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HODGE NUMBERS AND DEFORMATIONS OF FANO 3-FOLDS

GAVIN BROWN AND ENRICO FATIGHENTI

Abstract. We show that index 1 Fano 3-folds which lie in weighted Grassmannians in their

total anticanonical embedding have no infinitesimal deformations, and we relate the deformation

theory of any Fano 3-fold that has a K3 elephant to its Hodge theory. Combining these results

with standard Gorenstein projection techniques calculates both the number of deformations

and the Hodge numbers of most quasismooth Fano 3-folds in low codimension. This provides

detailed new information for hundreds of deformation families of Fano 3-folds.

1. Introduction

1.1. Aims and context. The classification of nonsingular Fano 3-folds [32, 33, 41] is a landmark

in modern birational geometry. The result is a (finite) list of deformation families, documented

by Iskovskikh–Prokhorov [34, §12.2], with detailed information about each family, including

equation formats and the Hodge numbers of individual members. The need for generalisation to

the ‘Mori category’ of Q-factorial terminal Fano 3-folds has been well understood since the 1980s.

The Mori-theoretic classification remains incomplete, but a wealth of information is known. For

example, Kawamata’s finiteness result [35, 37] leads to a finite list of Hilbert series which includes

all those of Fano 3-folds; this list is documented in the Graded Ring Database [8]. At this stage,

we have some understanding of a few hundred families of Fano 3-folds that form a subset of

the ultimate classification, which may comprise a few thousand or even tens of thousands of

families. The search by graded ring methods works systematically in increasing codimension (in

the full anticanonical embedding that is intrinsic to a Fano; see §2.1). All families are known

up to codimension 3, and in codimension 4 a collection of results (such as those by Takagi and

others [59, 10, 9, 54, 60], and Suzuki, Prokhorov–Reid and others [58, 46, 47, 26, 20] in higher

Fano index) suggest we know most families there.

The main results of this paper (Theorems 1, 3 and 10) are on the infinitesimal rigidity of

Fano 3-folds (that is, H0(X,TX) = 0), their deformations and Hodge theory, and a Lefschetz

theorem on weighted Grassmannians (we refer to [19] for weighted Grassmannians). The latter

seems surprisingly delicate: in the weighted context, low-degree linear systems are seldom free

and so the state of the art ([49, Theorem 1] and [29, Corollary 2.8] for example) does not apply

directly. Put together, these establish a connection between the deformation theory of a range of

Fano 3-folds and their Hodge theory by proving a formula that calculates h1(X,TX) in terms of

h2,1(X). The systematic use of weighted cones to relate results on manifolds to their analogues

on a large set of orbifolds (the proof of Lemma 9, for example) seems new to us in this context.

As an application, this paper also contributes detailed numerical information analogous to

that of [34] for the families up to codimension 3, and some cases in codimension 4. The theorems

provide tools that we apply to calculate the Hodge numbers hp,q(X) and the number of moduli

h1(X,TX) of all known index 1 Fano 3-folds X in codimensions 1, 2 and 3. These results are

presented in Tables 1, 2 and 3 respectively; the Picard rank is 1 in every case. It seems to be the

nature of the birational classification of Fano 3-folds, or perhaps the array of different gradings

that arise, that some results boil down to hundreds of calculations that cannot always be system-

atised in one go (compare Corti–Pukhlikov–Reid [17] and Cheltsov–Przyjalkowski–Shramov [13],
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2 GAVIN BROWN AND ENRICO FATIGHENTI

both of which summarise extensive calculations in Big Tables). Thus in §4 we explain general

approaches in different situations, and illustrate them with particular calculations, including

some in codimension 4.

It is worth emphasising that computing these numbers seems hard: we do not have flexible

techniques to hand for working with the orbifold Chern classes of non complete intersections, and

so resort to birational techniques of projection. Nevertheless, most cases follow the models in §4
and can be worked out by hand: we explain in Appendix A.3 and §2.6 how Tables 1–3 encode

both the strategy and the proof of the calculations, working up from hypersurfaces through a

‘staircase’ of projections (§2.5). Techniques here are similar to the ones used in [18, 16].

In the few cases where we do not have geometric projections to work with, we can recover

numerical information from certain graded pieces of the deformation theory using computer

algebra to calculate in certain Jacobian rings; this is explained in §2.3. The key is Di Natale–

Fatighenti–Fiorenza’s [23] characterisation of deformation theory in terms of Hodge theory, and

this also provides an additional computer check on all our manual results.

To illustrate the computer algebra tool further, we compute the Hodge numbers of some

Fano 3-folds that lie in codimension 4. General varieties in codimension 4 are beyond our

theoretical methods today, seemingly because they tend not to lie in concrete formats related

to key varieties, such as a Grassmannians, whose own deformation theory could be exploited.

This lack of format is a recurring theme in Gorenstein codimension 4, notwithstanding the

ancient wisdom of P1 × P1 × P1 and P2 × P2 (see [9]); compare with Reid’s structure theory

[53] and the commentary therein. Our calculations in codimension 4 give a computer-assisted

verification of a result of Takagi [59, Theorem 0.3], and begin to answer the main open question

of Brown–Kerber–Reid [10, 3.4] on the Picard ranks of Fano 3-folds in codimension 4.

1.2. Formal statement of results. A Fano 3-fold is a normal 3-dimensional complex pro-

jective variety X with ample anticanonical class −KX and Q-factorial terminal cyclic quotient

singularities. (Of course more general notions of Fano 3-fold exist in the literature, but our

methods work with orbifolds, and so this definition is appropriate here. In the Mori-theoretic

context, it would be natural to broaden the definition slightly, by allowing X to have arbitrary

terminal singularities. But note that, in that case, if X does not have a terminal singularity of

the exceptional type 1
4(1, 1, 3, 2; 2) (see [40] [51, Theorem (6.1)(2)]), then Sano [54, Theorem 1.5]

shows that there is a small deformation that has only quotient singularities – this is a so-called

Q-smoothing. Thus our restriction to cyclic quotient singularities is not so severe.)

The index qX of a Fano 3-fold X is the largest integer q for which there exists a Q-Cartier

Weil divisor A with −KX
lin∼ qA.

A K3 elephant of a Fano 3-fold X is an irreducible surface E ⊂ X with canonical singularities

that is linearly equivalent to −KX . In particular, E has KE = 0, and so E is a K3 surface.

This paper has three main ingredients. The first is an unprojection calculus (see §2.5 or [11]).

The second is a relation between the Hodge numbers of a Fano 3-fold and the number of its

moduli, and the third is an infinitesimal rigidity result; we summarise these two as follows.

Theorem 1. Let X be a Fano 3-fold with K3 elephant E ⊂ X.

(i) Setting αE = h1,1(E)− h0(E,−KX|E), we have

(1) h1(X,TX)− h0(X,TX) = αE + h2,1(X)− h2,2(X).

(ii) Suppose in addition that X has index qX = 1 and that X is a complete intersection in

weighted projective space or in a weighted Grassmannian wGr(2, 5). Then h0(X,TX) =

0. In particular, Aut(X) is a finite group in this case.
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The final part of this result compares with a sequence of recent papers that compute the

automorphism group of smooth Fano varieties. Smooth weighted complete intersections of di-

mension at least 3 have finite automorphism groups by [48]; indeed [48, Corollary 4.5] proves

h0(X,TX) = 0 in that case, similarly exploiting [27] as we do here, and thus concludes finiteness.

In contrast, [39, 13] classify smooth Fano 3-folds with infinite automorphism group.

Part (i) is proved in §3.1. In the case where qX = 1 we may express αE purely in terms of the

geometry of E and X as αE = h1,1(E)− gX − 1, where gX = h0(X,−KX)− 2 is the genus of X.

Part (ii) is proved in §3.2. The fact that h1,1(X) = 1 for most cases we consider is Theorem 3.

We work over C throughout.

Acknowledgments. It is a pleasure to acknowledge our debt to Miles Reid, who led us into

this geometry and continues to guide us, and to a superb referee who identified many points

where clarification has substantially improved this paper over its preprint version.

2. Hodge numbers of Fano 3-folds

2.1. Fano 3-folds in their anticanonical embeddings. We study a Fano 3-fold X using its

anticanonical graded ring

R(X,−KX) =
⊕
m≥0

H0(X,OX(−mKX)).

A minimal set of generators x0, . . . , xn for R(X,−KX), whose degrees are denoted a0, . . . , an,

present X as a subvariety X ⊂ P(a0, . . . , an) defined by the relations holding in the ring. By

definition, the codimension of a Fano 3-fold X is its codimension in this embedding: codim(X) =

n − 3. (These numerical properties are well defined for each given X: each graded piece of

R(X,−mKX) is finite dimensional, so choosing generators xi inductively modulo products from

lower degrees determines n and the ai, even though there is choice for the xi. But it is important

to note that the Hilbert series PX of R(X,−KX) does not determine these numerical quantities.)

According to [35, 37], the classification of Fano 3-folds consists of finitely many deformation

families. The Hilbert series of members of those families whose generic element lies in codi-

mension at most 4 are known [1, 2] and available on the Graded Ring Database [8]. They fall

into 95 + 85 + 70 + 145 = 395 cases, according to the minimum realised codimension. There

may be more than one irreducible family for any given Hilbert series, they may lie in different

codimensions [9], and in codimension 4 there are usually two or more families in each case [11];

in all known cases, the different families are distinguished by the Euler characteristic of their

general member.

The relationship between the orbifold nature of X and its equations when embedded in

this way is standard, following [30, §§6,8], though not without subtlety. A variety X ⊂
P(a0, . . . , an) = An+1//C∗ is said to be quasismooth if its affine cone CX ⊂ An+1 is smooth

away from the origin. This condition may be tested by the usual Jacobian condition (on the

rank of the Jacobian matrix at every point). If the equations at a point P ∈ X satisfy the

Jacobian condition, then an analytic neighbourhood of P inside X is the quotient of a complex

3-ball by a finite cyclic group. Thus a quasismooth X ⊂ P(a0, . . . , an) is a V-manifold.

2.2. The Hodge numbers of Fano 3-folds. Because it is a V-manifold, the cohomology of

a quasismooth variety X ⊂ P(a0, . . . , an) carries a pure Hodge structure by Steenbrink [57,

Theorem 1.12], defined as follows. Consider the smooth locus j : X0 ↪→ X and set Ω̂p
X := j∗Ω

p
X0

.

Then the Hodge decomposition then takes the form

Hk(X,C) =
⊕

p+q=k

Hq(X, Ω̂p
X),
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and one defines Hp,q(X) := Hq(X, Ω̂p
X). Since there is no risk of confusion as we only ever work

with Ω̂p
X , we abuse notation from here on and write Ωp

X instead of Ω̂p
X . It follows at once from

the Lefschetz hyperplane theorem [57, Theorem (1.13)] and Kawamata–Viehweg vanishing [38,

Theorem 2.70] that the Hodge diamond of a Fano 3-fold X has the form

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

=

1

0 0

0 h2,2 0

0 h2,1 h1,2 0

0 h1,1 0

0 0

1

.

Since such a Hodge structure is pure and an appropriate version of the Hard Lefschetz theorem

holds in this context ([57, Theorem (1.13)]), h2,2(X) = h1,1(X) and the Euler characteristic

e(X) of X satisfies

e(X) = 2 + 2h1,1(X)− 2h2,1(X).

We calculate these three integers for X in the known families of Fano 3-folds with small codi-

mension. We explain the different strategies we employ in §2.6 below.

The answer is well known in codimension 1: the Hodge numbers of weighted hypersurfaces

are computed by results of Griffiths, Dolgachev and Dimca. (Recall that primitive cohomology

is the kernel of the hyperplane operator: if X has dimension m and hyperplane class L, then

Hk(X,C)prim = ker
{
∩Lm−k+1 : Hk(X,C)→ H2m+2−k(X,C)

}
,

and Hp,q
prim(X) = Hp,q(X) ∩Hp+q(X,C)prim. When X is a Fano 3-fold, then b5(X) = 0 and so

H2,1
prim(X) = H2,1(X).)

Theorem ([25, 24, 30]). Let Xd : (f = 0) ⊂ P(a0, . . . , an) be a quasismooth hypersurface defined

by a homogeneous polynomial f of degree d in weighted homogeneous coordinates x0, . . . , xn of

degrees deg xi = ai. Then the Milnor algebra M = C[x0, . . . , xn]/Jf of X is finite dimensional,

and there is an isomorphism

Hn−p,p−1
prim (X) ∼=Mpd−

∑
ai .

The Hilbert Series PM of the Milnor algebra M is given, in the notation of the theorem, by

PM =
(1− tb0) · · · (1− tbn)

(1− ta0) · · · (1− tan)
, where bi = d− ai.

For example, X66 ⊂ P(1, 5, 6, 22, 33) has

PM =

∏
b∈{65,61,60,44,33}(1− tb)∏
a∈{1,5,6,22,33}(1− ta)

= 1 + t+ t2 + t3 + t4 + 2t5 + · · ·+ 118t64 + 120t65 + 122t66 + · · ·+ t196.

Thus we read off h2,1(X) = dimM2·66−67 = dimM65 = 120. We list all 95 cases in Table 1.

2.3. Calculating T 1 and h2,1(X). We recall the context and results of [23]. A subcanonical

pair (X,OX(1)) consists of a quasismooth projective variety X and an ample sheaf OX(1)

which satisfies ωX
∼= OX(kX) for some kX ∈ Z. (The results of [23] are stated with X smooth.

However, the proofs apply verbatim to give the same conclusions in the case X quasismooth, as

noted in [23] at the beginning of §2.2, and we use that level of generality here.)

Let (X,OX(1)) be a subcanonical pair. We denote by AX the affine cone over X and by

UX = AX \{v}, where v is the vertex of the cone. The results of [23] require that depthvAX ≥ 3,

which holds in our context since H1(X,OX(j)) = 0 for any j ∈ Z.
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For i ≥ 0, one defines (following [55], since X is projectively normal)

T i
AX

:= ExtiOAX
(Ω1

AX
,OAX

);

this admits a Z-grading given by the natural C∗-action on AX , and we denote the graded piece

in degree d by T i
AX

(d).

The space T 1
AX

parametrizes the set of isomorphism classes of first order infinitesimal defor-

mations of AX . By [55], the degree 0 component T 1
AX

(0) of the deformations of the affine cone

parametrizes the embedded deformations of X; that is, the deformations of the pair (X,OX(1)).

Furthermore, the negative components are identified with the smoothings of the affine cone,

while the positive components parametrize equisingular deformations. In the case of a smooth

projective hypersurface of degree d,

T 1
AX

(−d) ∼= C[x0, . . . , xn]/Jf ,

the Jacobian ring of X, as in §2.2.

Theorem 2 ([23] Theorem 1.1). Let (X,OX(1)) be a subcanonical pair with ωX
∼= OX(kX).

Set n = dimX. Then there is an isomorphism

T 1
AX

(k) ∼= ker
(
λ : H1(X,Ωn−1(k − kX)) −→ H2(X,ωX(k − kX)

)
,

where λ(η) = c1(OX(1)) ∧ η.

When k = kX , the statement becomes T 1
AX

(kX) ∼= Hn−1,1
prim (X), the primitive cohomology.

2.4. Calculating the Picard number. Every Fano 3-fold in codimension up to 3 arises in

one of the two situations of the Theorem 3, which calculates h1,1(X). (Recall that if V ⊂ wPN ,

in coordinates x0, . . . , xN , is a variety in weighted projective space, then a weighted cone CV

on V is defined by the equations of V in a larger space wPN+` with coordinates x0, . . . , xN ,

y1, . . . , y`. See for example [19, (2.5)].)

Theorem 3 (c.f. [17] Lemma 3.5, [45]). Suppose that X is a quasismooth Fano 3-fold that is

either

(i) a complete intersection in weighted projective space, or

(ii) a complete intersection in a weighted cone over a weighted Gr(2, 5) with index qX = 1.

Then h1,1(X) = 1.

Proof. Part (i) is Proposition 2.3 of [45]. For part (ii), we prove that T 2
AX

(−1) = 0, where AX is

the affine cone on X. This is enough since by [23, Theorem 2.6] we have H1,1
prim(X) ∼= T 2

AX
(−1) =

0, and so h1,1(X) = 1. (Note that X satisfies the arithmetically Cohen–Macaulay conditions

H1(X,mKX) = 0 for all m ∈ Z required for [23] by Kawamata–Viehweg vanishing and Serre

duality [38, Theorem 2.70, Corollary 5.27].)

Let CP denote the ambient projective space for the Grassmannian in its Plücker embedding

with the addition of the cone variables. It follows from [23] that T 2
AX

(−1) ∼= H1(X,NX/CP(−1)).

Indeed this is a graded piece of equation (2.3) of [23], together with the isomorphism T 2
AX

∼=
H2(UX ,ΘUX

) that follows it, given that H2(X,OX(−1)) = 0.

From [56, §D.1, (D.3)] the flag of schemes X ⊂ C Gr ⊂ CP determines a sequence of sheaves

on X:

0→ NX/CGr → NX/CP → NCGr /CP ⊗OX → 0,

where the last map is exact, by the argument in [56, §D.1, Lemma D.3(ii)]: we have that

Ext1OX
(N∗X/CGr,OX) = H1(X,NX/CGr), and that group is 0 since X is arithmetically Cohen–

Macaulay. Twisting by OX(−1) we get

H1(NX/CP(−1)) ∼= H1(NCGr /CP(−1)|X) = 0.



6 GAVIN BROWN AND ENRICO FATIGHENTI

The latter equality follows from the Koszul complex, together with the description of the normal

bundle of Gr(2, 5) as
∧2Q, see [19] in the weighted case. This proves part (ii). �

Our proof of (ii) above also gives an alternative proof of (i), at least in the index 1 case: [55,

1.3] provides the required vanishing of T 2
AX

(−1).

We found (ii) stated several times in the literature, such as [36], but we could not find a

proof to cite. In this situation, one would like appeal to folklore and simply apply a weighted

Lefschetz hyperplane theorem for ample systems. But unfortunately the linear systems we cut

by to make X are rarely base-point free when there are nontrivial weights, so the strong results

in the literature such as [49, Theorem 1] and [29, Corollary 2.8] do not apply directly.

Thus the strategy for most cases in codimension 1, 2 and 3 is to compute the Euler character-

istic by some means, deduce the remaining Hodge numbers by Theorem 3, and finally compute

deformations by Theorem 1. In codimension 3 there are three cases which don’t have a simple

projection we can use to compute e(X). In these three cases we use computer algebra to calcu-

late h2,1(X) directly, and then proceed as before; these three cases are labelled by T 1 in Table 3;

see §4 for a sample calculation.

In codimension 4 we calculate a few first cases using a hybrid approach (§4.3): the projection

calculus computes e(X), then Theorem 1 computes deformations, and finally we use a computer

calculation, similar to that of the three codimension 3 cases, to pick out one of the remaining

Hodge numbers to complete the calculation. In these cases, the Picard rank can exceed 1.

2.5. Fano 3-folds and projection. Consider the following arrangement of projective 3-folds:

(2)

Ỹ → X

↓
Y  Y

where X and Y are quasismooth, Y  Y is a degeneration to a singular orbifold whose only

non-quasismooth points are ordinary nodes, Y ← Ỹ is a projective small resolution of the nodes,

and Ỹ → X is the contraction of a divisor D̃ ⊂ Ỹ . The passage from Y to Ỹ , that shrinks

a number of vanishing cycles to nodes and then resolves the nodes by exceptional P1s, is well

known as a conifold transition.

In our context, the exceptional divisor D̃ ∼= P(a, b, c) maps to a divisor P(a, b, c) → D ⊂ Y ,

and the nodes of Y lie on D. The small resolution is the relatively D̃-ample resolution, so is

projective, and D̃ → D is birational—often an isomorphism, in fact. With this setup, we recall

from [50, §5]) (which follows Clemens [15], detailed in the same context as diagram (2) above):

Theorem 4. Let X and Y be Fano 3-folds related as in diagram (2). Then

(3) e(X) = e(Y ) + 2n− 2,

where n is the number of nodes of Y . In particular, if h1,1(X) = h1,1(Y ), then

(4) h2,1(X) = h2,1(Y )− n+ 1.

The relevance of this is as follows (see [17, 2.6.3], [11, 3.2]). If X is a Fano 3-fold in codimen-

sion k, then it often happens that the Gorenstein projection from a quotient singularity sits in

diagram (2) as X 99K Y , and that Y lies in codimension < k. If this nodal Fano Y deforms to

a quasismooth Y whose Hodge numbers are known, then we may recover the invariants of X.

2.6. An overview of the calculations. We adopt different tactics to compute the Hodge

numbers of a Fano 3-fold X according to its graded ring.

2.6.1. When X is a hypersurface, this calculation is well known (see §2.2).
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2.6.2. When X is a complete intersection in weighted projective space, we may calculate using

orbifold Chern classes (see [4] or §A.2).

2.6.3. If X is a complete intersection in weighted projective space or inside a weighted Grass-

mannian, then h1,1(X) = 1 (Theorem 3). If X arises by (possibly multiple) unprojection from

a hypersurface, then we can compute e(X) and hence the whole Hodge diamond. This applies

to most X that lie in codimension 2 or 3; see §§4.1–4.2. Up to codimension 3, this calculation

can be done by hand—the key point is to confirm the existence of a nodal degeneration.

2.6.4. Denoting the affine cone over X by AX , [23, Theorem 2.4] gives

H2,1(X) ∼= T 1
AX

(−1).

Indeed we are interested in complete intersections in weighted projective spaces and weighted

Grassmannian, where the index 1 case is equivalent to having the amplitude equal to 1 (see

[30, 6.14] and [19]). If X is given by explicit equations, we may use standard algorithms and

implementations in computer algebra to calculate h2,1(X); see §2.3 and §A.1.

In these cases we compute h2,1(X) for a single quasismooth member of each family, expressed

in the format we expect. Since hp,q are deformation invariants for orbifolds (since Steenbrink

[57, Theorem 2] applies in the context of V-manifolds), the numbers we obtain are also the

Hodge numbers of any orbifold Fano 3-fold in the family.

2.6.5. By [23, Theorem 2.6],

H1,1
prim(X)(X) ∼= T 2

AX
(−1),

and so if X is given by explicit equations we may compute h1,1(X); see Section 4.3 for an

example. This algorithm seems to be more complicated, and in practice choosing good equations

is delicate.

3. Moduli of Fano 3-folds

We explain a relation between H2,1(X) of a Fano threefold X and the tangent space to its

versal deformation space H1(X,TX). Since deformations of quasismooth Fano 3-folds X are

unobstructed (by [54, Theorem 1.7]), this is the number of moduli of X.

3.1. Deforming a Fano with an elephant. The idea comes from Calabi–Yau 3-folds. Given

such a V , it follows by Serre duality (non-canonically, involving a choice of determinant) that

H2,1(V ) ∼= H1(V, TV ); or one may observe that both are isomorphic to the same graded piece

T 1
AV

(0) ⊂ T 1
AV

.

If a Fano 3-fold X has a K3 elephant E = (x = 0) ⊂ X, we may regard the pair (X,E) as

a log Calabi–Yau and hope to mimic this relationship. In the index 1 case, one has H2,1(X) ∼=
T 1
AX

(−1) and H1(X,TX) ∼= T 1
AX

(0), and the analogue to the Calabi–Yau isomorphism is the

multiplication map x : H2,1(X)→ H1(X,TX). This map is not an isomorphism, in general, but

Theorem 6 below explains the difference in terms of the geometry of E. To make this intuition

precise, we start with a more general lemma about Fano 3-folds of arbitrary index m > 0.

Note that by [21, Proposition A.4.1], the tangent sheaf TX is isomorphic to HomOX
(Ω1

X ,OX) ∼=
Ω2
X(m), bearing in mind our abuse of notation writing Ωi

X in place of Ω̂i
X .

Lemma 5. Let X a Fano threefold. If E ⊂ X a K3 elephant E ∈ |−KX |, then

h1(X,TX)− h0(X,TX) = αE + h2,1(X)− h2,2(X),

where αE = h1,1(E)− gX − 1.
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Proof. Suppose X is of index m with −KX
lin∼ mH, for an ample Q-Cartier divisor H. We write

F(m) for F ⊗OX(mH).

Consider the standard exact sequence of OX -modules twisted by Ω2(m),

0→ Ω2
X → Ω2

X(m)→ Ω2
X(m)|E → 0.

In cohomology this yields a long exact sequence

0→ H0(Ω2
X(m))→ H0(Ω2(m)X |E)→ H1(Ω2

X)

→ H1(Ω2
X(m))→ H1(Ω2

X(m)|E)→ H2(Ω2
X)→ 0,

(5)

where H0(Ω2
X) = 0 (by Hodge theory) and h2(Ω2

X(m)) = 0 by Akizuki–Kodaira–Nakano van-

ishing [3, Theorem 1].

On the other hand the relative exact tangent sequence

0→ TE → TX |E → OE(m)→ 0

yields a long exact sequence

(6) 0→ H0(E, TX |E)→ H0(E,OE(m))→ H1(E, TE)→ H1(E, TX |E)→ 0,

where H1(E,OE(m)) = 0 and H0(E, TE) = H0(E,Ω1
E) = 0, since E is K3 surface. By (5) and

(6) we get

h0(X,Ω2
X |E(m)) + h1(X,Ω2

X(m)) + h2,2(X) =

h2,1(X) + h1(X,Ω2
X(m)|E) + h0((X,Ω2

X(m))
(7)

and

h1(TX |E)− h0(TX |E) = h1(TE)− h0(OE(m)).

We have (see [21, A.4]) Ω2
X(m) ∼= TX from the pairing

Ω1
X ⊗ Ω2

X → ωX
∼= OX(−m).

So with αE defined as in the statement, we get

h1(X,TX)− h0(X,TX) = αE + h2,1(X)− h2,2(X)

as required. �

Theorem 6. Let X be a Fano 3-fold with K3 elephant E ⊂ X and αE as defined in Lemma 5.

If h0(X,TX) = 0, then

h1(X,TX)− h2,1(X) = αE − h2,2(X).

This gives an estimate of the difference between the moduli and Hodge theory of X: when

b2 = h2,2(X) is small, we have a more moduli than h2,1, while if b2 >> 0 the opposite holds.

Remark 1. The number αE = h1,1(E) − gX − 1 = h1,1(E) − h0(E,OE(E)) is a function of the

polarised K3 surface (E, (−KX)|E). When E is smooth h1,1(E) = 20, and so if X has Fano

index 1 then αE = 20 − h0(E,OE(1)). More generally, if E has canonical singularities with

corresponding basket B =
{
1
r (a,−a)

}
(see [51, Theorem (9.1)(III)]), then

αE = 20−
∑
B

(r − 1)− h0(E,OE(1)).

In every case that we know, when a general member X of a family of Fano 3-folds has a K3

elephant E ⊂ X, then both X and (the general) E are quasismooth; in particular, they both

have only quotient singularities, and the basket of E is equal to the set of singularities of E.
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3.2. Automorphisms of Fano 3-folds in Grassmannians.

Lemma 7. Let X be a Fano 3-fold of index 1. If X is a weighted complete intersection (in its

total anticanonical embedding), then H0(X,TX) = 0.

Proof. Recall from Flenner [27, Satz 8.11] that if X is an n-dimensional weighted complete

intersection, then Hp(X,Ωq
X(t)) = 0 whenever p+ q < dimX and t < q − p.

The lemma follows by setting q = 2, p = 0, t = 1 together with Serre duality TX ∼= Ω2
X(1). �

We prove an analogous result for complete intersection in weighted Grassmannians. Our main

interest is in Fano 3-folds of index 1 in codimension 3, X ⊂ P(a0, . . . , a6), most of which arise

in this way. We show in Theorem 10 below that H0(X,TX) = 0 in this case. We first show the

vanishing result in standard (non-weighted) Grassmannians.

Lemma 8. Let X a Fano 3-fold of index 1 that is a complete intersection of multidegree

(d1, . . . , dc), with every di ≥ 2, in a cone V = C Gr(2, n), on vertex a linear projective space that

is disjoint from X, over a Grassmannian Gr(2, n) for some n ≥ 5. Then H0(X,TX) = 0.

Proof. We show that H0(X,Ω2
X(1)) = 0, which suffices since TX ∼= Ω2

X(1) for X a Fano 3-fold

of index 1.

We consider the case V = Gr(2, n) first, with no cone structure. Suppose that X = (f1 =

· · · = fc = 0) ⊂ G = Gr(2, n), and denote di = deg fi. The Koszul complex of OX -modules for

OX twisted by Ω2(1)|G is

0→ Ω2
G(1− d1 − · · · − dc)→ · · · →

⊕
i,j,k

Ω2
G(1− di − di − dk)→

⊕
i,j

Ω2
G(1− di − dj)→

⊕
i

Ω2
G(1− di)→ Ω2

G(1)→ Ω2
G(1)|X → 0.

By [44, Lemma 0.1], Hp(G,Ω2
G(t)) = 0 for each of p = 1, 2, 3 and any t ≤ −1, and also

H0(G,Ω2
G(1)) = 0. (But note that H2(G,Ω2

G) 6= 0; this is why we exclude the case where some

di = 1.) It follows, by splitting the Koszul sequence above into short exact sequences, that

(8) H0(X,Ω2
G(1)|X) = H1(X,Ω2

G(1)|X) = H1(X,Ω2
G(1− di)|X) = 0.

The conormal exact sequence of X ⊂ G is

0→
⊕
1≤i≤c

OX(−di)→ Ω1
G|X → Ω1

X → 0.

Taking its second exterior power and twisting by OX(1) we get

0→
⊕

1≤i,j≤c
OX(1− didj)→

⊕
1≤i≤c

Ω2
G(1− di)|X → Ω2

G(1)|X → Ω2
X(1)→ 0.

After splitting this into short exact sequences, the vanishing statements in (8) show at once that

H0(X,Ω2
X(1)) = 0, as required.

The proof for a cone is the same, replacing Ω2
Gr by the extension of the pullback of Ω2

Gr to the

complement of the vertex, in which X is a complete intersection; this restricts to X as above,

and the proof follows. �

The proof of Lemma 8 suggests that we need a Bott vanishing type of result to extend the

vanishing statements to complete intersections in wGr(2, 5). The following lemma gives the

precise statement we need.

Lemma 9. Let wG = wGr(2, 5). Then Hp(wGr,Ω2
wGr(−k)) = 0 for p = 1, 2, 3 and any k > 0.
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Proof. If A•G denotes the punctured affine cone over the (weighted or not) Grassmannian, we

have the following diagram

A•G
π1 ↙ ↘ π2

Gr(2, 5) wGr(2, 5)

where π1 and π2 denote the quotients by the standard and the weighted C∗ actions respectively.

We use the vanishing results from [44, Lemma 0.1] for the standard Gr(2, 5) repeatedly.

The grading on the cohomology groups of A• is interpreted in terms of local cohomology at

the maximal ideal m of the vertex of the affine cone A.

Consider the short exact sequence

(9) 0→ π∗1Ω1
G → Ω1

A• → OA• → 0.

Since H i(G,OG(−k)) = 0 for any i < dim(G), we have

H1(A•,Ω1
A•)(−k) = H1(G,Ω1

G(−k)) = 0.

In the same way one also gets H0(A•,Ω1
A•)(−k) = 0.

Raising the short exact sequence (9) to the second exterior power we have

0→ π∗1Ω2
G → Ω2

A• → π∗1Ω1
G → 0;

by the vanishing statements above this reduces to

H1(A•,Ω2
A•)(−k) = H1(G,Ω2

G(−k)) = 0.

Comsidering analogous exact sequences for the second projection π2 gives

0→ π∗2Ω1
wG → Ω1

A• → OA• → 0,

0→ π∗2Ω2
wG → Ω2

A• → π∗2Ω1
wG → 0.

Putting all these vanishing statements together with H0(OwG(−k)) = 0 we get

H1(wG,Ω2
wG(−k)) = H1(A•,Ω2

A•)(−k) = 0,

as required. The results for i = 2, 3 follow similarly. �

Theorem 10. Let X a Fano 3-fold of index 1 that is a complete intersection of multidegree

(d1, . . . , dc), with every di ≥ 2, in a weighted cone C Gr(2, 5), with vertex a linearly-embedded

weighted projective space that is disjoint from X. Then H0(X,TX) = 0.

Corollary 11. If X ⊂ wP6 is a quasismooth member of one of the 69 Pfaffian families of Fano

3-folds in codimension 3, then H0(X,TX) = 0.

The point is that each of these is expressed as a complete intersection, as in Theorem 10, with

no equations of degree 1. In practical terms, this is the observation that the number of Plücker

variables of degree 1 (that is, above-diagonal entries of degree 1 in the skew-symmetric syzygy

matrix) never exceeds the number of degree 1 variables of the ambient wP6.

Both the lemma and the theorem can be extended to weighted Grassmannians wGr(2, n), for

n ≥ 5, using Bott-type vanishing theorems, but we only need the Gr(2, 5) case here.

4. Explicit calculations

It takes a few hundred calculations to complete Tables 1–3 below. In this section, we give

illustrative examples of each type.
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4.1. Codimension 2. There are 85 deformation families of Fano 3-folds in codimension 2 ([30,

14]), each one a complete intersection with h1,1(X) = 1. The case X2,3 ⊂ P5 is classical:

e(X) = c3(TX) can be calculated directly to give e(X2,3) = −36 and so h2,1(X2,3) = 20.

More generally, Blache [4] describes a general theory of orbifold characteristic classes and

their relations with the usual topological notions (see Appendix A.2). This gives an effective

method for calculating the Euler characteristic of complete intersections. As a warmup for higher

codimension, we recalculate the Euler characteristic by birational projection or by Gröbner basis:

of the remaining 84 cases, 66 have a Type I projection (§4.1.1), a further 10 cases have a Type II1
projection (§4.1.2), and 8 cases have no projection of either type (§4.1.3).

4.1.1. 66 cases with Type I projection. Consider one of the families of Fano 3-folds of the form

X = Xa3+r,a4+r ⊂ P(1, a, r − a, a3, a4, r) with a < r. The general member has a quotient

singularity 1
r (1, a, r − a), and admits a Type I projection, as in diagram (2), to a hypersurface:

X ⊂ P(1, a, r − a, a3, a4, r)
πr ↓

D ⊂ (x3A = x4B) = Y ⊂ P(1, a, r − a, a3, a4),

where D = (x3 = x4 = 0) = P(1, a, r − a) and πr is the projection from the final coordinate

point of index r. In each one of these 66 cases, the general Y is quasismooth away from n =

deg(A) deg(B)/(a(r−a)) nodes that lie onD (by Bertini’s theorem), and it admits a Q-smoothing

to a general Y = Ya3+a4+r ⊂ P(1, a, r−a, a3, a4). Thus we calculate e(X) = e(Y )+2n−2 by (3).

Example 12. Working from the bottom up in diagram (2), let Y4 ⊂ P4 be a smooth quartic.

We know e(Y4) = −56 and h2,1(Y4) = 30. Imposing a linear plane D = P2 on Y4 gives, in

coordinates x, y, z, t, u of P4,

P2 = D = (x = y = 0) ⊂ Y 4 = (Ax = By) ⊂ P 4,

where A,B are general cubic forms. Such Y has 9 nodes at (A = B = 0) ⊂ D. The unprojection

of D ⊂ Y is a quasismooth variety X3,3 ⊂ P(15, 2), which has Fano Hilbert series No. 20522.

By (3) we have e(X3,3) = e(Y4) + 18− 2 = −40, and so h2,1(X3,3) = 30.

This calculation is recorded in Table 2, together with the numerical data described here.

4.1.2. 10 cases with Type II1 projection. Again we work from bottom up in diagram (2). Thus,

for example, to study X whose Hilbert series PX is no. 6858 in the Grdb [8], we observe

from that database (or by hand with the methods of [2]) that the numerics suggest a Type II1
projection to Y with Hilbert series PY no. 5837, whose general member we know to be of the

form Y10 ⊂ P(1, 1, 2, 2, 2, 3). The task in this case is to impose a divisor D onto a special (nodal)

member of this family, where the divisor D may be singular, but its normalisation is D̃ ∼= P2.

Example 13. Consider X = X4,6 ⊂ P(1, 1, 2, 2, 2, 3), which has Fano Hilbert series no. 6858 in

[8]. As in Example 12 we work bottom up, first constructing D ⊂ Y 10 ⊂ P(1, 1, 2, 2, 5) and then

unprojecting. We follow Reid [52, §9] and Papadakis [43] for Type II1 unprojections.

In coordinates x, y, z, t, u on P(1, 1, 2, 2, 5), the finite morphism

P2 ∼= D̃ −→ D ⊂ P(1, 1, 2, 2, 5)

(a, b, c) 7→ (a, b, c2, (a− b)c, abc3 + c5)

has image D defined by the 2× 2 minors of

M =

(
t u (x− y)z (xy + z)z2

x− y (xy + z)z t u

)
.
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The surface D has two singular points, each of which has a length 2 preimage in D̃: the point

(1 : 1 : 0 : 0 : 0) is the pinched image of (1 : 1 : 0) ∈ D̃, and (1 : 1 : −1 : 0 : 0) is the image of

two points (1 : 1 : ±i).
A general Y 10 containing this D has 34 nodes, all of which lie on D. (Two lie at the singu-

larities of D, so the preimage in D̃ of the singular subscheme of Y has length 36 on D̃.)

The unprojection of D ⊂ Y is given by the maximal Pfaffians of the skew 5× 5 matrix
x− y (xy + z)z t u

s0 1 s1 +A3

s1 B6

zs0 + C4

 with entries of degrees


1 4 2 5

2 0 3

3 6

4


in P(1, 1, 2, 2, 5, 2, 3) with coordinates x, y, z, t, u, s0, s1, where A,B,C may be determined by

the unprojection calculus if we wish to know them explicitly. Eliminating u using the linear

equation gives X4,6 ⊂ P(1, 1, 2, 2, 2, 3), as required. We know e(Y ) = −124, so conclude that

e(X) = −124 + 2 · 34− 2 = −58 and h2,1(X) = 31.

4.1.3. 8 cases with no projection. Our projection techniques do not work in these cases, but

Theorem 2 can be realised in computer algebra instead.

Example 14. Consider a quasismooth Fano 3-fold X6,6 : (f = g = 0) ⊂ P(1, 23, 32) with Fano

Hilbert series number 3508, defined by

f = x6 + y3 + z3 + t3 + u2 + v2 and g = y2z + z2t+ t2y + uv.

Ilten’s Macaulay2 package [31] works as follows (compressing blank lines in the output):

Macaulay2, version 1.5

with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : loadPackage "VersalDeformations"

o1 = VersalDeformations

o1 : Package

i2 : R = QQ[x,y,z,t,u,v,Degrees=>{1,2,2,2,3,3}];

i3 : I = ideal ( x^6 + y^3 + z^3 + t^3 + u^2 + v^2,

y^2*z + z^2*t + t^2*y + u*v );

o3 : Ideal of R

i4 : CT^1(-1,I)

2 24

o4 : Matrix R <--- R

The answer is that h2,1(X) = dimT 1
AX

(−1) = 24.

Since X has a K3 elephant E = (x = 0) ⊂ X with basket 9× 1
2(1, 1) quotient singularities, and

h0(X,TX) = 0 by Theorem 1(ii), we know at this stage from the moduli formula Theorem 1(i)

that h1(X,TX) = 34. This can also be calculated directly by Macaulay2 as follows:

i5 : CT^1(0,I)

2 34

o5 : Matrix R <--- R

Again, the answer is that h1(X,TX) = dimT 1
AX

(0) = 34.

A similar calculation works with X12,14 : (f = g = 0) ⊂ P(2, 3, 4, 5, 6, 7), with Hilbert series

number 37, with, for example,

f = x6 + y4 + z3 − u2 + tv and g = x7 + z2u+ xu2 + zt2 + v2.
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In this case there is no elephant E ⊂ X, so the moduli formula (1) does not apply as stated.

However, the Macaulay2 results are that h2,1(X) = 18 and h1(X,TX) = 23, and so the formula

holds with “αE = 6”, which is the correct number calculated on X from its basket indices and

h0(X,O(1)) = 0.

4.2. Codimension 3. There are 70 known deformation families of Fano 3-folds in codimen-

sion 3. The complete intersection X = X2,2,2 ⊂ P5 is classical: the Chern class calculation and

Lefschetz gives e(X) = −24, ρX = 1 and h2,1(X) = 14. The remaining 69 cases are all complete

intersections in weighted Grassmannians wGr(2, 5), and so h1,1(X) = 1 in every case.

4.2.1. 64 cases Type I. We say that a Fano 3-fold X has a Type I staircase if it admits a sequence

of alternate Type I projections and Q-smoothings to a hypersurface. Concretely, if X ⊂ wP6

lies in codimension 3, then the staircase is

(10)

Ỹ → X

↓
Ỹ → Y  Y

↓
Z  Z

where X 99K Y ⊂ wP5 eliminates a single variable, Y ⊂ wP5 is a general Q-smoothing of Y ,

and Y 99K Z is a projection to a nodal hypersurface Z ⊂ wP4 as in §4.1. Counting nodes on Y

and Z and using the formula of Theorem (4) completes the calculation of e(X) and h2,1(X).

Of the 64 Fano 3-folds in codimension 3 with a Type I projection, 57 have a Type I staircase

to a hypersurface.

Example 15. Consider the family with Hilbert series no. 20523 in [8]. A typical member

X ⊂ P(1, 1, 1, 1, 1, 2, 3), in coordinates x1...5, y, z, is given by the five maximal Pfaffians of a skew

5× 5 matrix of forms
x1 x2 A D

x3 B E

C F

z

 where the entries have degrees


1 1 2 2

1 2 2

2 2

3

 .

It has a quotient singularity 1
3(1, 1, 2) at the z-coordinate point Pz ∈ X.

Projection from that point is calculated by eliminating z from these equations. Doing that

leaves the two Pfaffians of degree 3, which define

Y 3,3 :


(
A B C

D E F

) x3
−x2
x1

 = 0

 ⊂ P(1, 1, 1, 1, 1, 2).

For general degree 2 forms A, . . . , F , the image Y has 6 nodes (by Hilbert–Burch) and a Q-

smoothing Y3,3 which was computed in Example 12 above. Making the projection from Y3,3
as in Example 12 completes the staircase. In any case, using the result of Example 12 gives

e(X) = e(Y ) + 2 · 6− 2 = −40 + 12− 2 = −30, and so h2,1(X) = 17.

Of the remaining 7 cases, 4 have a Type I projection to a family that arises by Type II1
unprojection from a hypersurface, so again have a staircase, but with a more complicated second

step. A fifth case has a Type I projection to the classical family Y2,3 ⊂ P5, so also works.

But in two remaining cases, the image of the Type I projection lies in a family whose Hodge

numbers were computed using the algorithms for dimT 1; in this paper, these cases remain

dependent on computational algebra.
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4.2.2. 2 cases Type II1. Of the cases without a Type I projection, two have a Type II1 pro-

jection: X7,8,8,9,10 ⊂ P(1, 2, 3, 3, 4, 4, 5) has a Type II1 projection from 1
4(1, 1, 3) and X10...14 ⊂

P(1, 3, 4, 5, 5, 6, 7) has a Type II1 projection from 1
5(1, 2, 3). We consider the latter in detail,

following Reid [52, 9.5] and Papadakis [43, 4.4].

Consider D ⊂ P(1, 3, 4, 5, 6) defined by the maximal minors of

MD =

(
t v yz z2

y z t v

)
.

This D is the image of P(1, 2, 3)→ P(1, 3, 4, 5, 6) given by (a, b, c) 7→ (a, c, b2, bc, b3); the normal-

ising variable b is recovered as the ratio of the rows of MD.

The general hypersurface Y 18 containing D has the form

Y 18 = (A12m12 +B11m13 + 2B12m23 +B22m24 = 0) ⊂ P(1, 3, 4, 5, 6),

where mij denotes the minor of MD involving columns i and j.

The unprojection of D ⊂ Y 18 is a codimension 3 variety X ⊂ P(1, 3, 4, 5, 5, 6, 7), in coordinates

x, y, z, t, u, v, w, defined by the maximal Pfaffians of the skew 5× 5 matrix
y z t v

−u −B22 w +B12

−w +B12 −B11

−uz −A12

 .

For example, setting

A12 = yv + y3 + x9, B11 = yt+ x8, B12 = 0 and B22 = v

results in a quasismooth X, and Y 18 whose non-quasismooth locus is defined by the equations

zt− yv, y2z − t2, yz2 − tv, x9y + y4 + y2v + 2v2, x9z − 2x8t− yt2 + yzv,

z3 − v2, x9t+ y3t+ 2z2v + ytv, x8y2 + y3t+ z2v, 2x8yz − x9v + y3v − yv2

and consists of 22 nodes, all of which lie on D ⊂ Y 18.

The general Y18 ⊂ P(1, 3, 4, 5, 6) has e(Y18) = −80, so e(X) = −38 and h2,1(X) = 21.

4.2.3. No Type I or II1 projection. The three remaining cases are X12...16 ⊂ P(1, 4, 5, 5, 6, 7, 8),

X16...20 ⊂ P(1, 5, 6, 7, 8, 9, 10) and X14...18 ⊂ P(1, 5, 5, 6, 7, 8, 9). The first has only a type IV

projection, while the other two do not have any Gorenstein projections at all. We compute T 1

in these cases: we work out the first in detail here; the other two are similar.

Example 16. A particular X12...16 ⊂ P(1, 4, 5, 5, 6, 7, 8), in coordinates x, y, z, t, u, v, w, is given

by the maximal Pfaffians of the skew 5× 5 matrix
y z u v

u v y2 + w

−y2 + w x9 + yz

zt+ t2


in the usual antisymmetric notation. One checks that the scheme defined by those equations is

quasismooth. We compute h2,1(X) = 20 and h1(X,TX) = 23 by Macaulay2 as before.

We verify the moduli formula (i) of Theorem 1. The basket of X is

BX =

{
1

2
(1, 1, 1),

1

4
(1, 1, 3), 2× 1

5
(1, 1, 4),

1

5
(1, 2, 3)

}
.

The K3 elephant E = (x = 0) ⊂ X is the unique member of |−KX |. It has h0(OE(1)) = 0 and

h1,1(E) = 20−
∑
ri − 1, where the ri are the indices of singularities of BX . Thus

h1(TX)− h2,1(X) = αE − h2,2(X) = (20− 1− 3− 3 · 4)− 1 = 3,
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which agrees with 23− 20.

The other two cases work similarly; in each case h2,1(X) = 20.

4.3. Codimension 4. All the calculations in codimensions 4 in this section depend on computer

algebra: we use Magma [6] to compute examples of the codimension 4 equations by unprojection,

and Macaulay2 [28, 31] for the Hodge numbers.

When a Hilbert series is realised by a Fano 3-fold in codimension 4, it frequently happens that

there is more than one deformation family of such Fano 3-folds. For 116 of Hilbert series listed in

[8] in codimension 4, [11] computes the different families, and observes that they are distinguished

by the Euler characteristic of a quasismooth member. However it does not compute the Picard

rank of these Fano 3-folds, in part because there is no known format in which they lie as complete

intersections, and so we have no Lefschetz theorem to apply directly (although see [9] for some

special cases where ρX = 2, including the case of Hilbert series 24078 in Example 18 below).

But the computational methods of this paper still apply, in conjunction with the unprojection

construction of [11, 42]. We compute a few examples here as first calculations.

Example 17. Fano Hilbert series 24097. By [11] there are 3 families of Fano 3-folds

Y ⊂ P(16, 22) with (typically) two 1
2(1, 1, 1) quotient singularities, each with the Hilbert series

No.24097 in [8]. They arise by unprojection of

P2 = D ⊂ Y ⊂ P(16, 2),

where D ⊂ P(16, 2) is a linearly embedded plane, and Y is defined by the vanishing of Pfaffians

of a skew 5× 5 matrix of forms of weights

(11)


1 1 1 2

1 1 2

1 2

2

 .

The three families arise as so-called “Tom” and “Jerry” unprojections (see [11, §2.3] for details),

and the three different results are listed in the Big Table [12]: Tom1, Jer12 and Jer15. Takagi’s

analysis [59, Theorem 0.3] of prime Fano 3-folds with index 2 terminal singularities shows that

the first and third of these families have h1,1(X) = 1. Using the Macaulay2 computation, and

Theorem 1(i) (which holds since each unprojection does indeed carry a quasismooth elephant E

with αE = 19− 1− 5 = 13), we complete the table below.

unproj type # nodes eX h1,1(X) h2,1(X) h1(X,TX) h0(X,TX)

Tom1 6 −14 1 9 21 0

Jer12 8 −10 3 9 19 0

Jer15 9 −12 1 8 20 0

For example, the Jer12 case above uses Y defined by Pfaffian matrix


t u v w

v t+ u ux

x y2 − z2
yz + t2 + u2


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in the coordinates x, y, z, t, u, v and w of P(16, 2). Such Y contains the plane D = (t = u = v =

w = 0). Unprojecting D ⊂ Y gives X ⊂ P(16, 22), defined by

xt− tu− u2 + v2, y2t− z2t− xu2 + vw, yzt+ t3 + tu2 − xuv + tw + uw,

yzu+ t2u+ u3 − y2v + z2v + xw, x2u− y2u+ z2u− xu2 + yzv + t2v + u2v + vw,

x2v − xw + ts, −xyz − xt2 − xu2 − xw − us, −x3 + xy2 − xz2 + x2u+ vs,

x2y2 − y4 − x2z2 + 3y2z2 − z4 + yzt2 − xy2u+ xz2u+ yzu2+

+y2uv − z2uv + xtuv + yzw − xuw − tuw + u2w − ws

in coordinates x, y, z, t, u, v, w and unprojection variable s.

Example 18. Fano Hilbert series 24078. By [11] there are 3 families of Fano 3-folds

X ⊂ P(16, 2, 3) with (typically) two 1
3(1, 1, 2) quotient singularities, each with the Hilbert series

No.24078 in [8]. They arise by unprojection of

P2 = D ⊂ Y ⊂ P(16, 2),

where D ⊂ P(16, 2) is a linearly embedded P(1, 1, 2), and Y is defined by the vanishing of

Pfaffians of a skew 5× 5 matrix of forms of the same weights as (11) above.

The three different results [12] are: Tom1, Tom5 and Jer12. In this case the elephant E ⊂ X
has αE = 13, and the table below summarises the results.

unproj type # nodes eX h1,1(X) h2,1(X) h1(X,TX) h0(X,TX)

Tom1 5 −16 1 10 22 0

Tom5 4 −18 2 12 23 0

Jer12 6 −14 1 9 21 0

These calculations seem to be on the limit of what we can do, as they terminate only when

the equations are relatively small. For example, the Tom5 case above uses Y defined by Pfaffian

matrix 
z t v + u w

u t xv + zu

z w − y2
x2 − v2


in the coordinates x, y, z, t, u, v and w of P(16, 2).

Of the 145 Hilbert series of Fano 3-folds listed in [8] as presented naturally in codimension 4,

116 have the numerical properties consistent with having a Type I unprojection. The unprojec-

tion analysis of these is the subject of [11], with the results presented in [12], and in principle

they could all be computed as above. A further 16 Hilbert series have the numerical properties

of a Type II1 projection, and a computational approach following Papadakis [43] is conceivable;

the constructions are part of Taylor’s thesis [60].

Some of the remaining 13 cases have more complicated projections that we do not know how

to work with systematically yet, but four cases have no Gorenstein projections at all, and some

other approach is required (even to write down examples by equations). These cases are:

No. 25 X ⊂ P(2, 5, 6, 7, 8, 9, 10, 11) No. 282 X ⊂ P(1, 6, 6, 7, 8, 9, 10, 11)

No. 166 X ⊂ P(2, 2, 3, 3, 4, 4, 5, 5) No. 308 X ⊂ P(1, 5, 6, 6, 7, 8, 9, 10).

4.4. A quasismooth unprojection from codimension 4. As a final, related curiosity, we

construct a codimension 4, quasismooth Fano 3-fold X ⊂ P(16, 22) with Hilbert series number

24097 which contains a quasismooth divisor E ⊂ X that is itself a complete intersection; this

contrasts with the more typical nodal cases above, and is a novelty to us. We adapt Example 17

so that the codimension 3 projection Y ⊂ P(16, 2) contains two divisors: the coordinate planes
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D = P2 and E = P(1, 1, 2) meeting along the coordinate line P1. Indeed define Y by the maximal

Pfaffians of 
t u v w

v u −zv − u2
z − t yz − x2

y2 − t2


in the coordinates x, y, z, t, u, v and w of P(16, 2). Then D = (t = u = v = w = 0) = P2 lies

inside Y in Jer12 format while E = (z = t = u = v = 0) = P(1, 1, 2) lies inside Y in Tom5

format.

Altogether Y has 8 nodes; these all lie on D (in accordance with Jer12 unprojection of D to

construct Hilbert series 24097), and 4 of them lie on the intersection D ∩E (in accordance with

the Tom5 unprojection or E to construct Hilbert series 24078).

We may unproject either divisor, and we choose to unproject D ⊂ Y to give X ⊂ P(16, 22).

All the 8 nodes are resolved by this, and X is quasismooth. The Fano 3-fold X has Picard rank

ρX = 3 (as in Example 17 above).

Furthermore, E ⊂ Y has birational image in X, which we also denote E ⊂ X defined by

equations

E = (z = t = u = v = 0) ∩X ⊂ P(16, 22),

in coordinates x, y, z, t, u, v, w, s. Computing the unprojection shows that E ∼= (x4 − y4 −
w2 +ws = 0) ⊂ P(12, 22) in coordinates x, y, w, s, which is P(1, 1, 2) blown up in 4 points on the

coordinate line L = P(1, 1) followed by the contraction of the resulting −2-curve L̃, the birational

transform of L. Thus it is a index 2 Fano surface with two 1
2(1, 1) quotient singularities, Picard

rank 4 and K2
E = 4. It can be unprojected to an ordinary, isolated cDV singular point (the cone

on E, in new local coordinates) on an otherwise smooth complete intersection Z2,2,2 ⊂ P6.

Appendix A. Hodge numbers of Fano 3-folds

Tables 1–3 in A.3 below list the invariants for all known families of Fano 3-folds in codimension

at most 3. The majority of the calculations can be carried out by hand. We use computer algebra

in the three cases where not (denoted by T 1 in Table 3), and also use it as a check on all results.

In codimensions 1 and 2 respectively the Fano 3-folds come from Iano-Fletcher ([30] Tables 5

and 6 respectively; in codimensions 3 and 4 they are from Altınok ([1]). The graded ring database

identifier (denoted ‘Grdb’ in the tables) is that of [8].

A.1. Our use of computer algebra. The explicit calculations we need are standard, although

sometimes rather involved. There are three places computer algebra may assist.

(i) Checking that a variety is quasismooth can usually be done with Bertini’s theorem.

In codimension 3 and 4, this can be carried out as in [7, §3–4], for example, when

Type I projections (and staircases) are available. In other cases, we check the Jacobian

condition by machine. This, or some equivalent (such as [61, Theorem 5.5] or [5]), can

be checked by computer algebra given explicit equations.

(ii) Checking that a variety has only ordinary nodes as singularities, and counting those

nodes, can again usually be done by Bertini’s theorem together with a Chern class

calculation when we have Type I projections; see for example [7, §4] for the nodes and

[11, §7] for the count. In other cases, we use computer algebra following [11, §6].

(iii) Computing the dimensions of graded pieces of spaces T 1
AX

seems too hard by hand in

most cases, but there are algorithms to do this based on Gröbner basis; see [31].

We are indebted to the developers of the computer algebra systems Macaulay2 [28], Magma [6]

and Singular [22] that we used for these calculations, and to Ilten [31] for the Versal Deformation

package for Macaulay2. (The latter conveniently handles the gradings on variables automatically
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when computing graded pieces of T 1
AX

; on other systems we had to pick out the graded piece

given generators for the whole module “by hand”.)

In practice, most computations here work when the equations of the Fano 3-fold are fairly

sparse, and as the codimension increases it becomes harder to find such sparse representatives.

A.2. Blache’s orbifold formula. Let V be a projective orbifold of dimension n, embedded as

a quasismooth subvariety of weighted projective space V ⊂ P = P(a0, . . . , aN ). We suppose, in

addition, that V is a manifold away from a finite set of strictly orbifold points Q1, . . . , Qs ∈ V .

We define the orbifold total Chern class corb(TP) = 1 + c1,orb(TP ) + · · ·+ corb,n(TP) of P via

0→ OP → ⊕N
i=0OP(ai)→ TP → 0.

Taking the restriction of this to V , we derive the top Chern class corb(V ) of V from the tangent

exact sequence

0→ TV → TP|V → NV |P → 0

exactly as in the smooth case: that is, we make the formal computation

1 + corb,1(TP) + · · ·+ corb,N (TP) = corb(TP) :=
∏

(1 + aih),

where H2(P,Q) = hQ and corb,j ∈ H2j(P,Q), and then(
1 + corb,1(TV ) + · · ·+ corb,n(TV )

)
c(NV |P) = corb(TP).

Then we define the orbifold euler class eorb(V ) by

eorb(V ) :=

∫
V
corb,n(V ) ∈ Q.

This is a formal computation that ignores orbifold behaviour. However, it is related to the

topological euler characteristic e(V ) by the following theorem of Blache [4].

Theorem 19 ([4] (2.11–14)). Let V be a projective orbifold with finite orbifold locus as above.

Then eorb(X) ∈ Q satisfies

e(X) = eorb(X) +
∑
Q∈B

r − 1

r
,

where r = r(Q) is the local index of the orbifold point Q.

For a hypersurface Xd ⊂ P(a0, . . . , an+1) we have

eorb(X) = the coefficient of hn in series expansion of

∏
(1 + aih)

1 + dh
deg(X).

For example, Fano number 337 is X28 ⊂ P(1, 4, 6, 7, 11) and has basket

B =

{
2× 1

2
(1, 1, 1),

1

6
(1, 1, 5),

1

11
(1, 4, 7)

}
.

Calculating as above gives

e(X) = eorb(X) + 2× 1

2
+

5

6
+

10

11

= coeffh3

(
(1 + 29h+ 309h2)(1− 28h+ 784h2 − 21952h3)

) 28

4 · 6 · 7 · 11

+ 2× 1

2
+

5

6
+

10

11

= coeffh3(1 + h+ 281h2 − 6385h3)
1

66
+ 2× 1

2
+

5

6
+

10

11

=
−6385

66
+ 1 + 5/6 + 10/11

= −94.

This agrees with our calculation h2,1(X) = 49 and e(X) = 4− 2× 49.
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A.3. Tables of results. Tables 1–3 list the Hodge number h2,1(X), the topological euler char-

acteristic e(X) and the number of moduli h1(TX) = dimH1(X,TX) for quasismooth members

X of the families of Fano 3-folds in codimensions 1–3 respectively.

In codimension 1, we apply the Griffith’s Residue Theorem in §2.2 together with the formulas

of Theorem 1. In codimension 2, Table 2 documents the method we use to compute the invari-

ants. This could be the conventional Chern class calculation, indicated by c3(TX), a projection

calculation, indicated by I or II1 depending on the type of the projection, or a computer calcu-

lation of T 1
AX

, indicated by T 1 (which we also use as a check on all the calculations). Where

we use a projection, we also list the centre 1
r of projection (leaving the polarising weights of

1
r (1, a,−a) implicit), the number of nodes on the image of projection, and the number of that

image in the Grdb. Where there is more than one possible centre of projection, we list them

all. Combining this data with the results of Table 1 and Theorems 1 and 4, one can quickly

check the calculations by hand. For example, number 25022, X3,3 ⊂ P(15, 2) (the second line in

Table 2) projects to number 20521 with 9 nodes; the Euler charactistic of the smoothed image

is listed in Table 1 as −56, and so the for X3,3 it is −56 + 2× 9− 2 = −40, as displayed.

In codimension 3, Table 3 documents the method we use in the 70 cases as follows:

(i) 57 cases have at least one ‘staircase’ of two Type I projections to a hypersurface. This

is indicated by I–I.

(ii) 4 cases have a Type I projection to a codimension 2 family that has as a Type II1
projection to a hypersurface (indicated by I–II1).

(iii) 2 cases have a Type II1 projection directly to a hypersurface (II1).

(iv) 2 cases have a Type I projection to a codimension 2 family with no projection (I–T 1).

(v) 1 case has a Type I projection to a known smooth Fano (I–smooth).

(vi) 1 case is a known smooth Fano complete intersection (c3(TX)).

(vii) 3 cases have no Type I or II1 projections at all (T 1).

Again, where there is a projection from X we list the centre 1
r , the number of nodes and the

Grdb identifier for each possibility, and applying Theorems 1 and 4 together with data from

previous tables calculates the invariants.

Table 1: Codimension 1: h1,1(X) = 1 and h0(X,TX) = 0 in

all cases.

Grdb variety h2,1 e(X) h1(TX)

20521 X4 ⊂ P4 30 −56 43

16203 X5 ⊂ P(1, 1, 1, 1, 2) 38 −72 51

16202 X6 ⊂ P(1, 1, 1, 1, 3) 52 −100 66

11101 X6 ⊂ P(1, 1, 1, 2, 2) 41 −78 55

10981 X7 ⊂ P(1, 1, 1, 2, 3) 51 −98 63

10980 X8 ⊂ P(1, 1, 1, 2, 4) 64 −124 78

10960 X9 ⊂ P(1, 1, 1, 3, 4) 71 −138 83

10959 X10 ⊂ P(1, 1, 1, 3, 5) 85 −166 98

10958 X12 ⊂ P(1, 1, 1, 4, 6) 111 −218 125

5838 X8 ⊂ P(1, 1, 2, 2, 3) 45 −86 58

5837 X10 ⊂ P(1, 1, 2, 2, 5) 64 −124 79

5257 X9 ⊂ P(1, 1, 2, 3, 3) 49 −94 62

5157 X10 ⊂ P(1, 1, 2, 3, 4) 56 −108 66

5153 X11 ⊂ P(1, 1, 2, 3, 5) 65 −126 74

5152 X12 ⊂ P(1, 1, 2, 3, 6) 75 −146 88

Continued on next page
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Table 1 continued from previous page

5137 X12 ⊂ P(1, 1, 2, 4, 5) 70 −136 81

5136 X14 ⊂ P(1, 1, 2, 4, 7) 90 −176 102

5134 X15 ⊂ P(1, 1, 2, 5, 7) 97 −190 106

5133 X16 ⊂ P(1, 1, 2, 5, 8) 108 −212 119

5132 X18 ⊂ P(1, 1, 2, 6, 9) 128 −252 141

4984 X12 ⊂ P(1, 1, 3, 4, 4) 60 −116 73

4909 X13 ⊂ P(1, 1, 3, 4, 5) 66 −128 73

4907 X15 ⊂ P(1, 1, 3, 4, 7) 82 −160 89

4906 X16 ⊂ P(1, 1, 3, 4, 8) 91 −178 102

4893 X15 ⊂ P(1, 1, 3, 5, 6) 78 −152 87

4892 X18 ⊂ P(1, 1, 3, 5, 9) 104 −204 114

4891 X21 ⊂ P(1, 1, 3, 7, 10) 126 −248 133

4890 X22 ⊂ P(1, 1, 3, 7, 11) 136 −268 144

4889 X24 ⊂ P(1, 1, 3, 8, 12) 154 −304 165

4835 X16 ⊂ P(1, 1, 4, 5, 6) 77 −150 83

4834 X20 ⊂ P(1, 1, 4, 5, 10) 108 −212 119

4822 X18 ⊂ P(1, 1, 4, 6, 7) 88 −172 94

4821 X22 ⊂ P(1, 1, 4, 6, 11) 120 −236 127

4820 X28 ⊂ P(1, 1, 4, 9, 14) 165 −326 172

4819 X30 ⊂ P(1, 1, 4, 10, 15) 182 −360 190

4807 X21 ⊂ P(1, 1, 5, 7, 8) 99 −194 104

4806 X26 ⊂ P(1, 1, 5, 7, 13) 137 −270 143

4805 X36 ⊂ P(1, 1, 5, 12, 18) 211 −418 218

4794 X24 ⊂ P(1, 1, 6, 8, 9) 110 −216 115

4793 X30 ⊂ P(1, 1, 6, 8, 15) 154 −304 160

4792 X42 ⊂ P(1, 1, 6, 14, 21) 240 −476 247

2402 X12 ⊂ P(1, 2, 2, 3, 5) 47 −90 59

2401 X14 ⊂ P(1, 2, 2, 3, 7) 60 −116 74

1389 X12 ⊂ P(1, 2, 3, 3, 4) 40 −76 54

1162 X14 ⊂ P(1, 2, 3, 4, 5) 45 −86 52

1160 X16 ⊂ P(1, 2, 3, 4, 7) 54 −104 62

1159 X18 ⊂ P(1, 2, 3, 4, 9) 65 −126 76

1155 X15 ⊂ P(1, 2, 3, 5, 5) 48 −92 60

1149 X17 ⊂ P(1, 2, 3, 5, 7) 56 −108 60

1147 X18 ⊂ P(1, 2, 3, 5, 8) 61 −118 66

1146 X20 ⊂ P(1, 2, 3, 5, 10) 72 −140 82

1144 X21 ⊂ P(1, 2, 3, 7, 9) 72 −140 78

1143 X24 ⊂ P(1, 2, 3, 7, 12) 89 −174 97

1142 X24 ⊂ P(1, 2, 3, 8, 11) 87 −170 93

1141 X26 ⊂ P(1, 2, 3, 8, 13) 99 −194 106

1140 X30 ⊂ P(1, 2, 3, 10, 15) 121 −238 131

1113 X20 ⊂ P(1, 2, 4, 5, 9) 62 −120 70

1112 X22 ⊂ P(1, 2, 4, 5, 11) 72 −140 81

1079 X20 ⊂ P(1, 2, 5, 6, 7) 55 −106 60

1078 X26 ⊂ P(1, 2, 5, 6, 13) 80 −156 87

1076 X27 ⊂ P(1, 2, 5, 9, 11) 77 −150 79

1075 X32 ⊂ P(1, 2, 5, 9, 16) 100 −196 104

Continued on next page
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Table 1 continued from previous page

1074 X42 ⊂ P(1, 2, 5, 14, 21) 144 −284 150

1067 X30 ⊂ P(1, 2, 6, 7, 15) 88 −172 96

866 X15 ⊂ P(1, 3, 3, 4, 5) 40 −76 52

545 X18 ⊂ P(1, 3, 4, 5, 6) 42 −80 49

539 X19 ⊂ P(1, 3, 4, 5, 7) 45 −86 47

537 X20 ⊂ P(1, 3, 4, 5, 8) 48 −92 53

536 X24 ⊂ P(1, 3, 4, 5, 12) 63 −122 71

534 X24 ⊂ P(1, 3, 4, 7, 10) 57 −110 58

533 X28 ⊂ P(1, 3, 4, 7, 14) 72 −140 80

532 X30 ⊂ P(1, 3, 4, 10, 13) 74 −144 75

531 X34 ⊂ P(1, 3, 4, 10, 17) 90 −176 92

530 X36 ⊂ P(1, 3, 4, 11, 18) 97 −190 101

529 X42 ⊂ P(1, 3, 4, 14, 21) 120 −236 125

508 X21 ⊂ P(1, 3, 5, 6, 7) 45 −86 51

507 X33 ⊂ P(1, 3, 5, 11, 14) 74 −144 74

506 X38 ⊂ P(1, 3, 5, 11, 19) 92 −180 93

505 X48 ⊂ P(1, 3, 5, 16, 24) 126 −248 130

500 X24 ⊂ P(1, 3, 6, 7, 8) 48 −92 56

356 X24 ⊂ P(1, 4, 5, 6, 9) 45 −86 47

355 X30 ⊂ P(1, 4, 5, 6, 15) 62 −120 69

353 X25 ⊂ P(1, 4, 5, 7, 9) 46 −88 46

352 X32 ⊂ P(1, 4, 5, 7, 16) 65 −126 69

351 X44 ⊂ P(1, 4, 5, 13, 22) 91 −178 91

350 X54 ⊂ P(1, 4, 5, 18, 27) 120 −236 121

337 X28 ⊂ P(1, 4, 6, 7, 11) 49 −94 50

336 X34 ⊂ P(1, 4, 6, 7, 17) 65 −126 67

296 X27 ⊂ P(1, 5, 6, 7, 9) 42 −80 42

295 X30 ⊂ P(1, 5, 6, 8, 11) 46 −88 45

294 X38 ⊂ P(1, 5, 6, 8, 19) 64 −124 64

293 X66 ⊂ P(1, 5, 6, 22, 33) 120 −236 120

289 X40 ⊂ P(1, 5, 7, 8, 20) 64 −124 68

271 X36 ⊂ P(1, 7, 8, 9, 12) 42 −80 41

270 X50 ⊂ P(1, 7, 8, 10, 25) 63 −122 62

Table 2: Codimension 2: h1,1(X) = 1 and h0(X,TX) = 0 in

all cases.

grdb variety method 1
r , #nodes, target id h2,1 e(X) h1(TX)

24076 X2,3 ⊂ P5 c3(TX) 20 −36 34

20522 X3,3 ⊂ P(1, 1, 1, 1, 1, 2) I 1
2 , 9, 20521 22 −40 36

16225 X3,4 ⊂ P(1, 1, 1, 1, 2, 2) I 1
2 , 12, 16203 27 −50 41

16204 X4,4 ⊂ P(1, 1, 1, 1, 2, 3) I 1
3 , 8, 16203 31 −58 45

11435 X4,4 ⊂ P(1, 1, 1, 2, 2, 2) I 1
2 , 16, 11101 26 −48 39

11102 X4,5 ⊂ P(1, 1, 1, 2, 2, 3) I 1
2 , 20, 10981; 1

3 , 10, 11101 32 −60 45

11002 X4,6 ⊂ P(1, 1, 1, 2, 3, 3) I 1
3 , 12, 10981 40 −76 53

Continued on next page
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Table 2 continued from previous page

10983 X5,6 ⊂ P(1, 1, 1, 2, 3, 4) I 1
2 , 30, 10960; 1

4 , 10, 10981 42 −80 55

10982 X6,6 ⊂ P(1, 1, 1, 2, 3, 5) I 1
5 , 6, 10981 46 −88 59

10961 X6,8 ⊂ P(1, 1, 1, 3, 4, 5) I 1
5 , 12, 10960 60 −116 73

6858 X4,6 ⊂ P(1, 1, 2, 2, 2, 3) II1
1
2 , 34, 5837 31 −58 43

5857 X5,6 ⊂ P(1, 1, 2, 2, 3, 3) I 1
3 , 15, 5838 31 −58 42

5843 X6,6 ⊂ P(1, 1, 2, 2, 3, 4) I 1
4 , 12, 5838 34 −64 45

5839 X6,7 ⊂ P(1, 1, 2, 2, 3, 5) I 1
5 , 7, 5838 39 −74 50

5514 X6,6 ⊂ P(1, 1, 2, 3, 3, 3) I 1
3 , 18, 5257 32 −60 42

5261 X6,7 ⊂ P(1, 1, 2, 3, 3, 4) I 1
3 , 21, 5157; 1

4 , 14, 5257 36 −68 46

5258 X6,8 ⊂ P(1, 1, 2, 3, 3, 5) I 1
3 , 24, 5153; 1

5 , 8, 5257 42 −80 52

5200 X6,8 ⊂ P(1, 1, 2, 3, 4, 4) I 1
4 , 16, 5157 41 −78 51

5161 X7,8 ⊂ P(1, 1, 2, 3, 4, 5) I 1
3 , 28, 5137; 1

5 , 14, 5157 43 −82 53

5159 X6,9 ⊂ P(1, 1, 2, 3, 4, 5) I 1
4 , 18, 5153; 1

5 , 9, 5157 48 −92 58

5158 X8,9 ⊂ P(1, 1, 2, 3, 4, 7) I 1
7 , 6, 5157 51 −98 61

5156 X6,10 ⊂ P(1, 1, 2, 3, 5, 5) I 1
5 , 10, 5153 56 −108 66

5155 X8,10 ⊂ P(1, 1, 2, 3, 5, 7) I 1
3 , 40, 5134; 1

7 , 8, 5153 58 −112 68

5154 X9,10 ⊂ P(1, 1, 2, 3, 5, 8) I 1
8 , 6, 5153 60 −116 70

5138 X8,10 ⊂ P(1, 1, 2, 4, 5, 6) I 1
6 , 16, 5137 55 −106 65

5135 X10,14 ⊂ P(1, 1, 2, 5, 7, 9) I 1
9 , 10, 5134 88 −172 98

4985 X8,9 ⊂ P(1, 1, 3, 4, 4, 5) I 1
4 , 24, 4909; 1

5 , 18, 4984 43 −82 51

4936 X8,10 ⊂ P(1, 1, 3, 4, 5, 5) I 1
5 , 20, 4909 47 −90 55

4912 X9,10 ⊂ P(1, 1, 3, 4, 5, 6) I 1
4 , 30, 4893; 1

6 , 18, 4909 49 −94 57

4911 X8,12 ⊂ P(1, 1, 3, 4, 5, 7) I 1
5 , 24, 4907; 1

7 , 8, 4909 59 −114 67

4910 X10,12 ⊂ P(1, 1, 3, 4, 5, 9) I 1
9 , 6, 4909 61 −118 69

4908 X12,14 ⊂ P(1, 1, 3, 4, 7, 11) I 1
11 , 6, 4907 77 −150 85

4894 X10,12 ⊂ P(1, 1, 3, 5, 6, 7) I 1
7 , 20, 4893 59 −114 67

4848 X10,12 ⊂ P(1, 1, 4, 5, 6, 6) I 1
6 , 24, 4835 54 −104 61

4837 X11,12 ⊂ P(1, 1, 4, 5, 6, 7) I 1
5 , 33, 4822; 1

7 , 22, 4835 56 −108 63

4836 X12,15 ⊂ P(1, 1, 4, 5, 6, 11) I 1
11 , 6, 4835 72 −140 79

4823 X12,14 ⊂ P(1, 1, 4, 6, 7, 8) I 1
8 , 24, 4822 65 −126 72

4808 X14,16 ⊂ P(1, 1, 5, 7, 8, 9) I 1
9 , 28, 4807 72 −140 78

4795 X16,18 ⊂ P(1, 1, 6, 8, 9, 10) I 1
10 , 32, 4794 79 −154 85

3508 X6,6 ⊂ P(1, 2, 2, 2, 3, 3) T 1 24 −44 34

2419 X6,8 ⊂ P(1, 2, 2, 3, 3, 4) II1
1
3 , 33, 2401 28 −52 37

2409 X6,10 ⊂ P(1, 2, 2, 3, 4, 5) II1
1
4 , 25, 2401 36 −68 45

2403 X9,10 ⊂ P(1, 2, 2, 3, 5, 7) I 1
7 , 9, 2402 39 −74 47

1390 X8,9 ⊂ P(1, 2, 3, 3, 4, 5) I 1
5 , 12, 1389 29 −54 36

1249 X8,10 ⊂ P(1, 2, 3, 4, 4, 5) II1
1
4 , 36, 1159 30 −56 37

1179 X9,10 ⊂ P(1, 2, 3, 4, 5, 5) I 1
5 , 15, 1162 31 −58 37

1171 X8,12 ⊂ P(1, 2, 3, 4, 5, 6) II1
1
5 , 30, 1159 36 −68 43

1165 X10,11 ⊂ P(1, 2, 3, 4, 5, 7) I 1
7 , 11, 1162 35 −66 41

1164 X9,12 ⊂ P(1, 2, 3, 4, 5, 7) I 1
5 , 18, 1160; 1

7 , 9, 1162 37 −70 43

1163 X10,12 ⊂ P(1, 2, 3, 4, 5, 8) I 1
8 , 8, 1162 38 −72 44

1161 X12,14 ⊂ P(1, 2, 3, 4, 7, 10) I 1
10 , 8, 1160 47 −90 53

1156 X10,12 ⊂ P(1, 2, 3, 5, 5, 7) I 1
5 , 20, 1149; 1

7 , 12, 1155 37 −70 42

1154 X10,14 ⊂ P(1, 2, 3, 5, 7, 7) I 1
7 , 14, 1149 43 −82 48

1152 X10,15 ⊂ P(1, 2, 3, 5, 7, 8) I 1
7 , 15, 1147; 1

8 , 10, 1149 47 −90 52

Continued on next page
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1151 X12,14 ⊂ P(1, 2, 3, 5, 7, 9) I 1
5 , 28, 1144; 1

9 , 12, 1149 45 −86 50

1150 X14,15 ⊂ P(1, 2, 3, 5, 7, 12) I 1
12 , 6, 1149 51 −98 56

1148 X15,16 ⊂ P(1, 2, 3, 5, 8, 13) I 1
13 , 6, 1147 56 −108 61

1145 X14,18 ⊂ P(1, 2, 3, 7, 9, 11) I 1
11 , 14, 1144 59 −114 64

1121 X10,12 ⊂ P(1, 2, 4, 5, 5, 6) II1
1
5 , 40, 1112 33 −62 39

1114 X10,14 ⊂ P(1, 2, 4, 5, 6, 7) II1
1
6 , 35, 1112 38 −72 44

1083 X12,16 ⊂ P(1, 2, 5, 6, 7, 8) II1
1
5 , 48, 1067; 1

7 , 40, 1078 41 −78 46

1080 X14,15 ⊂ P(1, 2, 5, 6, 7, 9) I 1
9 , 15, 1079 41 −78 45

1077 X18,22 ⊂ P(1, 2, 5, 9, 11, 13) I 1
13 , 18, 1076 60 −116 63

1068 X14,18 ⊂ P(1, 2, 6, 7, 8, 9) II1
1
8 , 45, 1067 44 −84 49

867 X10,12 ⊂ P(1, 3, 3, 4, 5, 7) I 1
7 , 10, 866 31 −58 36

640 X10,12 ⊂ P(1, 3, 4, 4, 5, 6) T 1 28 −52 33

547 X12,13 ⊂ P(1, 3, 4, 5, 6, 7) I 1
7 , 13, 545 30 −56 34

546 X12,15 ⊂ P(1, 3, 4, 5, 6, 9) I 1
9 , 9, 545 34 −64 38

544 X12,14 ⊂ P(1, 3, 4, 5, 7, 7) I 1
7 , 14, 539 32 −60 35

542 X12,15 ⊂ P(1, 3, 4, 5, 7, 8) I 1
7 , 15, 537; 1

8 , 12, 539 34 −64 37

541 X14,15 ⊂ P(1, 3, 4, 5, 7, 10) I 1
10 , 10, 539 36 −68 39

540 X14,16 ⊂ P(1, 3, 4, 5, 7, 11) I 1
11 , 8, 539 38 −72 41

538 X15,16 ⊂ P(1, 3, 4, 5, 8, 11) I 1
11 , 10, 537 39 −74 42

535 X20,21 ⊂ P(1, 3, 4, 7, 10, 17) I 1
17 , 6, 534 52 −100 54

509 X14,15 ⊂ P(1, 3, 5, 6, 7, 8) I 1
8 , 14, 508 32 −60 35

453 X12,14 ⊂ P(1, 4, 4, 5, 6, 7) T 1 28 −52 32

359 X14,16 ⊂ P(1, 4, 5, 6, 7, 8) T 1 29 −54 32

358 X12,20 ⊂ P(1, 4, 5, 6, 7, 10) II1
1
7 , 27, 355 36 −68 39

357 X18,20 ⊂ P(1, 4, 5, 6, 9, 14) I 1
14 , 8, 356 38 −72 40

354 X18,20 ⊂ P(1, 4, 5, 7, 9, 13) I 1
13 , 10, 353 37 −70 38

338 X16,18 ⊂ P(1, 4, 6, 7, 8, 9) T 1 30 −56 33

297 X18,20 ⊂ P(1, 5, 6, 7, 9, 11) I 1
11 , 12, 296 31 −58 32

279 X18,30 ⊂ P(1, 6, 8, 9, 10, 15) T 1 36 −68 38

265 X24,30 ⊂ P(1, 8, 9, 10, 12, 15) T 1 30 −56 31

37 X12,14 ⊂ P(2, 3, 4, 5, 6, 7) T 1 18 −32 23

Table 3: Codimension 3: h1,1(X) = 1 and h0(X,TX) = 0 in

all cases.

grdb variety method 1
r , #nodes, target id h2,1 e(X) h1(TX)

26988 X2,2... = X2,2,2 ⊂ P6 c3(TX) 14 −24 27

24077 X2,3... ⊂ P(1, 1, 1, 1, 1, 1, 2) I – T 1 1
2 , 7, 24076 14 −24 27

20543 X3,3... ⊂ P(1, 1, 1, 1, 1, 2, 2) I – I 1
2 , 8, 20522 15 −26 28

20523 X3,3... ⊂ P(1, 1, 1, 1, 1, 2, 3) I – I 1
3 , 6, 20522 17 −30 30

16338 X3,3... ⊂ P(1, 1, 1, 1, 2, 2, 2) I – I 1
2 , 10, 16225 18 −32 31

16226 X3,4... ⊂ P(1, 1, 1, 1, 2, 2, 3) I – I 1
2 , 11, 16204; 1

3 , 7, 16225 21 −38 34

16205 X4,4... ⊂ P(1, 1, 1, 1, 2, 3, 4) I – I 1
4 , 7, 16204 25 −46 38

12062 X4,4... ⊂ P(1, 1, 1, 2, 2, 2, 2) I – I 1
2 , 12, 11435 15 −26 27

11436 X4,4... ⊂ P(1, 1, 1, 2, 2, 2, 3) I – I 1
2 , 14, 11102; 1

3 , 8, 11435 19 −34 31

Continued on next page
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11122 X4,4... ⊂ P(1, 1, 1, 2, 2, 3, 3) I – I 1
2 , 17, 11002; 1

3 , 9, 11102 24 −44 36

11105 X4,5... ⊂ P(1, 1, 1, 2, 2, 3, 4) I – I 1
2 , 18, 10983; 1

4 , 8, 11102 25 −46 37

11103 X4,5... ⊂ P(1, 1, 1, 2, 2, 3, 5) I – I 1
2 , 19, 10982; 1

5 , 5, 11102 28 −52 40

11003 X4,5... ⊂ P(1, 1, 1, 2, 3, 3, 4) I – I 1
3 , 11, 10983; 1

4 , 9, 11002 32 −60 44

10984 X5,6... ⊂ P(1, 1, 1, 2, 3, 4, 5) I – I 1
2 , 27, 10961; 1

5 , 9, 10983 34 −64 46

10962 X6,7... ⊂ P(1, 1, 1, 3, 4, 5, 6) I – I 1
6 , 11, 10961 50 −96 62

6859 X4,5... ⊂ P(1, 1, 2, 2, 2, 3, 3) I – II1
1
3 , 11, 6858 21 −38 32

5962 X5,5... ⊂ P(1, 1, 2, 2, 3, 3, 3) I – I 1
3 , 12, 5857 20 −36 30

5865 X5,6... ⊂ P(1, 1, 2, 2, 3, 3, 4) I – I 1
3 , 13, 5843; 1

4 , 10, 5857 22 −40 32

5858 X5,6... ⊂ P(1, 1, 2, 2, 3, 3, 5) I – I 1
3 , 14, 5839; 1

5 , 6, 5857 26 −48 36

5844 X6,6... ⊂ P(1, 1, 2, 2, 3, 4, 5) I – I 1
5 , 10, 5843 25 −46 35

5840 X6,7... ⊂ P(1, 1, 2, 2, 3, 5, 7) I – I 1
7 , 6, 5839 34 −64 44

5515 X6,6... ⊂ P(1, 1, 2, 3, 3, 3, 4) I – I 1
3 , 15, 5261; 1

4 , 11, 5514 22 −40 31

5302 X6,6... ⊂ P(1, 1, 2, 3, 3, 4, 4) I – I 1
3 , 17, 5200; 1

4 , 12, 5261 25 −46 34

5267 X6,7... ⊂ P(1, 1, 2, 3, 3, 4, 5) I – I 1
3 , 18, 5161; 1

5 , 11, 5261 26 −48 35

5264 X6,6... ⊂ P(1, 1, 2, 3, 3, 4, 5) I – I 1
3 , 19, 5159; 1

4 , 13, 5258; 1
5 , 7, 5261 30 −56 39

5262 X6,7... ⊂ P(1, 1, 2, 3, 3, 4, 7) I – I 1
3 , 20, 5158; 1

7 , 5, 5261 32 −60 41

5259 X6,8... ⊂ P(1, 1, 2, 3, 3, 5, 8) I – I 1
3 , 23, 5154; 1

8 , 5, 5258 38 −72 47

5201 X6,7... ⊂ P(1, 1, 2, 3, 4, 4, 5) I – I 1
4 , 14, 5161; 1

5 , 12, 5200 30 −56 39

5175 X6,7... ⊂ P(1, 1, 2, 3, 4, 5, 5) I – I 1
5 , 13, 5159; 1

5 , 8, 5161 36 −68 45

5162 X7,8... ⊂ P(1, 1, 2, 3, 4, 5, 6) I – I 1
3 , 24, 5138; 1

6 , 12, 5161 32 −60 41

5160 X6,8... ⊂ P(1, 1, 2, 3, 4, 5, 7) I – I 1
4 , 17, 5155; 1

7 , 7, 5159 42 −80 51

5139 X8,9... ⊂ P(1, 1, 2, 4, 5, 6, 7) I – I 1
7 , 14, 5138 42 −80 51

4999 X8,8... ⊂ P(1, 1, 3, 4, 4, 5, 5) I – I 1
4 , 19, 4936; 1

5 , 15, 4985 29 −54 36

4988 X8,9... ⊂ P(1, 1, 3, 4, 4, 5, 6) I – I 1
4 , 20, 4912; 1

6 , 14, 4985 30 −56 37

4986 X8,9... ⊂ P(1, 1, 3, 4, 4, 5, 9) I – I 1
4 , 23, 4910; 1

9 , 5, 4985 39 −74 46

4937 X8,9... ⊂ P(1, 1, 3, 4, 5, 5, 6) I – I 1
5 , 17, 4912; 1

6 , 15, 4936 33 −62 40

4914 X9,10... ⊂ P(1, 1, 3, 4, 5, 6, 7) I – I 1
4 , 25, 4894; 1

7 , 15, 4912 35 −66 42

4913 X8,9... ⊂ P(1, 1, 3, 4, 5, 6, 7) I – I 1
6 , 17, 4911; 1

7 , 7, 4912 43 −82 50

4895 X10,11... ⊂ P(1, 1, 3, 5, 6, 7, 8) I – I 1
8 , 17, 4894 43 −82 50

4849 X10,11... ⊂ P(1, 1, 4, 5, 6, 6, 7) I – I 1
6 , 20, 4837; 1

7 , 18, 4848 37 −70 43

4838 X11,12... ⊂ P(1, 1, 4, 5, 6, 7, 8) I – I 1
5 , 27, 4823; 1

8 , 18, 4837 39 −74 45

4824 X12,13... ⊂ P(1, 1, 4, 6, 7, 8, 9) I – I 1
9 , 20, 4823 46 −88 52

4809 X14,15... ⊂ P(1, 1, 5, 7, 8, 9, 10) I – I 1
10 , 23, 4808 50 −96 55

4796 X16,17... ⊂ P(1, 1, 6, 8, 9, 10, 11) I – I 1
11 , 26, 4795 54 −104 59

2420 X6,7... ⊂ P(1, 2, 2, 3, 3, 4, 5) I – II1
1
5 , 8, 2419 21 −38 29

2404 X9,10... ⊂ P(1, 2, 2, 3, 5, 7, 9) I – I 1
9 , 8, 2403 32 −60 39

1409 X7,8... ⊂ P(1, 2, 3, 3, 4, 4, 5) II1
1
4 , 21, 1389 20 −36 27

1396 X8,8... ⊂ P(1, 2, 3, 3, 4, 5, 5) I – I 1
5 , 10, 1390 20 −36 26

1394 X8,9... ⊂ P(1, 2, 3, 3, 4, 5, 7) I – I 1
7 , 8, 1390 22 −40 28

1391 X8,9... ⊂ P(1, 2, 3, 3, 4, 5, 8) I – I 1
8 , 6, 1390 24 −44 30

1252 X8,9... ⊂ P(1, 2, 3, 4, 4, 5, 5) I – II1
1
5 , 11, 1249 20 −36 26

1250 X8,9... ⊂ P(1, 2, 3, 4, 4, 5, 7) I – II1
1
7 , 7, 1249 24 −44 30

1184 X8,9... ⊂ P(1, 2, 3, 4, 5, 5, 6) I – II1
1
5 , 13, 1171 24 −44 30

1180 X9,10... ⊂ P(1, 2, 3, 4, 5, 5, 7) I – I 1
5 , 13, 1165; 1

7 , 9, 1179 23 −42 28

1168 X9,10... ⊂ P(1, 2, 3, 4, 5, 7, 7) I – I 1
7 , 10, 1164; 1

7 , 8, 1165 28 −52 33

1166 X10,11... ⊂ P(1, 2, 3, 4, 5, 7, 9) I – I 1
9 , 9, 1165 27 −50 32

Continued on next page
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1157 X10,12... ⊂ P(1, 2, 3, 5, 5, 7, 12) I – I 1
5 , 19, 1150; 1

12 , 5, 1156 33 −62 37

1153 X10,12... ⊂ P(1, 2, 3, 5, 7, 8, 9) I – I 1
8 , 9, 1151; 1

9 , 11, 1152 37 −70 41

1090 X12,13... ⊂ P(1, 2, 5, 6, 7, 7, 8) I – II1
1
7 , 15, 1083 27 −50 31

1081 X14,15... ⊂ P(1, 2, 5, 6, 7, 9, 11) I – I 1
11 , 12, 1080 30 −56 33

868 X10,12... ⊂ P(1, 3, 3, 4, 5, 7, 10) I – I 1
10 , 7, 867 25 −46 29

641 X10,11... ⊂ P(1, 3, 4, 4, 5, 6, 7) I – T 1 1
7 , 9, 640 20 −36 24

568 X10,11... ⊂ P(1, 3, 4, 5, 5, 6, 7) II1
1
5 , 22, 545 21 −38 25

548 X12,13... ⊂ P(1, 3, 4, 5, 6, 7, 10) I – I 1
10 , 8, 547 23 −42 26

543 X12,14... ⊂ P(1, 3, 4, 5, 7, 8, 11) I – I 1
8 , 11, 540; 1

11 , 7, 542 28 −52 30

510 X14,15... ⊂ P(1, 3, 5, 6, 7, 8, 11) I – I 1
11 , 9, 509 24 −44 26

454 X12,13... ⊂ P(1, 4, 4, 5, 6, 7, 9) I – T 1 1
9 , 8, 453 21 −38 24

392 X12,13... ⊂ P(1, 4, 5, 5, 6, 7, 8) T 1 20 −36 23

326 X14,15... ⊂ P(1, 5, 5, 6, 7, 8, 9) T 1 20 −36 22

298 X16,17... ⊂ P(1, 5, 6, 7, 8, 9, 10) T 1 20 −36 22
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