CoMAC system without time-consuming simulation.
We have discussed the outage performance and analyzed the
diversity order as the power goes to infinity. It shows the node
with the worst channel gain among these sub-functions in each
RB plays a dominant role.

APPENDIX A
PROOF OF COROLLARY 1

We consider the average power control method where
E [Pi,g[m]] ≤ P

N . Let Pi,g[m] represent the transmitted power
in the g-th sub-carrier at the m-th OFDM symbol for the node
i, which can be express as

PIgi [m] =

cβl,g[m]
|hIgMl [m]|2

|hIgi [m]|2
i ∈Ml,∀l ∈ [1 : L]

0 otherwise

.

(43)
In Eq. (43), c is a constant which is needed to be solved,

and βl,g[m] can be regarded as the power factor to compute
the l-th sub-function in the g-th sub-carrier. With the average
power control, we have

E[Pi,g[m]] =

K∑
j=1

Pr(i = Igj [m])E[Pi,g[m]|i = Igj [m]]

(a)
= c

M

K

L∑
l=1

βl,g[m]E

[
|hIgMl [m]|2

|h|2

]
︸ ︷︷ ︸

$l,g

=
P

N
, (44)

where condition (a) follows because the channel gains in
different sub-carriers are i.i.d. random variables and h is used
as a representative random variable without loss of generality.
Then we can calculate the constant c and obtain Eq. (32).

Assuming that the channel gain in each sub-carrier is i.i.d.,
and we further convert the max−min problem shown as
Problem 2 into a max problem. A new form of the optimiza-
tion is given in the following.

Problem 4.

maximize βL,g[m]

s.t. R1,g[m] = R2,g[m] = · · · = RL,g[m]

βl,g[m] ≥ 0 ∀l ∈ [1 : L] (45)

By setting L = 2, the relationship between β1,g[m] and
β2,g[m] can be calculated through quadratic formula by solv-
ing R1,g[m] = R2,g[m]. Then, the relationship between
β1,g[m] and β2,g[m] in Eq. (34) can be further obtained.

APPENDIX B
PROOF OF COROLLARY 2

Let M
K = r and $l = E

[
|hIMl |

2

|h|2

]
. The limiting rate of

NB-CoMAC in Theorem 1 is given as

R =
1

B
E

C+

 1

M
+
|hIM |2KP

ME

[
|hIM |2

|h|2

]



=rE

[
C+

(
1

rK
+
NrP
r$1

)]
(a)
= rC+

(
1

rK
+
ξ1−rP

r$1

)
,

(46)

where Nr asymptotically follows the Gaussian distribution
with mean ξ1−r and variance r(1−r)

Kf2
|h|2

(ξ1−r)
, F|h|2(ξ1−r) = 1−r

[34] and condition (a) holds while the variance of Nr ap-
proaches 0.

With similar steps, the limiting rate of WB-CoMAC in
Theorem 2 is easy to obtain. And the limiting rate of NOMA-
CoMAC with average power control in Corollary 1 can be
express as

R =
2

BN
E

 N∑
g=1

C+

N

M
+

2P K
M |hIgM |

2

Γ +
√

Γ2 + 4P K
M |hIgM |

2$1,g


= 2rE

[
C+

(
N

rK
+

2PNrN2r

r∆ +
√

(r∆)2 + 4r$1PNrN 2
2r

)]

= 2rC+

 N

rK
+

2Pξ1−rξ1−2r

r∆M +
√

(r∆M)2 + 4r$1Pξ1−rξ21−2r

 ,

(47)

where Γ =
|hIg

M
|2

|hIg
2M
|2$2,g + $1,g , ∆ = $1N2r + $2Nr and

∆M = E [∆] = $1ξ1−2r +$2ξ1−r .

APPENDIX C
PROOF OF COROLLARY 3

Recalling Problem 2 and setting L = 2, the instantaneous
computation rate is given as

R[m] =
2M

KN

N∑
g=1

min [R1,g[m], R2,g[m]] (48)

with fixed power allocation factors β1,g[m] and β2,g[m].
Since the analysis of outage probability can be seen as a

single-input and multiple-output system approximately refer-
ring to [35] in the OFDM-based system, we only aim at the
outage probability of the rate in each sub-carrier P subout , and
the outage probability Pout can be evaluated as

Pout =(P subout )N

=(1− Pr
{
R1,g[m] > RT , R2,g[m] > R1,g[m]

}
−

Pr
{
R2,g[m] > RT , R1,g[m] > R2,g[m]

}
)N , (49)

where RT is the target rate.
In the following derivation, we will ignore [m] which stands

for the m-th OFDM symbol, since it has no influence on the
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result and makes derivation obscure. Hence, P̄ subout = 1−P subout

can be further expressed as

P̄ subout = Pr

{
φ1 < |hIgM |

2 < φ2, |hIg2M |
2 >

ξ

P

}
︸ ︷︷ ︸

α1

+ Pr

{
|hIgM |

2 > φ3, |hIg2M |
2 >

εRT

NPβ2,g

}
︸ ︷︷ ︸

α2

(50)

where φ1 =
εRT

Nβ1,gP
+

εRT β2,g

β1,g
|hIg2M |

2, φ2 =
β2,g

β1,g
|hIg2M |

2 +

NP
β2,g

β1,g
|hIg2M |

4, φ3 =
β2,g

β1,g
|hIg2M |

2 + NP
β2,g

β1,g
|hIg2M |

4, ξ =

εRT−1+
√

4ε
RT

β2,g
+(εRT−1)2

2N and εRT = 2
RTKN

2M − N
M .

As shown in [36] and binomial theorem, the joint probability
density function of the order statistics |hIgM |

2 and |hIg2M |
2 is

f|hIg
M
|2,|hIg

2M
|2(x, y) =Θ

M−1∑
u1=0

K−2M∑
u2=0

(
2M − 1

u1

)(
K − 2M

u2

)
× (−1)K−2M+u1−u2Ex1(x)Ex2(y),

(51)
where Θ = K!

(M−1)!(M−1)!(L−2M)! , Ex1(x) = e−(M+u1)x and
Ex2(y) = e−(K−M−u1−u2)y .

Since P̄ subout can be divided into two parts, the first part α1

is evaluated as follows:

α1 =Θ

M−1∑
u1=0

K−2M∑
u2=0

(
M − 1

u1

)(
K − 2M

u2

)

× (−1)K−2M+u1−u2

∫ ∞
ξ
P

∫ φ2

φ1

Ex1(x)dxEx2(y)dy.

(52)

And the second part can be evaluated as follows:

α2 =Θ

M−1∑
u1=0

K−2M∑
u2=0

(
M − 1

u1

)(
K − 2M

u2

)
× (−1)K−2M+u1−u2

∫ ∞
ε
RT

NPβ2M

∫ ∞
φ3

Ex1(x)dxEx2(y)dy.

(53)

Substituting the above equations into Eq. (49), the outage
probability Pout in Eq. (41) can be obtained.

In order to find the diversity gain, we focus on the case with
high SNR, i.e., P →∞. First of all, a more exact expression
of α1 without the integral can be expressed as

α1 =Θ

M−1∑
u1=0

K−2M∑
u2=0

(
M − 1

u1

)(
K − 2M

u2

)
(−1)K−2M+u1−u2

× 1

2
√

(M + u1)D(M + u1)((−B + 1)u1 + (−B + 1)M −K + u2)

×


erf

(
(M + u1)C + 2DE(M + u1) +K −M − u1 − u2

2
√

(M + u1)D

)
− 1


× ((−B + 1)u1 + (−B + 1)M −K + u2)e

((C − 1)u1 + (C − 1)M +K − u2)2

4(M + u1)D √
π

× −2 e((−B+1)u1+(−B+1)M−K+u2)E−(M+u1)A
√

(M + u1)D



,

(54)

where A =
εRT

Nβ1,gP
, B =

εRT β2,g

β1,g
, C =

β2,g

β1,g
, D = NP

β2,g

β1,g

and E = ξ
P . With the case as P → ∞, A → 0, E → 0

and D → ∞. Applying Taylor expansion of the exponential
functions, α1 can be further given as

α1 =Θ
M−1∑
u1=0

K−2M∑
u2=0

(
M − 1

u1

)(
K − 2M

u2

)
(−1)K−2M+u1−u2+1

×

(
√
π((B−1)u1+(B−1)M−u2+K)√

(M+u1)D

∞∑
n=0

((C − 1)u1 + (C − 1)M +K − u2)
2n

n! (4 (M + u1)D)
n

)
2 ((B − 1)u1 + (B − 1)M − u2 +K) (M + u1)

.

(55)
By using the property of CDF of |hIg2M |

2 as
F|hIg

M
|2,|hIg

2M
|2(∞,∞) = 1 and the binomial theorem,

(55) can be expressed as follows:

α1 =
1

2

(
1 + Θ

M−1∑
u1=0

(
M − 1

u1

)
(−1)

K−2M+u1+1

√
π ((B − 1)u1 + (B − 1)M − u2 +K)

((B − 1)u1 + (B − 1)M − u2 +K) (M + u1)

×
∞∑
n=0

1

n!(4 (M + u1)D)
n

K−2M∑
u2=0

(−1)
u2

(
K − 2M

u2

)

×
2n−1∑
k=0

(
2n− 1

k

)
((C − 1)u1 + (C − 1)M +K − u2)

2n−1−k
(−1)

k
u2
k

) .

(56)
Recalling two sums of the binomial coefficients from [37,
Eq. (0.153 )] and [37, Eq. (0.154 )], we can have the following
expression

α1 ≈
1

2
−Θ

∑M−1
u1=0

(
M−1
u1

) ((C − 1)u1 + (C − 1)M +K − u2)
2(K−2M)

(K − 2M)! (4 (M + u1)D)
(K−2M)

,

(57)
since the factor with uk2 , k < (K − 2M) is equal to zero
by using the above equations. Furthermore, the terms with
uk2 , k > (K − 2M) can be also removed as the dominant
factor is k = K−2M . Following steps similar to the ones for
obtaining Eq. (57), we can prove that the dominant factor is
also k = K − 2M in α2. In conclusion, the diversity gain is
obtained.
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the wireless channel: A proof of concept,” in SENSORS, 2014 IEEE,
2014, pp. 1224–1227.



15

[10] L. Chen, N. Zhao, Y. Chen, F. R. Yu, and G. Wei, “Over-the-air
computation for IoT networks: Computing multiple functions with
antenna arrays,” IEEE Internet Things J., vol. 5, no. 6, pp. 5296–5306,
2018.

[11] B. Nazer and M. Gastpar, “Computation over multiple-access channels,”
IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3498–3516, 2007.

[12] R. Appuswamy and M. Franceschetti, “Computing linear functions by
linear coding over networks,” IEEE Trans. Inf. Theory, vol. 60, no. 1,
pp. 422–431, 2014.

[13] U. Erez, S. Litsyn, and R. Zamir, “Lattices which are good for (almost)
everything,” IEEE Trans. Inf. Theory, vol. 51, no. 10, pp. 3401–3416,
2005.

[14] L. Chen, X. Qin, and G. Wei, “A uniform-forcing transceiver design
for over-the-air function computation,” IEEE Wireless Commun. Lett.,
vol. 7, no. 6, pp. 942–945, 2018.

[15] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interfer-
ence through structured codes,” IEEE Trans. Inf. Theory, vol. 57, no. 10,
pp. 6463–6486, 2011.

[16] S. W. Jeon, C. Y. Wang, and M. Gastpar, “Computation over Gaussian
networks with orthogonal components,” IEEE Trans. Inf. Theory, vol. 60,
no. 12, pp. 7841–7861, 2014.

[17] S. W. Jeon and C. J. Bang, “Opportunistic function computation for
wireless sensor networks,” IEEE Trans. Wireless Commun., vol. 15,
no. 6, pp. 4045–4059, 2016.

[18] C. Y. Wang, S. W. Jeon, and M. Gastpar, “Interactive computation of
type-threshold functions in collocated Gaussian networks,” IEEE Trans.
Inf. Theory, vol. 61, no. 9, pp. 4765–4775, 2015.

[19] M. Goldenbaum, “Computation of real-valued functions over the channel
in wireless sensor networks,” Ph.D. dissertation, Technische Universität
München, 2014.

[20] F. Wu, L. Chen, N. Zhao, Y. Chen, F. R. Yu, and G. Wei, “Computation
over wide-band multi-access channels: Achievable rates through sub-
function allocation,” IEEE Trans. Wireless Commun., vol. 18, no. 7, pp.
3713–3725, July 2019.

[21] O. Abari, H. Rahul, D. Katabi, and M. Pant, “Airshare: Distributed
coherent transmission made seamless,” in 2015 IEEE Conference on
Computer Communications (INFOCOM). IEEE, 2015, pp. 1742–1750.

[22] L. Chen, N. Zhao, Y. Chen, F. R. Yu, and G. Wei, “Over-the-air com-
putation for cooperative wideband spectrum sensing and performance
analysis,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10 603–10 614,
2018.

[23] G. Wunder, R. F. Fischer, H. Boche, S. Litsyn, and J.-S. No, “The
PAPR problem in OFDM transmission: New directions for a long-lasting
problem,” IEEE Signal Process Mag., vol. 30, no. 6, pp. 130–144, 2013.

[24] A. Mobasher and A. K. Khandani, “Integer-based constellation-shaping
method for PAPR reduction in OFDM systems,” IEEE Trans. Commun.,
vol. 54, no. 1, pp. 119–127, 2006.

[25] S.-W. Hou and C. C. Ko, “Intercarrier interference suppression for
OFDMA uplink in time-and frequency-selective fading channels,” IEEE
Trans. Veh. Technol., vol. 58, no. 6, pp. 2741–2754, 2008.

[26] A. Farhang, N. Marchetti, L. E. Doyle, and B. Farhang-Boroujeny, “Low
complexity CFO compensation in uplink OFDMA systems with receiver
windowing,” IEEE Trans. Signal Process., vol. 63, no. 10, pp. 2546–
2558, 2015.

[27] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K.
Bhargava, “A survey on non-orthogonal multiple access for 5G networks:
Research challenges and future trends,” IEEE J. Sel. Areas Commun.,
vol. 35, no. 10, pp. 2181–2195, 2017.

[28] B. Li, X. Qi, K. Huang, Z. Fei, F. Zhou, and R. Q. Hu, “Security-
reliability tradeoff analysis for cooperative NOMA in cognitive radio
networks,” IEEE Trans. Commun., vol. 67, no. 1, pp. 83–96, 2018.

[29] H. Sun, F. Zhou, R. Q. Hu, and L. Hanzo, “Robust beamforming design
in a NOMA cognitive radio network relying on SWIPT,” IEEE J. Sel.
Areas Commun., vol. 37, no. 1, pp. 142–155, 2018.

[30] A. Giridhar and P. R. Kumar, “Computing and communicating functions
over sensor networks,” IEEE J. Sel. Areas Commun., vol. 23, no. 4, pp.
755–764, 2005.

[31] S. Ye, R. S. Blum, and L. J. Cimini, “Adaptive ofdm systems with
imperfect channel state information,” IEEE Trans. Wireless Commun.,
vol. 5, no. 11, pp. 3255–3265, 2006.

[32] H. Cheon and D. Hong, “Effect of channel estimation error in ofdm-
based wlan,” IEEE Commun. Lett., vol. 6, no. 5, pp. 190–192, 2002.

[33] K. N. Pappi, G. K. Karagiannidis, and R. Schober, “How sensitive
is compute-and-forward to channel estimation errors?” in 2013 IEEE
International Symposium on Information Theory. IEEE, 2013, pp.
3110–3114.

[34] S. S. Wilks, “Order statistics,” Bulletin of the American Mathematical
Society, vol. 54, no. 1, pp. 6–50, 1948.

[35] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge University Press, 2005.

[36] H.-C. Yang and M.-S. Alouini, Order Statistics in Wireless Commu-
nications: diversity, adaptation, and scheduling in MIMO and OFDM
systems. Cambridge University Press, 2011.

[37] A. Jeffrey and D. Zwillinger, Table of Integrals, Series, and Products.
Elsevier Science, 2000.

Fangzhou Wu received the B.S. degree in elec-
tronic information engineering from North China
Electric Power University, Beijing, China, in 2016.
He is currently pursuing the Ph.D. degree with the
Department of Electronic Engineering and Infor-
mation Science, CAS Key Laboratory of Wireless-
Optical Communications, University of Science and
Technology of China. His research interests include
visible light communications, and wireless commu-
nication and computation.

Li Chen received the B.E. in electrical and informa-
tion engineering from Harbin Institute of Technol-
ogy, Harbin, China, in 2009 and the Ph.D. degree in
electrical engineering from the University of Science
and Technology of China, Hefei, China, in 2014.
He is currently an Associate Professor with the De-
partment of Electronic Engineering and Information
Science, University of Science and Technology of
China. His research interests include wireless IoT
communications and wireless optical communica-
tions.

Nan Zhao (S’08-M’11-SM’16) is currently an Asso-
ciate Professor at Dalian University of Technology,
China. He received the Ph.D. degree in informa-
tion and communication engineering in 2011, from
Harbin Institute of Technology, Harbin, China.

Dr. Zhao is serving or served on the editorial
boards of 7 SCI-indexed journals, including IEEE
Transactions on Green Communications and Net-
working. He won the best paper awards in IEEE
VTC 2017 Spring, MLICOM 2017, ICNC 2018,
WCSP 2018 and CSPS 2018. He also received

the IEEE Communications Society Asia Pacific Board Outstanding Young
Researcher Award in 2018.

Yunfei Chen (S’02-M’06-SM’10) received his B.E.
and M.E. degrees in electronics engineering from
Shanghai Jiaotong University, Shanghai, P.R.China,
in 1998 and 2001, respectively. He received his
Ph.D. degree from the University of Alberta in 2006.
He is currently working as an Associate Professor
at the University of Warwick, U.K. His research
interests include wireless communications, cognitive
radios, wireless relaying and energy harvesting.



16

F. Richard Yu (S’00-M’04-SM’08-F’18) received
the PhD degree in electrical engineering from the
University of British Columbia (UBC) in 2003.
From 2002 to 2006, he was with Ericsson (in Lund,
Sweden) and a start-up in California, USA. He
joined Carleton University in 2007, where he is cur-
rently a Professor. He received the IEEE Outstanding
Service Award in 2016, IEEE Outstanding Leader-
ship Award in 2013, Carleton Research Achievement
Award in 2012, the Ontario Early Researcher Award
(formerly Premiers Research Excellence Award) in

2011, the Excellent Contribution Award at IEEE/IFIP TrustCom 2010, the
Leadership Opportunity Fund Award from Canada Foundation of Innovation
in 2009 and the Best Paper Awards at IEEE ICNC 2018, VTC 2017
Spring, ICC 2014, Globecom 2012, IEEE/IFIP TrustCom 2009 and Int’l
Conference on Networking 2005. His research interests include wireless cyber-
physical systems, connected/autonomous vehicles, security, distributed ledger
technology, and deep learning.

He serves on the editorial boards of several journals, including Co-Editor-
in-Chief for Ad Hoc & Sensor Wireless Networks, Lead Series Editor for
IEEE Transactions on Vehicular Technology, IEEE Transactions on Green
Communications and Networking, and IEEE Communications Surveys &
Tutorials. He has served as the Technical Program Committee (TPC) Co-Chair
of numerous conferences. Dr. Yu is a registered Professional Engineer in the
province of Ontario, Canada, a Fellow of the Institution of Engineering and
Technology (IET), and a Fellow of the IEEE. He is a Distinguished Lecturer,
the Vice President (Membership), and an elected member of the Board of
Governors (BoG) of the IEEE Vehicular Technology Society.

 

Guo Wei received the B.S. degree in electronic
engineering from the University of Science and
Technology of China (USTC), Hefei, China, in 1983
and the M.S. and Ph.D. degrees in electronic en-
gineering from the Chinese Academy of Sciences,
Beijing, China, in 1986 and 1991, respectively. He
is currently a Professor with the School of Infor-
mation Science and Technology, USTC. His current
research interests include wireless and mobile com-
munications, wireless multimedia communications,
and wireless information networks.


	Introduction
	Preliminaries
	Narrow-Band CoMAC
	Wide-Band CoMAC
	Existing Results

	System Model & Main Results
	Novel NOMA for Wide-Band MAC
	Main Results

	Proposed NOMA-CoMAC Scheme
	Proposed Scheme
	Computation Rate of NOMA-CoMAC

	Performance of Proposed NOMA-CoMAC Scheme
	Average Power Control
	Optimal Power Control
	Outage Probability and Diversity Order

	Numerical Results and Discussion
	Computation Rate
	Outage Performance

	Conclusion
	Appendix A: Proof of Corollary 1
	Appendix B: Proof of Corollary 2
	Appendix C: Proof of Corollary 3
	References
	Biographies
	Fangzhou Wu
	Li Chen
	Nan Zhao
	Yunfei Chen
	F. Richard Yu
	Guo Wei


