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Abstract
Let (X, d) be an n-point metric space. We assume that
(X, d) is given in the distance oracle model, that is, X =
{1, . . . , n} and for every pair of points x, y from X we can
query their distance d(x, y) in constant time. A k-nearest
neighbor (k-NN) graph for (X, d) is a directed graph G =
(V,E) that has an edge to each of v’s k nearest neighbors.
We use cost(G) to denote the sum of edge weights of G.

In this paper, we study the problem of approximating
cost(G) in sublinear time, when we are given oracle access
to the metric space (X, d) that defines G. Our goal is to
develop an algorithm that solves this problem faster than
the time required to compute G.

We first present an algorithm that in Õε(n2/k) time
with probability at least 2

3
approximates cost(G) to within a

factor of 1 + ε. Next, we present a more elaborate sublinear

algorithm that in time Õε(min{nk3/2, n2/k}) computes an
estimate cost of cost(G) that satisfies with probability at
least 2

3

|cost(G)− cost| ≤ ε · (cost(G) + mst(X)) ,

where mst(X) denotes the cost of the minimum spanning
tree of (X, d).

Further, we complement these results with near match-

ing lower bounds. We show that any algorithm that for

a given metric space (X, d) of size n, with probability at

least 2
3

estimates cost(G) to within a 1 + ε factor requires

Ω(n2/k) time. Similarly, any algorithm that with probability

at least 2
3

estimates cost(G) to within an additive error term

ε · (mst(X) + cost(X)) requires Ωε(min{nk3/2, n2/k}) time.

1 Introduction

Computing or approximating nearest neighbors is a fun-
damental task in many areas of computer science, in-
cluding machine learning, data mining and informa-
tion retrieval and has been studied extensively (see
[1, 7, 8, 14, 16] for a few examples). In many applica-
tions that involve nearest neighbors there is an input set
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of objects together with a distance or similarity measure
and the idea is that objects that are near to each other
are similar to each other. This is, for example, used
in by the k-nearest neighbor algorithm, which predicts
class labels based on the class labels of the k-nearest
neighbors of the query object in a training set.

One way to describe nearest neighbor relations of a
set of objects with a distance or similarity measure is to
use the k-nearest neighbor graph. In this directed graph
the vertices represent a set of input objects and there
is a directed edge from v to u, if the object represented
by u is among the k nearest neighbors of v.

The k-nearest neighbor graph (k-NN) is a funda-
mental data structure to represent proximity relations
within a set of objects. It is used as part of the
non-linear dimensionality reduction algorithm ISOMAP
[29], which first computes a k-nearest neighbor graph
(or, alternatively, an ε-neighborhood graph) then com-
putes the shortest path distances between points and fi-
nally uses multi dimensional scaling to embed the points
into fewer dimensions.

In unsupervised learning, the k-nearest neighbor
graph is used in the context of spectral clustering
(see, for example, the survey [30]). Spectral clustering
describes a class of graph based clustering algorithm
that exploit spectral properties of the graph Laplacian
to compute the clusters (see, for example, [22, 28]
for some well-known variants). If the set of input
objects comes with a distance or similarity measure,
then a standard approach is to run spectral clustering
algorithms on the k-nearest neighbor graph.

Density estimation is an important topic in statis-
tics (see, for example, the book [27]). It deals with
the problem of estimating the density of a distribution
from empirical samples. The k-nearest neighbor graph
can be used in this context to provide a non-parametric
approach (the underlying distribution is not described
by a parameterized statistical model) for this problem.
Essentially, the density is predicted from the distance of
the k-th nearest neighbor and the dimensionality of the
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space.
The variety of the above applications motivates us

to study k-NN graphs as a fundamental graph structure.
As already described above, computing a k-NN graph
requires some distance or similarity measure. In this
paper, we will assume that our points come from a
discrete metric space and we are given access to the
distances through a distance oracle, i.e., we assume
that we have a description of the input point set and
we can ask an oracle in constant time for the distance
between any pair of input points. Since computing or
approximating the k-NN graph in such a general setting
requires quadratic time, we will consider the question
whether it is at least possible to approximate the weight
of the k-NN graph in subquadratic time, which would be
sublinear in the full description size of the input space.
We will also try to find natural conditions under which
we can obtain a better approximation algorithm.

The study of the weight of the k-NN graph is moti-
vated by its use in the context of estimation of basic sta-
tistical properties of a point set. For example, Costa and
Hero [4] use the (appropriately scaled) weight of a k-NN
graph for powers of Euclidean distances as an estimator
for the intrinsic dimension and entropy of a data set.
The related generalized nearest neighbor graph (which
connects to a subset of the k-nearest neighbors) has been
used as an estimator for entropy and mutual informa-
tion (again after appropriate scaling) [25].

Since we cannot compute an approximate nearest
neighbor graph in subquadratic time, for very large data
sets we have to use a heuristic approach such as the NN-
Descent algorithm by Dong et al. [8], that starts with
a random graph and then locally improves the solution
by considering neighbors of neighbors. While this and
similar graph-based approaches have been empirically
shown to perform well [8, 21], they do not come with
guarantees. In order to evaluate the quality of the
computed solution is it therefore helpful to be able to
quickly approximate the cost of the k-NN graph.

Besides of these concrete applications, from a the-
oretical point of view, our studies are motivated by
the general question of understanding how (and under
which assumptions) we can estimate fundamental prop-
erties of very large structured data sets (in this case,
metric spaces) from random samples.

In order to study such and similar questions, we
pursue the following approach. We formulate the
problem of computing a k-nearest neighbor graph as an
optimization problem on a metric space (X, d) with the
objective to compute a directed graph G = (V,E) with
vertex set V = X such that every vertex has outdegree
exactly k and such that the sum of edge weights is
minimized. For a k-nearest neighbor graph G we will

use cost(G) to denote the sum of its edge weights. In this
paper we are interested in the question of approximating
cost(G), when we are given oracle access to the metric
space (X, d) that defines G.

1.1 Our results. It is not difficult to see that to
compute exactly the cost of a k-nearest neighbor (k-NN)
graph G of a metric space (X, d) one requires Θ(n2)
oracle access queries to the metric space (X, d) that
defines G, where n = |X|. Similarly, finding even an
approximation of a k-NN graph G of a metric space
(X, d) also requires Θ(n2) queries. However, we show
that in a sublinear time one can find a very good
approximation of cost(G), and we complement these
results by showing that the complexity of our algorithms
is almost optimal.

We develop two randomized sublinear time algo-
rithms to approximate cost(G), the cost of a k-NN graph
G of a metric space (X, d). We assume that our input
is given in the distance oracle model, i.e., the set X of n
input points is indexed from 1 to n and we can evaluate
the distance between any pair of points in constant time
per evaluation.

Notice that while the directed k-nearest neighbor
graph G has nk edges, for a given metric space (X, d)
graph G is given only implicitly, and a näıve algorithm
to find G or even to compute cost(G) would query the
distances between all Θ(n2) pairs of points in X.

Our first algorithm performs best for large values of

k (cf. Theorem 6.1) and in Õ
(
n2

ε2k

)
time1 computes

a value cost, such that with probability at least 2
3 ,

|cost(G)− cost| ≤ ε · cost(G) .

In particular, our result shows that for any k =
ω(ε−2 log n), one can estimate to within a (1± ε) factor
the cost of a k-NN graph G of a metric space (X, d) with
a sublinear number of oracle access queries to (X, d).
And when k is almost linear in n, the running time is
also almost linear.

While this algorithm runs in sublinear time for
large values of k, in arguably the most interesting case
when k is relatively small, the running time is close to
O(n2), which can be easily achieved even by a näıve
algorithm. Even if this dependency is undesirable, such
dependency (or a similar one) is known to be necessary
for k = 1. Indeed, consider a set X of n points, n
even, and a random perfect matching on X. Assign to
every matching edge a cost close to 0 and to every other
edge a cost 1. It is easy to verify that this is a metric
space. Now, assign with probability 1

2 a weight 1 to a

1Throughout the paper we will assume that ε is arbitrary
parameter satisfying 0 < ε ≤ 1.
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random matching edge. Notice that if weight 1 has been
assigned to a random matching edge then cost(X) ∼ 1,
whereas cost(X) ∼ 0 otherwise. Therefore, in order to
approximate the cost of the 1-nearest neighbor graph
with an additive error term of cost(X), any algorithm
would have to find out if such an edge of weight 1 exists.
This requires to find a constant fraction of the matching
edges, which is known to require Ω(n2) time [2].

To bypass the negative dependency on k, we present
the second algorithm that performs very well for small

values of k (cf. Theorem 5.1) and in Õ
(
nk3/2

ε6

)
time

computes a value cost such that with probability at least
2
3 , we have

|cost(G)− cost| ≤ ε(cost(G) + mst(X)) ,

where mst(X) denotes the cost of the minimum span-
ning tree of (X, d), that is, the cost of a minimum span-
ning tree of the complete weighted graph induced by
(X, d). Observe that while this algorithm requires a
sublinear o(n2) time for values of k up to õε(n

2/3), its
approximation has an additive error term that depends
on the cost of the minimum spanning tree of (X, d).
We remark that this is a fairly weak condition. For
example, if the k-NN graph is connected, then this im-
plies that the approximation becomes a classical (1+ε)-
approximation.

The algorithms above can be combined to compute

in expected Õ(min{nk
3/2

ε6 , n
2

ε2k}) time an estimate cost
for the cost of the k-NN graph G that satisfies with
probability at least 2

3 ,

|cost(G)− cost| ≤ ε(cost(G) + mst(X)) .

The running time is sublinear for every k, and is always

at most Õ
(
n8/5

ε18/5

)
.

The bounds above show that one can estimate the
cost of the k-NN graph in sublinear time, but it is
natural to ask whether one can obtain even stronger
bounds and faster algorithms. For example, maybe it is
possible to provide a good estimation in Õ(nk) time or

even in Õ(n) time? We will prove that this is impossible;
we will complement our algorithmic results and provide
matching lower bounds showing that the complexity of
our algorithms is essentially optimal.

Theorem 1.1. Let c be any positive constant, c ≤ k.
Any algorithm that for any metric space (X, d) of size n
with probability at least 2

3 estimates the cost cost(X) of
a k-NN graph to within an additive error term c·cost(X)

requires Ω
(
n2

k

)
queries.

Theorem 1.2. Let ε ≤ 1
2 . Any algorithm that for any

metric space (X, d) of size n with probability at least 5
6

estimates the cost cost(X) of a k-NN graph to within
an additive error term ε · (cost(X) + mst(X)) requires

Ω(min{nk
3/2

ε , n
2

k }) queries.

Because of space constraints, the proofs of Theo-
rems 1.1 and 1.2 are deferred to the full version of this
paper.

1.2 Our techniques. We develop two algorithms,
one of them is more suitable for large and the other
for small values of k. By choosing the better of
the algorithms we obtain the running time claimed in
the abstract. Furthermore, we will complement these
bounds and show that these algorithms are essentially
optimal. In the following, we describe the main ideas
behind both algorithms, and then will briefly discussed
the ideas behind our lower bounds.

1.2.1 Algorithm for large k and (1± ε)-approxi-
mation of cost(G). Our (1 ± ε)-approximation of
cost(G) that works efficiently for large k relies on a com-
bination of two random sampling routines. It first takes
Õ
(
n
k

)
samples for each point to determine an approxi-

mation of the median cost of an edge of the k-NN graph
(that is, the distance to the k

2 -nearest neighbor). The
median edge has several useful properties that we will
use:

(a) Ω(k) times its cost is a lower bound for the contri-
bution of the vertex at hand, and

(b) if there is an edge that is, say, 10 times longer
than the median edge, then there is also an edge
of similar length at all vertices of distance less than
the length of the median edge.

Similar properties are also true for an edge with
rank close to the median rank of its k nearest neighbors.

Once we have determined an approximation for the
median edge, we partition the edges in G into short and
long edges. Short edges have length at most 10 times
the length of the (approximate) median edge and long
edges are longer (all edges of G that are not short). We
will separately estimate the total cost of all short edges
and the cost of all long edges.

To approximate the contribution of the short edges,
we use a form of importance sampling: We sample each
point with probability proportional to the length of
its median edge and compute the sum of short edges
incident to the sample point. Then we scale the weight
by the inverse of the sampling probability and the
sample size. We analyze the quality of the sampling
process using Chebyshev’s inequality. The approach
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is required to detect points that are far away from
everything: For example, we may have a cluster of n−1
points that are close to each other and a single point
that is far away from the cluster and that dominates
the cost of the solution. In order to find this point, we
need to apply non-uniform sampling.

To estimate the cost of the long edges, we use a
uniformly random sample of Õ( n

ε2k ) points. By property
(b) outlined above, we can ensure that long edges cannot
“hide,” i.e., for every long edge, we have Ω(k) long edges
at other points. This can be used to show that by taking
a sample of Õ( n

ε2k ) random points and determining the
costs of the long edges incident to them, we will get a
good estimation of the total cost of all long edges.

Combining the two estimates yields the required
bound (cf. Section 6 for more details).

1.2.2 Algorithm for small k. Our algorithm for

small k that in time Õ
(
nk3/2

ε6

)
estimates cost(G) with

an additive error term ε · (mst(X) + cost(X)) uses a
different approach. We first derive a formula for the cost
of a k-NN graph. We will assume that the distances are
non-negative powers of (1+ε). One can easily argue (for
details, see the full version) that this does not change the
problem significantly (essentially, we are using existing
sublinear-time algorithms to approximate the diameter
[17] and the weight of the minimum spanning tree [6]
to be able to appropriately scale the edge lengths and
then to round them).

Let G = (V,E) be a k-NN graph. We define
subgraphs G(i) = (V,E(i)) to consist of all edges (u, v) ∈
E with distance d(u, v) ≤ (1 + ε)i. We then show
that we can use these “threshold” graphs to derive
the following formula for the cost of the k-NN graph,
where r is the exponent of the maximum edge weight.
The idea to express the cost of a graph structure in
terms of the structure of threshold graphs has been used
before in the area of sublinear algorithm, for example,
in the context of the approximation of the cost of a
minimum spanning tree (cf. [3, 6]). In our case, we
have a surprisingly simple formula that only depends
on vertex degrees. We will use the well-known identity∑`−1
i=0(1+ε)i = (1+ε)`−1

ε to express the weight of an edge
as a weighted sum over the corresponding edges in the
graphs G(i) in which the edge is missing. Using deg(i)(v)
to denote the degree of v in G(i), we will apply the
identity above to obtain the following central formula:

cost(G) = nk + ε ·
r−1∑
i=0

(
(1 + ε)i

∑
v∈V

(k − deg(i)(v))

)
.

With this formula at hand, our problem has been
reduced to that of estimating the sum

∑
v∈V (k −

deg(i)(v)), which we will do by a suitable complex
random sampling. For this purpose, for any fixed
i, we partition the vertices according to their values
of k − deg(i)(v) into sets V ij , 0 ≤ j ≤ t with t =

1 + blog1+ε kc, such that V i0 contains vertices with

deg(i)(v) = k, and for 1 ≤ j ≤ t, all vertices in V ij
satisfy (1 + ε)j−1 ≤ k− deg(i)(v) < (1 + ε)j . This leads
to a modification of formula above, stating that

cost(G) ≈ nk + ε
∑

0≤i≤r−1,1≤j≤t

(1 + ε)i+j |V ij | .

Now the main challenge is to approximate the sizes of
the sets V ij and, most importantly, the sets with large i,
i.e., sets that potentially contribute a lot to the sum. In
order to cope this challenge and analyze our approach,
we have to combine several ingredients.

The first idea can be illustrated on the following
example. Consider an input set of points that can
be divided into two clusters. One cluster contains a
single point u and the other one contains the remaining
n − 1 points. The intra-cluster distances are 1 and the
distances between the clusters are n2 each, which results
in cost(G) ∼ n2k. How can we correctly approximate
the sizes of the sets V ij in this setting? We observe

that since V i0 = V \ {u} for all i < r, in that case
there is exactly a single set V ij (with j = t) which is
not empty and contains only a single point u. If we
would like to find u by random sampling, we need to
sample Ω(n) points. If we were computing the k nearest
neighbors of each sample point exactly, this would result
in Ω(n2) running time. What saves us is that in this
instance we can quickly verify that a given point x is
in the big cluster: We sample a few neighbors of x
and if most of them have distance 1, we know that
we are in the big cluster and we can drop the point
x as it cannot contribute to the cost function. Our first
ingredient to the final algorithm is therefore a sampling
based filtering routine that allows us to drop such points
when deg(i)(x) = Ω(k) with just Õ( n

deg(i)(x)
) queries.

We remark that a somewhat similar filtering strategy
has been used in the context of approximating the cost
of a metric minimum spanning tree [6].

Now let us consider as a second example a metric
space in which all points have pairwise distance 1 or
d, for some large d � k2. We have m · k3/2 clusters
consisting of k + 1 points and m clusters with k −

√
k

points (and hence, the total number of points is n ∼
mk5/2). The intra-cluster distance is 1 and all remaining
distances are d. The cost of this k-NN graph is
Θ(mk7/2+dmk3/2) = Θ(dmk3/2). In this case it seems
to be impossible to use random sampling to distinguish
quickly between the case that a point is in a cluster with
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k + 1 points or is in the smaller cluster. The reason
is that the standard deviation of a sample of linear
size is still Ω(

√
k). However, since there are Ω(mk)

points with degree smaller than k (only those contribute
to the sets V ij ) we can relatively easily estimate their

number by random sampling roughly O(k3/2) points
and computing the nearest neighbors for each sample
point. The interesting observation is now that in this
case the minimum spanning tree has a relatively large
cost as well. And this is not a coincidence. In fact, our
sampling algorithm to estimate the sizes of the sets V ij
uses a sample size that depends inversely on the cost of
the minimum spanning tree (which we can approximate
using an algorithm from [6])!

The connection to the spanning tree problem might
look surprising at first glance, but as we will see,
there are relatively simple arguments why this works.
Consider a fixed value ` and (for the analysis) greedily
cluster the graph by selecting an arbitrary point as a
center and assign all points at distance at most ` to
it. Since the number of cluster centers have pairwise
distance at least `, we can derive a lower bound on the
cost of the minimum spanning tree from the number
of so greedily constructed clusters. The key property
is that if there are many clusters, then the cost of
the minimum spanning tree is high, which allows us to
deal with a bigger estimation error and hence a smaller
sampling size. On the other hand, if there are few
clusters then most of them contain many points and
thus do not contribute to our cost function; furthermore
this can be also checked quickly by random sampling.
This allows us to relate the expected running time of our
sampling approach to the number of clusters and further
to the cost of the minimum spanning tree. Finally,
our analysis shows that this cancels out the dependence
on the minimum spanning tree cost in the sample size.
From this point we still need to do a few other tricks
to obtain our first result, the algorithm for small k. See
Section 5.1.2 for more details.

1.2.3 Lower bounds. In order to derive the lower
bound for any algorithm approximating the cost of a k-
NN graph, for a given parameter k, we will construct
two families of problem instances whose cost differ
substantially and show that no algorithm that queries
the oracle less than T times can distinguish between
these instances, for an appropriate value of T .

One family of problem instances essentially consists
of point sets (X, d) partitioned into clusters of size
k + 1 each, where all points within the same cluster
are at a very small distance from each other (say, after
scaling, at distance 0), and the distance between any
pair of points in different clusters is very large (say, after

scaling, at distance 1). It is not difficult to see that in
such case, we have cost(G) ∼ 0 and mst(X) ∼ n

k .
The other family of problem instances depend on

the parameter k, and on whether we want to consider
the approximation bound to be independent or depen-
dent on mst(X).

Let us first consider the case where we want to
provide a lower bound for any algorithm giving a (1+ε)-
approximation of cost(G) (cf. Theorem 1.1). Then, the
second family of problem instances consists of point sets
(X, d) partitioned into clusters of size k + 1, as above,
except that we take a one random cluster and split it
into one cluster of size k and another consisting of an
isolated point (and as before, the inner-cluster distances
are 0 and the outer-cluster distances are 1). Notice that
in this case we have cost(G) = 2k. For such two problem
instances, we will show (in a rather complex proof)
that any algorithm distinguishing between inputs from

these two families of problem instances requires Ω(n
2

k )
queries to the input oracle. The first straightforward
implication is that this result proves that any (1 + ε)-

approximation algorithm for cost(G) requires Ω(n
2

k )
time. However, we can extend this analysis also to
the case when we allow an additive error term of at
most ε(cost(G) + mst(X)). Indeed, in such problem
instances we have not only cost(G) = 2k, but also
mst(X) ∼ n

k . Therefore, if we have k = Ω(
√
n),

then the arguments above yield that any algorithm that
approximates cost(G) to within an additive error term

of ε(cost(G) + mst(X)) requires Ω(n
2

k ) time.
For smaller values of k, the arguments above (for

approximation algorithms with the additive error term
of ε(cost(G) + mst(X))) do not hold and so we have
to revise our construction. Therefore in the case when
k = O((εn)2/5), we partition the input point set into
Θ( εn

k5/2
) clusters of size k+ 1 +

√
k, the same number of

clusters of size k + 1 −
√
k, and the remaining Θ( εn

k3/2
)

points are partitioned into clusters of size k + 1; as
before, the inner-cluster distances are 0 and the outer-
cluster distances are 1. Notice that cost(G) ∼ εn

k
and mst(X) ∼ n

k . Similarly as before, we will show
that to distinguish between inputs from these two

families of problem instances requires Ω(nk
3/2

ε ) time.
As an immediate consequence, this implies that for k =
O((εn)2/5), any algorithm that approximates cost(G) to
within an additive error of ε(cost(G)+mst(X)) requires

Ω(nk
3/2

ε ) time. This is formalized in Theorem 1.2.
The analysis above relies on a central result showing

that it requires Ω(nh) time to distinguish between our
input instances, (i) one with r · (h + 2) clusters of size
k + 1, and (ii) another where r · h clusters are of size
k+ 1 and r clusters are of size k+ 1 +

√
k and the same
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number of r clusters are of size k+1−
√
k. This claim is

the core of our analysis and its proof is elaborate. The
first central intuition is that in order to determine Ω(k)
of the points from any single cluster in either instance
one needs to perform essentially O(n) queries related to
that cluster. Another key intuition is that if one knows
only any set of o(k) points from a single cluster, then
one cannot determine with good confidence whether the
size of that cluster is k+ 1 or k+ 1±

√
k. By combining

these two properties, and by noticing that in the second
problem instance there is one cluster of size k+ 1±

√
k

per Θ(h) clusters of size k+1, we can then argue that in
order to find a single cluster of size k+1±

√
k, if there is

one, one needs to perform Ω(nh) oracle queries. While
these intuitions are rather simple, their formalization
requires some elaborate arguments that we will present
in details in the full version of the paper.

1.3 Further related work. Sublinear algorithm for
problems in metric spaces have received significant at-
tention in the last several years. It is known that one
can compute in sublinear time approximations for the
diameter, maximum travelling salesperson, maximum
spanning tree, minimum routing cost spanning tree, av-
erage distance [17]. The question of how to approximate
the cost of a minimum spanning tree has been studied
both in the metric [6] and non-metric [3] setting. For our
work, the algorithm for metric spaces is more relevant
and it computes a (1 + ε) approximation of the cost of

the metric minimum spanning tree in time Õ(n/ε7) [6].
Also, the Euclidean minimum spanning tree problem
has been studied in a setting where one can access the
input via certain spatial data structure [5]. The cost
of the (uniform) facility location problem can be ap-
proximated in sublinear time [2]. For the k-center and
k-median problem there are approximation algorithms
with a running time of Õ(nk) [20] as well as bi-criteria
approximation algorithms [17]. The metric maximum
cut problem can also be solved in sublinear time [10, 17].
A recent result on linear sampling from metric spaces
can be used to improve a number of previous results [10]
like, for example, reduce the query complexity of max-
cut. The size of a maximum matching [23, 31] and the
vertex cover size [23, 24] can also be approximated using
sublinear time approximation algorithms. The average
degree of a graph can be efficiently approximated as well
[11, 15].

Besides the area of sublinear approximation algo-
rithms, random sampling approaches from graphs have
been studied within the framework of property testing.
The most relevant result from this area is a recent work
by Fichtenberger and Rhode [12] who studied the prob-
lem of testing whether a graph is a k-nearest neighbor

graph for the Euclidean distance and showed both the-
oretically and empirically that one can efficiently solve
the property testing version of the problem where one
wants to accept any true k-nearest neighbor graph and
reject every graph that differs from a k-nearest neighbor
graph in more than an ε-fraction of its edges.

2 Preliminaries

We start by introducing basic notation and the problem
description.

2.1 Model of computation. We assume that we are
given oracle access to a finite metric space (X, d) with
X = {1, . . . , n}: Our algorithm receives n as an input.
The algorithm can specify pairs of points x, y ∈ X
(i.e., two numbers from {1, . . . , n}) and query the oracle
for their distance d(x, y). Answering each query takes
constant time. We remark that the full description
size of the input space is Θ(n2) and so the algorithms
presented in this paper have a sublinear running time
in the size of the input object. We will assume that all
distances in X are distinct; if this is not the case we use
a lexicographical ordering of the edges as tie breaker.

2.1.1 Graph representation of (X, d). We will of-
ten view the metric space (X, d) as a weighted complete
undirected graph H = (V, F ) with vertex set V = X
and edge set F . The weight of an edge (u, v) ∈ F equals
the corresponding distance in (X, d), i.e., d(u, v). This
allows us to extend the definition of basic graph theo-
retic concepts like minimum spanning trees or k-nearest
neighbor graphs to metric spaces. With this in mind,
throughout the paper we will use interchangeably the
notation mst(X) and mst(H) to denote the cost of the
minimum spanning tree of H.

2.2 Approximating the k-NN graph. The k-
nearest neighbor graph is a directed graph G = (V,E)
that has a directed edge [u, v〉, if v is in the set of k
nearest neighbors of u, i.e., the set of k vertices that
have k smallest distance to u. We observe that in gen-
eral, this graph is not symmetric, i.e., if a vertex u is
a k-nearest neighbor of v then not necessarily vertex v
is a k-nearest neighbor of u. We will refer to G as the
k-NN graph of (X, d).

The k-NN graph can be computed in time O(n2) by
computing the vertex at rank k (according to distances)
in the list of neighbors of each vertex v and then doing
a linear scan over all neighbors to compute the set of
k neighbors for every vertex. It is also not too hard
to see that computing the k-NN graph exactly requires
Ω(n2) time: Pick a metric space where every node has
pairwise distance 2 except for a single pair that has
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distance 1. This pair belongs to the k-NN graph and
finding it requires Ω(n2) time.

For very large data sets, a quadratic running time
is typically not feasible. Therefore, we will consider the
problem of approximating the k-NN graph. For this
purpose, we will phrase the problem as an optimization
problem. Given an input metric space, find a graph
G = (V,E) that minimizes

cost(G) =
∑

[u,v〉∈E

d(u, v)

subject to the outdegree of every vertex u ∈ V to be
exactly k in G.

Once we have defined an optimization problem,
an α-approximation algorithm is an algorithm that
computes a solution with cost at most α · Opt, where
Opt is the cost of an optimal solution. In this paper, we
will be interested in the question of approximating the
cost of the k-NN graph in sublinear time.

3 A formula for the cost of a k-NN graph

In this section we will derive a central tool in our
algorithm for small k: a formula for the (approximate)
cost of a k-NN graph. In fact, the formula can be used
to express the cost of any weighted directed graph with
outdegree exactly k. To simplify our exposition we will
assume that the edge weights are of the form (1 + ε)j

with integer 0 ≤ j ≤ r and r = O(log n/ε). We can
always transform our input on the fly into such a space
by first approximating the diameter of the metric space
[17] and the cost of the minimum spanning tree [6] and
then rescale the space and round edge weights to the
nearest power of 1+ε (rescaling and rounding is done on
the fly). This only slightly affects the triangle inequality
by introducing an additional (1 + ε) factor. Details can
be found in the full version of the paper. The time to
approximate the diameter within a factor of 2 is O(n)
[17] and the time required to approximate the cost of

the minimum spanning tree within a factor of 2 is Õ(n)
[6]. We will assume that edges with the same weight are
ordered lexicographically.

Threshold graphs G(i). Let G be a graph with
outdegree k at every vertex and with edge weights that
are of the form (1 + ε)j for integer values of j. Let
G(i) = (V,E(i)) be the subgraph of G that contains
all edges of weight less than or equal to (1 + ε)i, i.e.,

E(i) = {[u, v〉 ∈ E : d(u, v) ≤ (1+ε)i}. We use deg(i)(v)
to denote the outdegree of vertex v in G(i).

Lemma 3.1. Let G = (V,E), |V | = n, be a weighted
directed graph such that every vertex has outdegree k
and such that the edge weights are of the form (1 + ε)j

for integer 0 ≤ j ≤ r, for some r ∈ N. Let ε > 0. Then
we can write

cost(G) = nk + ε ·
r−1∑
i=0

(
(1 + ε)i

∑
v∈V

(
k − deg(i)(v)

))
.

Proof. Let [u, v〉 ∈ E be an edge of weight (1 + ε)`. We
will use the well-known identity

`−1∑
i=0

(1 + ε)i =
(1 + ε)` − 1

ε
(3.1)

to express the weight of an edge as a weighted sum over
the corresponding edges in the graphs G(i) in which the
edge is missing. By (3.1), we can write

(1 + ε)` = 1 + ε ·
`−1∑
i=0

(1 + ε)i

= 1 + ε ·
r−1∑
i=0

(
(1 + ε)i · 1([u, v〉 /∈ E(i))

)
,

where we use 1(B) to be 1, if expression B is true and
0, otherwise.

We can sum this formula up over all edges in E to
obtain

cost(G) =
∑

[u,v〉∈E

(
1 + ε ·

r−1∑
i=0

(1 + ε)i · 1([u, v〉 /∈ E(i)

)

= kn+ ε ·
r−1∑
i=0

(
(1 + ε)i ·

∑
[u,v〉∈E

1([u, v〉 /∈ E(i))
)

= kn+ ε ·
r−1∑
i=0

(
(1 + ε)i · |E \ E(i)|

)
= kn+ ε ·

r−1∑
i=0

(
(1 + ε)i ·

∑
v∈V

(k − deg(i)(v))
)
.

4 Outline of the algorithm with
Õε(nk

3/2) queries

In this section we present main ideas behind our al-
gorithm k-NNSizeApproximation(n, ε) that performs

Õε(nk
3/2) queries to approximate the cost of a k-NN

graph G (cf. Theorem 5.1). (Since the problem can be
trivially solved with Θ(n2) queries, in this section we
will assume that k = o(n).) Our goal is to rely on the
formula from Lemma 3.1 to approximate the cost of a
k-NN graph G by estimating

∑
v∈V (k − deg(i)(v)) for

every i, 0 ≤ i ≤ r.
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Let us fix i, 0 ≤ i ≤ r, and let t = 1 + blog1+ε kc.
In order to estimate the sum

∑
v∈V (k − deg(i)(v)), we

partition the vertex set V into subsets V i0 , V
i
1 , . . . , V

i
t

such that

V i0 = {v ∈ V : deg(i)(v) = k} ,

and for 1 ≤ j ≤ t,

V ij = {v ∈ V : (1 + ε)j−1 ≤ k − deg(i)(v) < (1 + ε)j} .

We begin with an auxiliary lemma that shows that in
order to approximate cost(G) it suffices to estimate well
the sizes of all sets V ij with 0 ≤ i ≤ r, 1 ≤ j ≤ t.

Lemma 4.1.

cost(G) ≤ nk + ε
∑

0≤i≤r
1≤j≤t

(1 + ε)i+j |V ij | ≤ (1 + ε) · cost(G).

Proof. It immediately follows from Lemma 3.1 that

cost(G) = nk + ε

r−1∑
i=0

(1 + ε)i
∑
v∈V

(k − deg(i)(v))

= nk + ε

r−1∑
i=0

(1 + ε)i
t∑

j=1

∑
v∈V i

j

(k − deg(i)(v))

≤ nk + ε

r−1∑
i=0

(1 + ε)i
t∑

j=1

(1 + ε)j |V ij |

= nk + (1 + ε)ε

r−1∑
i=0

(1 + ε)i
t∑

j=1

(1 + ε)j−1|V ij | .

Next, we use that (1 + ε)j−1 ≤ k − deg(i)(v) to get,

t∑
j=1

(1 + ε)j−1|V ij | ≤
t∑

j=1

∑
v∈V i

j

(k − deg(i)(v))

=
∑
v∈V

(k − deg(i)(v)) ,

giving the following,

cost(G) ≤ nk + (1 + ε)ε

r−1∑
i=0

(1 + ε)i
t∑

j=1

(1 + ε)j−1|V ij |

≤ nk + (1 + ε)ε

r−1∑
i=0

(1 + ε)i
∑
v∈V

(k − deg(i)(v))

≤ (1 + ε)cost(G) .

Hence, we obtain the following,

cost(G) ≤ nk + ε ·
r−1∑
i=0

(1 + ε)i
t∑

j=1

(1 + ε)j |V ij |

≤ (1 + ε) · cost(G) ,

concluding the proof of the claim.

Thanks to Lemma 4.1, in order to estimate cost(G)
it is enough to estimate the number of vertices in each
of the sets V ij and then use expression from Lemma 4.1
to estimate the cost of a k-NN graph. The problem is
that we do not know G. In principle, we are given G
implicitly, because we can identify the outgoing edges
of a vertex v in O(n) time by querying for all of its
neighbors, but this can be way too expensive. Instead,
we will consider subgraphs H(i) = (V, F (i)) of H that
contains all edges [u, v〉 with d(u, v) ≤ (1 + ε)i, that is,
F (i) = {[u, v〉 ∈ F : d(u, v) ≤ (1 + ε)i}. We make the
following straightforward observation.

Observation 4.1. Let (X, d) be a metric space and
assume that all edge weights are at least 1 and are
powers of (1 + ε). Let G(i) = (V,E(i)) and H(i) =

(V, F (i)) be defined as above. Let E
(i)
v and F

(i)
v be

the outgoing edges of a vertex v in G(i) and H(i),
respectively. Then the following statements are true:

• E(i) ⊆ F (i),

• if |F (i)
v | ≤ k then E

(i)
v = F

(i)
v , and

• if |F (i)
v | > k then |E(i)

v | = k.

The above observation allows us to make statements
about G(i), and hence G, by considering H(i). The
challenge here is to find the right tradeoffs between the
sample size required to obtain a good estimation and
the time spent on each sample vertex to approximate
deg(i)(G) via approximating the corresponding degree
in H(i), which we will denote by degH(i)(v). Notice

that deg(i)(v) = min{degH(i)(v), k}.

4.1 The main sampling algorithm. We now
describe the main sampling algorithm k-NNSize-
Approximation following the framework described by
the inequalities from Lemma 4.1. It uses a subroutine
EstimateSetSize to compute an approximation Xi,j

for the sizes of the sets V ij . We assume that the input
is normalized as earlier discussed. The precise value of
r = O(log n/ε) follows from scaling the input and the
value of t = O(log k/ε) has been set up earlier as the
maximum index j for V ij (t is the smallest integer such
that k < (1 + ε)t, i.e., t = 1 + blog1+ε kc).

k-NNSizeApproximation(n, ε)
{Approximation of cost(G); cf. Theorem 5.1}

for i = 0 to r do
for j = 1 to t do

Xi,j = EstimateSetSize(n, ε, i, j)
return nk + ε ·

∑
0≤i≤r,1≤j≤t(1 + ε)i+jXi,j
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EstimateSetSize(n, ε, i, j)
{Estimates |V i

j |; cf. Lemma 5.5}

Sample set S of s = d 100n(1+ε)
i+jrt

mst(X) e vertices

u1, . . . , us uniformly at random
for ` = 1 to s do

if EstimateVertexDegree(n, ε, k, u`, i, j)
∈ [(1 + ε)j−1, (1 + ε)j) then Y` = 1

else Y` = 0
return n

s ·
∑s
`=1 Y`

The main challenge now is to approximate the sizes
of the sets V ij . A standard approach would be to sample
vertices uniformly at random and verify membership
in V ij for each sample vertex and then to extrapolate.
Unfortunately, such a simple approach does not work
as we typically cannot afford to ask Θ(n) queries to
compute all neighbors of a sample vertex. Indeed,
the example from the previous section suggests that
there are cases where we cannot spend much more than
constant time per sample. Therefore, we proceed as
follows. Firstly, for every sample vertex we run the
procedure Filter(n, k, v, i), which rejects, if a given
vertex v has degree degH(i)(v) significantly more than
k (in which case v does not contribute to our objective
function). The central feature of our implementation
of Filter is that we can run Filter(n, k, v, i) with
the expected O( n logn

k+deg
H(i) (v)

) queries, see Lemma 5.1.

Thus, if a vertex has a high degree, we will dismiss it

quickly, with O
(

n logn
deg

H(i) (v)

)
queries if degH(i)(v)) ≥ k.

We remark that a somewhat similar procedure has been
the crux of the algorithm approximating the cost of the
minimum spanning tree [6].

Once we know that a vertex has degree O(k) inH(i),
we call it a candidate vertex. For each candidate vertex
we would like to determine whether it is contained in
the current set V ij . Again, it would be way too slow to

decide exactly whether v ∈ V ij , since it would require
Θ(n) queries per every single vertex. Therefore, we
will do it approximately by using fine-tuned random
sampling procedure on the input graph H(i) to estimate
the vertex degree. One technical obstacle is that if we
use estimates to determine membership in V ij instead of

exact values, the sets V ij will depend on the randomness
used. Fortunately, there is a simple argument why
this is not an issue, provided that we have a good
estimation. Instead of considering an algorithm that
takes a random sample of vertices and then runs an
estimation procedure on the sample, we can assume for
the analysis that at every vertex we run the estimation
procedure first and then we sample from the set of

resulting estimates. Thus, we may think of the sets V ij
as independent of the randomness used for the sampling.

We now discuss our approach to test whether v ∈
V ij . We will sample vertices from V \{v} and query their
distance to v to determine whether they are neighbors
of v in H(i). The sample sizes used by our estimation
algorithm will depend on the index j of the set V ij .
The reason is that while we would like to obtain an
approximation for the value of k − deg(i)(v) up to

an additive error of ε · (k − deg(i)(v)), our sampling
algorithm estimates only degH(i)(v), and not ε · (k −
deg(i)(v)) (in fact, it estimates the number of edges
of length at most (1 + ε)i in H(i), but we can use
Observation 4.1 to transform this into an approximation
of deg(i)(v) for the relevant range of parameters). This

means that when k − deg(i)(v) is small, then we need
a very good approximation of degH(i)(v). Indeed, if
(1 + ε)j is smaller than

√
k, we simply consider all

neighbors of the current vertex. For larger values of
j, we can use random samples of different sizes, which
results in different query complexities. Fortunately, the
number of queries for larger values of k − deg(i)(v) is
smaller, so that we can take larger samples for items
that contribute a lot to the cost function, which allows
us to reduce the variance of the process. The sweet spot
is when k − deg(i)(v) = Θ(

√
k), where we require Ω(n)

queries per sample.
What remains is to determine the initial sample

size. Here we will exploit the fact that thanks to [6],

with only Õ(n) queries we can estimate mst(X) up to
a constant, with probability at least 1− 1/n10, and we

will therefore pick a sample of size Õ(nk(1+ε)
i+j

mst(X) ). Since

every vertex can contribute between 0 and k · (1 + ε)i

to our formula for the k-NN graph cost, such a sample
size will suffice to get an additive error of ε · mst(X)
(more details follow in the analysis in Section 5). In
order to analyze the expected number of queries of the
algorithm, we will then define a simple greedy clustering
procedure and use the resulting clustering to obtain the
desired bound on the expected number of queries of the
filtering procedure.

5 Approximating cost(G) with Õε(nk
3/2) queries

We continue the discussion of our Õε(nk
3/2)-queries al-

gorithm k-NNSizeApproximation to approximate the
cost of a k-NN graph G. We will prove in Theorem 5.1
that Algorithm k-NNSizeApproximation (n, ε) in ex-

pected time O
(
nk3/2 log3 n log2 k

ε6

)
returns a value cost

such that with probability at least 2
3 , we have

|cost(G)− cost| ≤ ε · (mst(X) + cost(G)) .
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We will now describe in details how the estimation
of the sizes of the sets V ij is done and then show how to
approximate cost(G) using Lemma 4.1. Our algorithm
EstimateSetSize uses a subroutine EstimateVer-
texDegree to approximate the degree degH(i)(v) of
a given vertex in H(i). For now, it will be convenient
to just think of EstimateVertexDegree to return
a correct estimate; the precise description of algorithm
EstimateVertexDegree is given in Section 5.2.

5.1 Tools for the analysis of EstimateVertex-
Degree. Before we will present details of our algo-
rithm EstimateVertexDegree(n, ε, k, v, i, j) to ap-
proximate the degree degH(i)(v) of a vertex in H(i), we
will first provide some basic tools useful for the anal-
ysis. Our algorithm EstimateVertexDegree per-
forms two steps: It first checks by a sampling procedure
called Filter whether the vertex degree is significantly
more than k. If this is the case, the vertex does not
contribute to the cost function and we can ignore it. If
the vertex passes our test, we know that with high prob-
ability its degree is no more than 4k. In this case, we
continue our analysis depending on the relation between
j and k; if (1 + ε)j ≤

√
k then we compute its degree

exactly with O(n) queries, and otherwise, we use a spe-
cial sampling routine NeighborhoodSize(n, γ, k, v, i)
to estimate degH(i)(v) to within γk (Section 5.3). We
will first describe the filtering algorithm and then pro-
ceed to the main analysis.

5.1.1 Filtering vertices with many neighbors.
Our first subroutine will be used to quickly filter vertices
that have more than k neighbors and thus do not
contribute to our cost function. The algorithm draws
random samples of increasing size until it obtains a
good estimate of the number of neighbors of a given
query vertex or with high probability the vertex has
O(k) neighbors. A similar idea of using geometrically
increasing sample sizes has been previously used in [6].

Filter(n, k, v, i)
{Determines if degH(i)(v) = O(k); cf. Lemma 5.1}

q = n− 1
repeat

a = 1000n−1q log n; q = 2
3q

Sample v1, . . . , va i.u.r. from V \ {v}
Let q′ be the number of vertices in v1, . . . , va

that are neighbors of v in H(i)

until q′ ≥ 1000 log n or q ≤ 2k
if q ≤ 2k then return True
else return False

Lemma 5.1. Given access to a vertex v, algo-
rithm Filter(n, k, v, i) performs in expectation
O( n logn

k+deg
H(i) (v)

) queries and with probability at least

1− 1/n10 returns the following value:2

• False: if degH(i)(v) ≥ 4k;

• True: if degH(i)(v) ≤ k;

• either True or False, otherwise.

Proof. We will consider separately two cases, when
degH(i)(v) ≥ 4k and degH(i)(v) ≤ k.

Let us first assume that degH(i)(v) ≥ 4k. Then
at some point the algorithm reaches an iteration of the
for-loop, such that q ≤ 3k or it has returned False
before within the running time bound of the lemma.
We now let Xj to be the indicator variable for the
event that vertex vj is a neighbor of v. We have

Pr[Xj ] =
deg

H(i) (v)

n−1 and hence,

Ex

 a∑
j=1

Xj

 = a · degH(i)(v)

n− 1
=

1000 log n · degH(i)(v)

q

≥ 4

3
· 1000 log n .

Chernoff’s bound implies that

Pr

 a∑
j=1

Xj < 1000 log n

 ≤ Pr

 a∑
j=1

Xj ≤
3

4
Ex[

a∑
j=1

Xj ]


≤ e−Ex[

∑a
j=1Xj ]/32 ≤ 1

n10
.

This implies that if degH(i)(v) ≥ 4k, then algorithm
Filter returns False in time O( n logn

deg
H(i) (v)

) with prob-

ability at least 1− 1/n10.
Now we assume that degH(i)(v) ≤ k. We observe

that for q > 2k, we have

Ex

 a∑
j=1

Xj

 = a · degH(i)(v)

n− 1
=

1000 log n · degH(i)(v)

q

≤ 1000 log n · k
2k

= 500 log n .

2As we will make it explicit later, when presenting algorithm

EstimateVertexDegree (cf. Lemma 5.4), one could trivially ob-

tain in expectation O(min{n, n logn
k+deg

H(i) (v)
}) queries by switching

to computing degH(i) (v) exactly when one performs more than n
distance queries.
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We apply Chernoff bound (if λ ≥ 2Ex[
∑a
j=1Xj ] then

Pr[
∑a
j=1Xj ≥ λ] ≤ e−λ/6) to get,

Pr

 a∑
j=1

Xj ≥ 1000 log n

 ≤ e−166 logn ≤ 1

n10
.

Therefore the probability that the algorithm returns
False is at most 1

n10 . The running time is dominated
by the last iteration of the for-loop, which requires
O(n logn

k ) time.

5.1.2 An auxiliary tool: The clustering connec-
tion and MST. In this section we show how to connect
a term used in the running time of some parts of our
algorithms with the cost of the minimum spanning tree
for the input set of points X.

Lemma 5.2. Let k < n−1
4 . For every i, 0 ≤ i ≤ r, the

following holds,∑
v∈V :deg

H(i) (v)≥1

1

degH(i)(v)
≤ 2 +

24 ·mst(X)

(1 + ε)i
.

Furthermore, the number of vertices with degree at most

4k in H(i) is at most 120·k·mst(X)
(1+ε)i .

Proof. We begin with an auxiliary clustering algorithm:

GreedyClustering(n, σ)
{Greedy partition of X into clusters of radius σ and

returns the number of clusters c; cf. Lemma 5.2}

c = 0
for each x ∈ X do
c = c + 1
let Cc be the set of points (including x)

with distance at most σ from x
remove Cc from X

return c

We observe that all cluster centers have pairwise
distance at least σ, and therefore if c is the returned
number of clusters, then 1

3 (c− 1)σ is a lower bound on
the cost of the minimum spanning tree, that is,

1
3 (c− 1)σ ≤ mst(X) .(5.2)

This follows, because the minimum spanning tree con-
nects all cluster centers and using additional vertices
can only reduce the cost of the tree by a factor of 3.
We remark that in this place we are applying the trian-
gle inequality in the original metric space, that is, after
we scale but before we round the distances to powers

of (1 + ε). Therefore, we are losing slightly more than
the usual factor of 2 (because edges are rounded after-
wards).

Let us run GreedyClustering(n, σ) on our input
instance (X, d) with σ = 1

4 (1 + ε)i. Notice that if any
two points are in the same cluster, then the distance
between them is at most 4σ (which is also true in our
space of rounded distances). Therefore for two such
points, their distance is at most (1 + ε)i and thus if
we consider the graph H(i), then these two points are
adjacent in H(i). Hence, for any cluster C and any point
v ∈ C, we have

degH(i)(v) ≥ |C| − 1 .(5.3)

This means that for every cluster C, we have
1 =

∑
v∈C

1
|C| ≥

∑
v∈C

1
deg

H(i) (v)+1 and so c ≥∑
v∈V

1
deg

H(i) (v)+1 . We can combine this bound with

(5.2) to obtain the following,

(1 + ε)i

(∑
v∈V

1

degH(i)(v) + 1
− 1

)
(5.4)

= 4σ

(∑
v∈V

1

degH(i)(v) + 1
− 1

)
≤ 4σ(c− 1) ≤ 12 ·mst(X) .

With (5.4) at hand, we can conclude the first claim as
follows:∑
v∈V :deg

H(i) (v)≥1

1

degH(i)(v)
≤ 2 ·

∑
v∈V

1

degH(i)(v) + 1

≤by (5.4) 2 +
24 ·mst(X)

(1 + ε)i
.

Next let us consider the second claim, and we want
to bound the number of vertices of degree at most 4k
in H(i). Assume first that c ≥ 2. Since by (5.3),
for any cluster C and any vertex v ∈ C, we have
degH(i)(v) ≥ |C| − 1, any cluster C contains at most
4k+ 1 vertices of degree at most 4k in H(i). Therefore,
in particular, the number of vertices of degree at most
4k in H(i) is at most c · (4k + 1). Next, we use (5.2) to
simplify this bound as follows:

c · (4k + 1) ≤ 2(c− 1) · (5k) ≤ 10k · 3 ·mst(X)

σ

=
120 · k ·mst(X)

(1 + ε)i
,

which yields the second claim (notice that in the first
inequality we use c ≥ 2).

The claim above assumed that c ≥ 2 and let us
now consider the case c = 1. In this case, since we
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run GreedyClustering(n, σ) with σ = 1
4 (1 + ε)i and

ended up with a single cluster, there is a point x ∈ X
such that all other points in X are at distance at most
σ = 1

4 (1 + ε)i from x. Hence, the diameter of X

is at most 2σ = 1
2 (1 + ε)i and thus H(i) is a clique

on n vertices. This immediately implies that since we
assumed that 4k < n − 1, the number of vertices with
degree at most 4k in H(i) is zero, which is less than
120·k·mst(X)

(1+ε)i .

5.2 Algorithm EstimateVertexDegree. In this
section we present an algorithm EstimateVertexDe-
gree to estimate the degree of a vertex, which will be
later playing central role in algorithm EstimateSet-
Size (cf. Section 4.1) to estimate the sizes of the sets
V ij , which in turns is used to analyze our main algorithm
k-NNSizeApproximation(n, ε) to estimate cost(G).

We assume that the input is normalized as earlier
discussed. The precise value of r = O(log n/ε) follows
from scaling the input and the value of t = O(log k/ε)
has been set up earlier as the maximum index j for V ij
(t is the smallest integer such that k < (1 + ε)t).

Our algorithm for estimating vertex degrees relies
on a random sampling approach that approximates the
size of the neighborhood of a given vertex in H(i) up
to some additive error. The main point is that for
larger values of k − degH(i)(v) we need more samples
(as there can be fewer points that together contribute
significantly to the cost function), but we can use
fewer samples to get a sufficient approximation for
k − degH(i)(v).

Our algorithm EstimateVertexDegree per-
forms two steps: It first checks by a sampling procedure
Filter (cf. Lemma 5.1 and Section 5.1.1) whether the
vertex degree is significantly more than k. If this is the
case, then the vertex does not contribute to the cost
function and we can ignore it. If the vertex passes our
test, then we know that with high probability its de-
gree is no more than 4k. In this case, we continue our
analysis depending on the relation between j and k;
if (1 + ε)j ≤

√
k then we compute its degree exactly,

and otherwise, if (1 + ε)j >
√
k, then we call algorithm

NeighborhoodSize(n, γ, k, v, i) to estimate degH(i)(v)
to within γk; cf. Section 5.3.

5.3 Algorithm NeighborhoodSize. We begin
with description of our auxiliary algorithm Neigh-
borhoodSize(n, γ, k, v, i) to estimate degH(i)(v) to
within γk using random sampling, assuming degH(i)(v)
is small.

NeighborhoodSize(n, γ, k, v, i)
{Estimates degH(i)(v) to within γk; cf. Lemma 5.3}

Let b = d 500n lnn
kγ2 e

Sample u1, . . . , ub i.u.r. from V \ {v}
For every 1 ≤ ` ≤ b,

X` := 1 if u` is a neighbor of v in H(i);
X` := 0 otherwise

return n−1
b

∑b
`=1X`

The following central lemma shows the properties
of NeighborhoodSize.

Lemma 5.3. Let degH(i)(v) ≤ 4k. Given v as input,
NeighborhoodSize(n, γ, k, v, i) in time O(n logn

kγ2 ) re-

turns a value d̂ that with probability at least 1 − 1
n10

satisfies the following:

|d̂− degH(i)(v)| ≤ γk .

Proof. The running time of NeighborhoodSize fol-
lows from the value of s in the code.

To analyze the value of d̂, let X =
∑b
`=1X` and

Y := d̂ = n−1
b X. We have Ex[X`] =

deg
H(i) (v)

n−1 for 1 ≤
` ≤ b, and thus Ex[X] =

b·deg
H(i) (v)

n−1 ≥ 500 lnn deg
H(i) (v)

kγ2 ,

Ex[Y] = degH(i)(v).
Let us start with the case degH(i)(v) ≤ 1

2γk. We

define δ = γk
2 deg

H(i) (v)
≥ 1. By Chernoff inequality we

get the following:

Pr[Y > γk] ≤ Pr[Y > (1 + δ) ·Ex[Y]]

= Pr[X > (1 + δ) ·Ex[X]] ≤ e−δ·Ex[X]/3

≤ n−10 .

Next, consider the case degH(i)(v) > 1
2γk. We again

define δ = γk
2 deg

H(i) (v)
≤ 1. We get

Pr[Y −Ex[Y] > γk] ≤ Pr[Y > (1 + δ) ·Ex[Y]]

= Pr[X > (1 + δ)Ex[X]]

≤ e−δ
2Ex[X]/3 ≤ n−10/2 .

Furthermore,

Pr[Ex[Y]− Y > γk] ≤ Pr[Y < (1− δ) ·Ex[Y]]

= Pr[X < (1− δ)Ex[X]]

≤ e−δ
2Ex[X]/2 ≤ n−10/2 .

By the union bound, this implies the claim in the second
case when degH(i)(v) > 1

2γk.
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5.3.1 Algorithm EstimateVertexDegree and
its properties. Now we can introduce our algorithm
to estimate the vertex degrees.

EstimateVertexDegree(n, ε, k, v, i, j)
{Estimates k − deg(i)(v); cf. Lemma 5.4}

if Filter(n, k, v, i) = False then return 0
else

if (1 + ε)j ≤
√
k then

compute d̂ = degH(i)(v) exactly
else

d̂ =NeighborhoodSize(n, ε(1 + ε)j/k, k, v, i)

return max{k − d̂, 0}
(if at any moment one queries Θ(n) distances then

stop and compute k − degH(i) (v) exactly)

Lemma 5.4. Let j ≤ t. EstimateVertexDegree
(n, ε, k, v, i, j) satisfies the following:

• If degH(i)(v) ≥ 4k then EstimateVertexDe-
gree runs in O(min{n, n logn

deg
H(i) (v)

}) expected time

and with probability at least 1− 1
n10 returns 0.

• If degH(i)(v) < 4k then

� the expected running time of EstimateVer-
texDegree is either O(n) if (1 + ε)j ≤

√
k,

or O(min{n, nk logn
ε2(1+ε)2j }) if (1 + ε)j >

√
k, and

� either degH(i)(v) ≥ k+ε · (1+ε)j and Estimat-
eVertexDegree with probability at least 1− 2

n10

returns 0, or

� degH(i)(v) < k + ε · (1 + ε)j and Estimat-

eVertexDegree determines d̂ such that with
probability at least 1 − 2

n10 it holds that |d̂ −
degH(i)(v)| ≤ ε · (1 + ε)j.

Proof. We consider two separate cases, when Fil-
ter(n, k, v, i) returns False and when it returns True.

By Lemma 5.1, if Filter(n, k, v, i) returns False
then with probability at least 1 − 1

n10 we have that
degH(i)(v) > k. Therefore, indeed, algorithm Esti-
mateVertexDegree(n, ε, k, v, i, j) returns the correct

value 0 of k − deg(i)(v). Further, by Lemma 5.1, al-
gorithm Filter runs in expected time O( n logn

k+deg
H(i) (v)

),

and so since with probability at least 1 − 1
n10 we

have that degH(i)(v) > k, algorithm Estimate-
VertexDegree(n, ε, k, v, i, j) runs in expected time
O(min{n, n logn

deg
H(i) (v)

}) (the min{n, } term is because of

the last line of the code).
Next, let us consider the case when Fil-

ter(n, k, v, i) returns True. By Lemma 5.1, then with

probability at least 1− 1
n10 we have that degH(i)(v) < 4k;

let us now condition on that degH(i)(v) < 4k. In that
case, the expected running time of algorithm Filter is
O(min{n, n logn

k }), but EstimateVertexDegree will
still perform some more work.

If ε, j, and k satisfy (1 + ε)j ≤
√
k, then algorithm

EstimateVertexDegree will spend O(n) time and
exactly compute the value of degH(i)(v). Therefore in
this case, the expected running time of EstimateVer-
texDegree(n, ε, k, v, i, j) is O(min{n, n logn

k }).
Otherwise, let us consider the case (1 + ε)j ≤√

k, with degH(i)(v) < 4k. Then, after calling Fil-
ter, we invoke algorithm NeighborhoodSize(n, ε(1+
ε)j/k, k, v, i). By Lemma 5.3, algorithm Neighbor-
hoodSize(n, ε(1 + ε)j/k, k, v, i) in time O( nk logn

ε2(1+ε)2j )

returns a value d̂ that with probability at least 1 −
2
n10 satisfies |d̂ − degH(i)(v)| ≤ ε(1 + ε)j . There-
fore, the expected running time of algorithm Es-
timateVertexDegree(n, ε, k, v, i, j) in this case is
O(min{n, n logn

k + nk logn
ε2(1+ε)2j }), which for j ≤ t (and hence

ε(1 + ε)j = O(k)) simplifies to O(min{n, nk logn
ε2(1+ε)2j }).

We obtain the main claim by combining the cases
above.

5.4 Analysis of the running time of algorithm
EstimateSetSize. With Lemma 5.4 at hand, we are
ready to analyze algorithm EstimateSetSize from
Section 4.1.

Lemma 5.5. The expected runtime of algorithm

EstimateSetSize(n, ε, i, j) is O
(
nk3/2 log2 n log k

ε4

)
.

Proof. (Let us remind that we have assumed that k =
o(n), and hence Lemma 5.2 (which requires k < n−1

4 )
holds.) We first observe that the guarantee from Lemma
5.4 suffices to make sure that with probability at least
1− 2

n10 a vertex is only counted towards membership in
V ij when it is either in the class or a neighboring class
(see Section 5.4.1 for a brief discussion how to avoid
double counting in different classes).

Let us fix i and j, and we will analyze the expected
running time to evaluate a single sample vertex by al-
gorithm EstimateVertexDegree(n, ε, k, v, i, j). We
assume that the expected running time is the average
over all vertices as the expected running time of the fil-
tering algorithm holds with probability (1 − 1/n10) in
the worst case (cf. Lemma 5.1). Let us partition V into
two sets V1 and V2, with V1 = {v ∈ V : degH(i)(v) > 4k}
and V2 = {v ∈ V : degH(i)(v) ≤ 4k}. We will split our
analysis into two separate cases, depending on whether
(1 + ε)j ≤

√
k or (1 + ε)j >

√
k.

Case 1: We begin with the case when (1 + ε)j ≤√
k. The expected running time to evaluate a sin-
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gle sample vertex by algorithm EstimateVertexDe-
gree(n, ε, k, v, i, j) is

1

n
·

(∑
v∈V1

O

(
n log n

degH(i)(v) + k

)
+
∑
v∈V2

O(n)

)
.

Using Lemma 5.2, this bound can be simplified to

O
(

mst(X) logn
(1+ε)i + k·mst(X)

(1+ε)i

)
. Plugging this into the

bound above, we obtain an expected running time of
EstimateSetSize(n, ε, i, j) (with s being the number

of sampled vertices, s = d 100n(1+ε)
i+jrt

mst(X) e):

s ·O
(
mst(X) log n

(1 + ε)i
+
k ·mst(X)

(1 + ε)i

)
=
n(1 + ε)i+jrt

mst(X)
·
( (k + log n) ·mst(X)

(1 + ε)i

)
= O(n(k + log n)(1 + ε)jrt) .

Since r = O(log n/ε), t = O(log k/ε), (1 + ε)j ≤
√
k, we

can simplify this bound to conclude that the expected
running time of EstimateSetSize(n, ε, i, j) is

O

(
n(k + log n)

√
k log n log k

ε2

)
=(5.5)

O

(
nk3/2 log2 n log k

ε2

)
.

Case 2: Next, we consider the case when (1+ε)j >√
k. By Lemma 5.4, the expected running time to

evaluate a single sample vertex by algorithm Estimate-
VertexDegree(n, ε, k, v, i, j) satisfies the following:

1

n

(∑
v∈V1

O

(
n log n

degH(i)(v) + k

)
+
∑
v∈V2

O

(
nk log n

ε2(1 + ε)2j

))
.

Using Lemma 5.2, this bound can be simplified to

O

(
mst(X) log n

(1 + ε)i
+
k2 ·mst(X) log n

ε2(1 + ε)i+2j

)
= O

(
mst(X) log n

(1 + ε)i
·
(

1 +
k2

ε2(1 + ε)2j

))
.

Since (1 + ε)j >
√
k and ε · (1 + ε)j ≤ ε · (2k) ≤ 2k, we

can simplify it further to

O

(
mst(X) log n

(1 + ε)i
·
(

1 +
k2

ε2(1 + ε)2j

))
= O

(
mst(X) log n

(1 + ε)i
· k3/2

ε2(1 + ε)j

)
.

Using this bound, we obtain the expected running time
of EstimateSetSize(n, ε, i, j) :

s ·O
(
k3/2 ·mst(X) log n

ε2 · (1 + ε)i+j

)
= O

(
n(1 + ε)i+jrt

mst(X)
·
(
k3/2 ·mst(X) log n

ε2 · (1 + ε)i+j

))
= O

(
nk3/2rt log n

ε2

)
.

Since r = O(log n/ε), t = O(log k/ε), the expected
running time of EstimateSetSize is

O

(
nk3/2 log2 n log k

ε4

)
.(5.6)

We can combine the two cases in (5.5) and (5.6) to
conclude the proof of Lemma 5.5.

5.4.1 Consistency. In order to avoid double count-
ing, we need to make sure that our answers are con-
sistent. In order to ensure this with high probability,
we will assume as a thought experiment that we run al-
gorithm EstimateVertexDegree for different values
of j. We will use the estimate for the largest value of j
such that the error interval is such that the vertex could
be placed into at most two different sets V ij . Once this
happens, we put the vertex into the set that is deter-
mined by its estimate. If all estimates are correct, then
we will be at most ”one class” off. Note that whenever
the confidence interval intersects more than one class,
we will assume that the vertex is not contained in the
corresponding class, i.e., the vertex does not contribute
to our estimate. We observe that we can always sim-
ulate this process in the same running time as before,
if a vertex is in more than one sample set. We start
by evaluating the largest j and proceed in decreasing
order until the class is determined (or all j have been
evaluated).

5.5 Analysis of the performance of k-NNSize-
Approximation. In this section we analyze the run-
ning time and the approximation guarantee of algorithm
k-NNSizeApproximation. For this purpose, we will
assume that algorithm EstimateVertexDegree al-
ways provides the correct answer. This happens with
probability at least 1−1/n10. We first analyze the qual-
ity of EstimateSetSize.

Lemma 5.6. For every 0 ≤ i ≤ r, 1 ≤ j ≤ t,

|V ij | · (1 + ε)i+j ≤ cost(G) .

Proof. V ij is the set of vertices v with (1 + ε)j−1 ≤
k − deg(i)(v). Therefore any vertex v ∈ V ij has at least
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(1 + ε)j−1 neighbors in G whose cost is strictly greater
than (1 + ε)i, and thus at least (1 + ε)i+1. Hence, a
vertex in V ij contributes at least (1 + ε)i+j to cost(G),
which yields the result.

Lemma 5.7. For every 0 ≤ i ≤ r, 1 ≤ j ≤ t, Xi,j in
k-NNSizeApproximation(n, ε) is a random variable
that satisfies the following inequality:

Var[Xi,j ] ≤
mst(X) · cost(G)

100 · (1 + ε)2(i+j) · r · t
.

Proof. Fix i and j, 0 ≤ i ≤ r, 1 ≤ j ≤ t. For
a fixed i, j, EstimateSetSize(n, ε, i, j) samples s =

s(i, j) = d 100n(1+ε)
i+jrt

mst(X) e random vertices u1, . . . , us, for

which it then calls EstimateVertexDegree. Let
Y` be the number returned by EstimateVertexDe-
gree when applied to the sampled vertex u` in Es-
timateSetSize(n, ε, i, j). Y` is an indicator random
variable for the event u` ∈ V ij (for an i.u.r. choice of

u` in V ), and thus Pr[Y` = 1] = Pr[u` ∈ V ij ] =
|V i

j |
n

and Var[Y`] ≤ Pr[Y` = 1] =
|V i

j |
n . Hence, since

Xi,j =
∑s
`=1 Y`, we obtain,

Var[Xi,j ] = Var

[
n

s
·
s∑
`=1

Y`

]
=
n2

s2
·
s∑
`=1

Var[Y`]

≤ n2

s2
· s ·
|V ij |
n

=
n

s
· |V ij | ≤

n

s
· cost(G)

(1 + ε)i+j

≤ mst(X) · cost(G)

100 · (1 + ε)2(i+j) · r · t
,

where the penultimate inequality follows from Lemma
5.6 and the last inequality follows from the fact that

s = d 100n(1+ε)
i+jrt

mst(X) e.

Theorem 5.1. Algorithm k-NNSizeApproximation

(n, ε) in expected time O
(
nk3/2 log3 n log2 k

ε6

)
returns a

value cost such that with probability at least 2
3 , we have

|cost(G)− cost| ≤ ε · (mst(X) + cost(G)) .

Proof. The running time of algorithm k-
NNSizeApproximation(n, ε) follows immediately
from Lemma 5.5 and since r = O(log n/ε) and
t = O(log k/ε).

Next, let us analyze the performance guarantee of
algorithm k-NNSizeApproximation(n, ε). Algorithm
k-NNSizeApproximation(n, ε) returns a value

cost = nk + ε ·
r∑
i=0

t∑
j=1

(1 + ε)i+jXi,j ,

where Xi,j are random numbers studied in Lemma 5.7.
Since the first term is deterministic, our goal is to
analyze the concentration of

∑r
i=0

∑t
j=1(1 + ε)i+jXi,j

around its mean.
We condition on the event that all calls to algorithm

EstimateVertexDegree provide the correct answer;
by Lemma 5.4, this happens with probability at least
1− 1/n10.

Let X =
∑r
i=0

∑t
j=1(1 + ε)i+jXi,j . We use Cheby-

shev’s inequality to analyze the concentration of X:

Pr [|X−Ex [X] | ≥ mst(X) + cost(G))]

≤ Var[X]

(mst(X) + cost(G))2

=
Var[

∑r
i=0

∑t
j=1

(
(1 + ε)i+jXi,j

)
]

(mst(X) + cost(G))2

=

∑r
i=0

∑t
j=1

(
(1 + ε)2(i+j)Var[Xi,j ]

)
(mst(X) + cost(G))2

≤

∑r
i=0

∑t
j=1

(
(1 + ε)2(i+j) ·

(
mst(X)·cost(G)

100·(1+ε)2(i+j)·r·t

))
2 ·mst(X) · cost(G)

=
(r + 1) · t
200 · r · t

≤ 1

100
.

We remark that the bound also holds when we use
a factor 2 approximation for mst(X) in the sample size.
Finally, we need to rescale ε by some constant to take
care of the additional errors introduced by rounding and
the formula using the set V ij .

Let us apply Lemma 4.1 to bound cost(G) − cost.
Notice that Ex[X] =

∑r
i=0

∑t
j=1(1 + ε)i+j · |V ij | and

that cost = nk + ε · X. By Lemma 4.1 we have,

cost(G) ≤ nk + ε ·Ex[X] ≤ (1 + ε) · cost(G) ,

and by our analysis above, with probability at least
1− 1

100 we have

|X−Ex[X]| < mst(X) + cost(G) ,

what is equivalent to

|(nk + εX)− (nk + εEx[X])| < ε(mst(X) + cost(G)) ,

yielding the following (with probability at least 1− 1
100 ):

|cost− (nk + ε ·Ex[X])| < ε · (mst(X) + cost(G)) .

This implies that with probability at least 1 − 1
100 the

following holds:

|cost(G)− cost| ≤ ε · (mst(X) + cost(G)) .
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6 Bypassing dependency on mst(X): (1 + ε)-

approximation of cost(X) with Õε(
n2

k ) queries

In this section we prove Theorem 6.1: we develop an-
other algorithm to approximate cost(G) with a smaller
number of queries when k is large, improving upon
the algorithm from Theorem 5.1 when k = ω̃ε(n

2/5).

Furthermore, unlike the Õε(nk
3/2)-time algorithm from

Theorem 5.1 which approximates cost(G) with an ad-
ditive error term of ε · (mst(X) + cost(G)), our new al-

gorithm with Õε(n
2/k) queries finds the approximation

guarantee that differs from the optimal value within an
ε · cost(G) additive term, i.e., independently of mst(X).

Let G = (V,E) be a k-NN graph. For any v ∈ V ,
order all other vertices in V according to the distance
from v, and call the ith vertex in this order the ith
nearest neighbor of v, or the v’s neighbor of rank i.
Notice that in the k-NN graph G any v is connected by
an edge [v, u〉 only to vertices u with rank at most k.

Our algorithm uses the following idea. First, for
each vertex v, we approximate a median neighbor uv,
which is a vertex which is approximately the k/2th

nearest neighbor of v. Then we divide the edges into
two sets. The set ES of short edges contains all
edges of distance at most 10d(v, uv) and the set EL
of long edges contains the remaining edges of G; that
is, ES =

⋃
v∈V {[v, u〉 ∈ E : d(v, u) ≤ 10d(v, uv)}

and EL = E \ ES . We will separately estimate
the sum of lengths of short edges and then the sum
of lengths of long edges. We will approximate the
contribution of the edges from ES by sampling vertices
v with probability proportional to d(v, uv), relying on
the property (cf. Claim 6.1) that by the choice of uv, we
have k ·

∑
v∈V d(v, uv) = Ω(cost(G)). The contribution

of the long edges is approximated by uniform sampling
of vertices and computing the length of all incident edges
in EL; the central property here is that for every long
edge there is also another edge of roughly the same
length from every neighbor of v that has rank smaller
than the rank of uv. We will give more details in the
remainder of this section.

ApproximatekNNLargek(n, ε, k)
{Returns a (1 + ε)-approx. of cost(G); cf. Lemma 6.1}

Let s := d 1000(n−1) lognk e
for each v ∈ V do

Sample s vertices i.u.r. from V \ {v}
Check the distances of the sampled vertices to v
Let uv be the vertex of rank d500 log ne in this set

Z1 = ApproximateShortEdges(n, ε/8, k)
Z2 = ApproximateLongEdges(n, ε/2, k)
return Z1 + Z2

In the reminder of this section, we will show that the
above algorithm ApproximatekNNLargek(n, ε, k) is
a (1 + ε)-approximation of cost(G).3

In Sections 6.1–6.3 we will prove three central prop-
erties of ApproximatekNNLargek, that the vertices
uv are good approximations of the median neighbors,
and that routines ApproximateShortEdges and Ap-
proximateLongEdges provide good approximations
of the sum of lengths of short edges and long edges, re-
spectively. We will combine all these claims together in
Section 6.4, where we will conclude the analysis of the
properties of algorithm ApproximatekNNLargek in
the final Theorem 6.1.

6.1 Approximating median neighbors. Our first
lemma shows that for each vertex v ∈ V , vertex uv
found by algorithm ApproximatekNNLargek is an
approximate median neighbor v.

Lemma 6.1. Let v be a vertex in H = (V,E) and let its
neighbors q1, . . . , qn−1 be sorted by distance to v, i.e.,
d(v, qi) ≤ d(v, qj) for i < j. Let uv be the vertex
as defined in algorithm ApproximatekNNLargek.
Then with probability at least 1− 1

n4 , we have

k

4
≤ rank(uv) ≤

3k

4
,

where rank(uv) is to the rank of uv in q1, . . . , qn−1.

Proof. Fix v ∈ V . Let S be the set of vertices with rank
smaller than or equal to k

4 . Let us use Xi to denote the
indicator random variable that we sample a vertex from

S in the i-th sampling step; clearly, Ex[Xi] = bk/4c
n−1 .

Observe that rank(uv) < k
4 iff uv ∈ S, i.e., if the

sampled multi-set of s random vertices from V \ {v}
contains at least d500 log ne vertices from S. For that
to happen, we need

∑s
i=1Xi ≥ d500 log ne. Notice the

following,

Ex

[
s∑
i=1

Xi

]
≤ s · k

4(n− 1)
≤ 251 log n .

Using the above inequality and then a Chernoff bound,

Pr[uv ∈ S] = Pr

[
s∑
i=1

Xi ≥ d500 log ne

]

≤ Pr

[
s∑
i=1

Xi ≥ 4
3 ·Ex[

s∑
i=1

Xi]

]
≤ e−Ex[

∑s
i=1Xi]/27 .

3In algorithm ApproximatekNNLargek, while for every ver-
tex v we sample s vertices i.u.r., and hence with replacement, we

compute the rank in the multi-set of the sampled vertices, that
is, to compute the rank we take each sampled copy into account.
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Next, we observe that

Ex

[
s∑
i=1

Xi

]
≥ s · k − 3

4(n− 1)
≥ 125 log n ,

where we assume k ≥ 6 (if k < 6 we can afford to
compute the k-NN graph using brute force). Plugging
in the bound on the expectation into the previous
inequality yields

Pr

[
rank(uv) <

k

4

]
= Pr[uv /∈ S] ≥ 1− 1

2n4
.

We proceed similarly to prove the second inequality.
Consider the set R of all vertices of rank at most 3k

4 .
Let Yi be the indicator random variable that we sample
a vertex from R in the i-th sampling step; clearly

Ex[Yi] = b3k/4c
n−1 ≥ 3k−3

4(n−1) . Notice that rank(uv) >
3k
4 iff uv /∈ R, i.e., if the sampled multi-set of s

random vertices from V \ {v} contains strictly less
than d500 log ne vertices from R, that is, if

∑s
i=1 Yi <

d500 log ne. Notice the following,

Ex

[
s∑
i=1

Yi

]
= s · b3k/4c

n− 1
≥ s · 3k − 3

4(n− 1)
≥ 625 log n ,

assuming that k ≥ 6. We combine the above inequality
with a Chernoff bound and get

Pr[uv /∈ R] = Pr

[
s∑
i=1

Yi < d500 log ne

]

≤ Pr

[
s∑
i=1

Yi ≤ 4
5 ·Ex[

s∑
i=1

Yi]

]
≤ e−Ex[

∑s
i=1 Yi]/50 .

Finally, it follows from our lower bound on Ex[
∑s
i=1 Yi]

that the right hand side inequality of the lemma with
probability 1− 1

2n4 , giving the following

Pr

[
rank(uv) >

3k

4

]
= Pr[uv ∈ R] ≥ 1− 1

2n4
.

The union bound then yields that the lemma holds with
probability at least 1− 1

n4 .

6.2 Approximating total length of short edges.
In this section, we present our sampling routine
ApproximateShortEdges(n, ε/8, k) that approxi-
mates the sum of lengths of short edges, that is,∑

[v,u〉∈ES
d(v, u).

We assume that for every vertex v ∈ V we
have found a vertex uv ∈ V \ {v} using the rou-
tine from ApproximatekNNLargek(n, ε, k). Then,

ES = {[v, u〉 ∈ E : d(u, v) ≤ 10d(v, uv)}. For every
v ∈ V , let Sv denote the sum of distances to the k near-
est neighbors of v in G that are at distance at most
10d(v, uv), that is, Sv =

∑
[v,u〉∈ES

d(v, u). We use the
following simple claim.

Claim 6.1. Sv ≤ 10k · d(v, uv).

Proof. There are at most k outgoing edges incident to
v in G and all such edges in ES have distance at most
10 · d(v, uv).

Now we define the sampling algorithm.

ApproximateShortEdges(n, ε, k)
{Estimates the length of short edges to within ε·cost(G);

cf. Lemma 6.2}

for each v ∈ V compute pv = d(v,uv)∑
w∈V d(w,uw)

for i = 1 to a = d800/ε2e do
Sample a vertex v according to the distribution

Pr[v = u] = pu
Compute Sv
Let ϑi = Sv/pv

return Z1 = 1
a ·
∑a
i=1 ϑi

Lemma 6.2. ApproximateShortEdges(n, ε, k) with
O(n/ε2) queries returns an estimate Z1 such that with
probability at least 7

8 , we have

|Z1 −
∑
v

Sv∈V | ≤ εk
∑
v∈V

d(v, uv) .

Proof. Notice that Ex[ϑi] =
∑
v∈V pv ·

Sv
pv

=
∑
v∈V Sv

and hence Ex[Z1] = Ex[ 1a ·
∑a
i=1 ϑi] =

∑
v∈V Sv, and

so Z1 is an unbiased estimator. Next we observe that
by Claim 6.1 we get,

Sv
pv
≤ 10k · d(v, uv)

pv
= 10 · k ·

∑
w∈V

d(w, uw) .

Next, for every 1 ≤ i ≤ a, using the inequality above we
have

Var[ϑi] ≤ Ex[ϑ2i ] =
∑
v∈V

pv ·
(
Sv
pv

)2

≤
∑
v∈V

pv ·

(
10 · k ·

∑
w∈V

d(w, uw)

)2

= 100 · k2 ·

(∑
w∈V

d(w, uw)

)2

·
∑
v∈V

pv

= 100 · k2 ·

(∑
w∈V

d(w, uw)

)2

.
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Therefore, by independence of the ϑi it follows that

Var[Z1] = Var

[
1

a
·

a∑
i=1

ϑi

]
=

1

a2
·

a∑
i=1

Var[ϑi]

≤ 1

a
· 100 · k2 ·

(∑
w∈V

d(w, uw)

)2

.

Now, we apply Chebyshev’s inequality to obtain

Pr

[
|Z1 −Ex[Z1]| ≥ εk

∑
v∈V

d(v, uv)

]

≤ Var[Z1]

ε2k2
(∑

v∈V d(v, uv)
)2 ≤ 100

ε2a
.

Finally, the result follows from our choice of a =
d800/ε2e in the algorithm.

6.3 Approximating total length of long edges.
In this section, we present our sampling routine
ApproximateShortEdges(n, ε/8, k) that approxi-
mates the sum of lengths of long edges, that is,∑

[v,u〉∈EL
d(v, u) with EL = {[v, u〉 ∈ E : d(u, v) >

10d(v, uv)}. For every v ∈ V , let Lv denote the sum
of distances to the k nearest neighbors of v in G that
are at distance greater than 10d(v, uv) from v, that is,
Lv =

∑
[v,u〉∈EL

d(v, u). We start with a simple auxil-
iary claim.

Claim 6.2. With probability at least 1 − 1
n3 , for every

vertex v ∈ V we have,

Lv ≤
40

9k
· cost(G) .

Proof. Let us condition on that the bounds of Lemma
6.1 are satisfied, that is, that for every vertex v ∈ V we
have k

4 ≤ rank(uv) ≤ 3k
4 . This happens with probability

at least 1− 1/n3 for all vertices.
Let w1, . . . , wk be the set of the k nearest neighbors

of v in G, sorted in order of increasing distance from
v, that is, d(v, w1) ≤ · · · ≤ d(v, wk). Since Claim 6.2
trivially holds when Lv = 0, let us assume that Lv > 0
and define ` such that d(v, w`−1) ≤ 10 · d(v, uv) <
d(v, w`). Let Cv = {z ∈ V : d(v, z) ≤ d(v, uv)}. Let
x be an arbitrary vertex in Cv. Notice that for i ≥ `,
since d(v, x) ≤ d(v, uv) and d(v, wi) > 10 · d(v, uv), we
have

d(v, x) ≤ d(v, uv) ≤ 1
10 · d(v, wi) .

This inequality, when combined with triangle in-
equality, immediately yields

d(v, wi) ≤ d(v, x) + d(x,wi) ≤ 1
10 · d(v, wi) + d(x,wi) ,

and hence

d(v, wi) ≤ 10
9 · d(x,wi) .(6.7)

For a fixed x ∈ Cv, let us consider all k-nearest
neighbors y1, . . . , yk of x in G, and let us order them so
that if a vertex wi is among the k-nearest neighbors
of x then yi = wi. By definition, if yi 6= wi, then
d(v, wk) ≤ d(v, yi), and therefore, by triangle inequality,
d(v, wi) ≤ d(v, wk) ≤ d(v, yi) ≤ d(v, x) + d(x, yi).
Further, since d(v, x) ≤ d(v, uv), and if i ≥ ` then
10d(v, uv) < d(v, wi), we will get that for i ≥ `,

d(v, wi) ≤ d(v, x) + d(x, yi) ≤ d(v, uv) + d(x, yi)

≤ 1
10d(v, wi) + d(x, yi) ,

giving,

d(v, wi) ≤ 10
9 d(x, yi) .(6.8)

If we combine (6.7) and (6.8), then we obtain that
for every i ≥ `, it holds

d(v, wi) ≤ 10
9 d(x, yi) ,

and therefore

Lv =

k∑
i=`

d(v, wi) ≤
k∑
i=`

10
9 d(x, yi) ≤ 10

9

k∑
i=1

d(x, yi)

= 10
9 (Sx + Lx) .

The inequality Lv ≤ 10
9 (Sx + Lx) holds for every x

in Cv. By Lemma 6.1, we know that |Cv| ≥ k/4, and
therefore,

k
4Lv ≤

∑
x∈Cv

Lv ≤
∑
x∈Cv

10
9 (Sx + Lx) ≤

∑
x∈V

10
9 (Sx + Lx)

≤ 10
9 · cost(G) ,

what yields the claim.

With Claim 6.2 at hand, we can now first describe
and then analyze the algorithm to estimate the sum
of lengths of long edges ApproximateLongEdges. It
samples vertices i.u.r. and uses their contribution to the
sum of lengths of long edges as an estimate.

ApproximateLongEdges(n, ε, k)
{Estimates the length of long edges to within ε · cost(G);

cf. Lemma 6.3}

for i = 1 to b = d 36nε2k e do
Sample a vertex v ∈ V i.u.r.
Compute Lv and set li = Lv

return Z2 = n
b ·
∑b
i=1 li

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited



Lemma 6.3. ApproximateLongEdges(n, ε, k) with

O
(
n2

ε2k

)
queries returns an estimate Z2 such that with

probability at least 7
8 , we have

|Z2 −
∑
v∈V
Lv| ≤ ε · cost(G) .

Proof. The number of queries of O
(
n2

ε2k

)
of algo-

rithm ApproximateLongEdges(n, ε, k) follows im-
mediately from our choice of b in the algorithm.

In order to analyze the quality of the estimate
Z2, notice first that Ex[li] = 1

n ·
∑
v∈V Lv and so

Ex[Z2] = Ex[nb ·
∑b
i=1 li] =

∑
v∈V Lv. Next, by Claim

6.2, we obtain the following,

Var[li] ≤ Ex[l2i ] =
1

n
·
∑
v∈V

(Lv)2

≤ 1

n
·
∑
v∈V

(
Lv ·

40 · cost(G)

9k

)
=

40 · cost(G)

9kn
·
∑
v∈V
Lv ≤

40 · (cost(G))2

9kn
.

Then, using the independence of the li, we obtain
the following,

Var[Z2] = Var

[
n

b
·

b∑
i=1

li

]
=
n2

b2
·

b∑
i=1

Var[li]

≤ n2

b
· 40(cost(G))2

9kn
=

40n(cost(G))2

9kb
.

Now we apply Chebyshev’s inequality to obtain

Pr [|Z2 −Ex[Z2]| ≥ ε · cost(G)] ≤ Var[Z2]

ε2 · cost(G)2

≤ 40n

9ε2kb
.

Finally, the result follows from our choice of b in the
algorithm.

6.4 Completing the analysis. Now we are ready
to complete the analysis of our algorithm Approxi-
mateNNLargek.

Theorem 6.1. Algorithm ApproximateNNLargek
(n, ε, k) computes with probability at least 2

3 a value cost
with

|cost(G)− cost| ≤ ε · cost(G) .

The algorithm performs O(n
2 logn
ε2k ) queries to the dis-

tance oracle.

Proof. We first observe that by Lemma 6.1, with prob-
ability at least 1− 1/n3 we have that

cost(G) ≥ k

4
·
∑
v∈V

d(v, uv) .

Thus, using ApproximateShortEdges and Approx-
imateLongEdges with parameters ε/8 and ε/2, re-
spectively, by Lemmas 6.2 and 6.3, our approximation
of Z1 and Z2 has an additive error of at most ε · cost(G)
with probability at least 1− 3

4 −
1
n3 . This yields the first

part of the theorem.
The number of queries of algorithm Approxi-

mateNNLargek follows immediately from our setting

of s = O
(
n logn
k

)
and from Lemmas 6.2 and 6.3.

Repeating the algorithm O(log n) times and return-
ing the median estimate will provide this approxima-
tion with probability at least 1 − 1

n10 . We remark that
this algorithm does not require the cost of the minimum
spanning tree to be small.

7 Conclusions

In this paper, we present a rather complete picture of
the complexity of the problem of approximating cost(G)
in sublinear time to within an additive error term
ε · cost(G) or ε · (mst(X) + cost(G)), when we are given
oracle access to the metric space (X, d) that defines G.

We present two sublinear-time algorithms. First,
in Theorem 5.1, we show that with Õε(nk

3/2) queries
one can approximate cost(G) to within an additive error
term ε · (mst(X) + cost(G)). Then, in Theorem 6.1,
we show that one can find a (1 + ε)-approximation of

cost(G) with Õε(n
2/k) queries.

Further, we complement these results with near
matching lower bounds. In Theorem 1.1, we show
that any algorithm that for any metric space (X, d) of
size n, with probability at least 2

3 estimates cost(G) to
within an ε factor requires Ω(n2/k) time. Similarly, in
Theorem 1.2, we show that any algorithm that with
probability at least 2

3 estimates cost(G) to within an
additive error term ε · (mst(X) + cost(X)) requires
Ωε(min{nk3/2, n2/k}) time.

References

[1] A. Andoni and P. Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimen-
sions. Communications of the ACM, 51(1): 117–122,
2008.

[2] M. Bǎdoiu, A. Czumaj, P. Indyk, and C. Sohler. Facil-
ity location in sublinear time. Proceedings of the 32nd
International Colloquium on Automata, Languages and
Programming (ICALP’05), pp. 866–877, 2005.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited



[3] B. Chazelle, R. Rubinfeld, and L. Trevisan. Estimating
the minimum spanning tree weight in sublinear time.
SIAM Journal on Computing, 34(6): 1370–1379, 2005.

[4] J. Costa and A. O. Hero III. Entropic graphs for
manifold learning. Proceedings of the 37th Asilomar
Conference on Signals, Systems & Computers, pp. 316–
320, 2003.

[5] A. Czumaj, F. Ergün, L. Fortnow, A. Magen, I. New-
man, R. Rubinfeld, and C. Sohler. Approximating the
weight of the Euclidean minimum spanning tree in sub-
linear time. SIAM Journal on Computing, 35(1): 91–
109, 2005.

[6] A. Czumaj and C. Sohler. Estimating the weight
of metric minimum spanning trees in sublinear time.
SIAM Journal on Computing, 39(9): 904–922, 2009.

[7] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. Proceedings of the 20th Symposium
on Computational Geometry (SoCG’04), pp. 253–262,
2004.

[8] W. Dong, M. Charikar, and K. Li. Efficient k-nearest
neighbor graph construction for generic similarity mea-
sures. Proceedings of the 20th International Conference
on World Wide Web (WWW’11), pp. 577–586, 2011.

[9] W. Ehm. Binomial approximation to the Poisson
binomial distribution. Statistics & Probability Letters,
11(1): 7–16, 1991.

[10] H. Esfandiari and M. Mitzenmacher. Metric sublin-
ear algorithms via random sampling. Proceedings of
the 59th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’18), pp. 11–22, 2018.

[11] U. Feige. On sums of independent random variables
with unbounded variance and estimating the average
degree in a graph. SIAM Journal on Computing, 35(4):
964–984, 2006.

[12] H. Fichtenberger and D. Rhode. A theory-based eval-
uation of nearest neighbor models put into practice.
Proceedings of the 32nd Conference on Neural Informa-
tion Processing Systems (NeuRIPS’18), pp. 6743–6754,
2018.

[13] D. Freedman. A remark on the difference between
sampling with and without replacement. Journal of the
American Statistical Association, 72(359):681, 1977.

[14] A. Gionis, P. Indyk, and R. Motwani. Similarity search
in high dimensions via hashing. Proceedings of the
25th International Conference on Very Large Databases
(VLDB’99), pp. 518–529, 1999.

[15] O. Goldreich and D. Ron. Approximating average pa-
rameters of graphs. Random Structures & Algorithms,
32(4): 473–493, 2008.

[16] P. Indyk. On approximate nearest neighbors in non-
Euclidean spaces. Proceedings of the 39th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS’98), pp. 148–155, 1998.

[17] P. Indyk. Sublinear time algorithms for metric space
problems. Proceedings of the 31st Annual Symposium
on Theory of Computing (STOC’99), pp. 428–434,
1999.

[18] P. Indyk. High-Dimensional Computational Geometry.
Doctoral Dissertation, Stanford University, 2001.
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