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Highlights
Plant tissues comprise a diverse set

of cell types that can be distin-

guished by their functions. The

concerted interplay of these cell

types determines the functionality

and plasticity of plant tissues.

Deciphering the different functions

of cell types in a tissue is essential

to understand plant development

and adaptation to changing

environments.

Single-cell RNA-seq technologies

enable us now to capture tran-

scriptional profiles in each cell type

to describe the genetic basis of

their identity and function. This

knowledge of cell type-defining

gene networks is as equally signifi-

cant for fundamental science as it is

for the development of crops with

improved resilience capacities

against climatic and other environ-

mental stresses.
Plant function is the result of the concerted action of single cells in different tissues. Advances in

RNA-seq technologies and tissue processing allow us now to capture transcriptional changes at

single-cell resolution. The incredible potential of single-cell RNA-seq lies in the novel ability to

study and exploit regulatory processes in complex tissues based on the behaviour of single cells.

Importantly, the independence from reporter lines allows the analysis of any given tissue in any

plant. While there are challenges associated with the handling and analysis of complex datasets,

the opportunities are unique to generate knowledge of tissue functions in unprecedented detail

and to facilitate the application of such information by mapping cellular functions and interac-

tions in a plant cell atlas.

Insights Gained from Single-Cell Profiling

The functionality of complex organs and organisms is the result of an orchestrated interplay of

different cell types and their specific functions [1–3]. To completely understand and identify most

critical cellular processes in complex tissues therefore requires changes to be captured at the

cell-type or even single-cell level (Figure 1A). Progress in cell type-specific transcriptomics

represented a vital first step in this direction and helped to reveal essential cellular activities involved

in plant development and stress adaptation [2–4]. Recent advances in microfluidics-based ap-

proaches to single-cell RNA-seq (scRNA-seq) (see Glossary) equip us now with a unique opportunity

to study transcriptional changes at cellular resolution in any given organism [5–12]. In animal-based

research, scRNA-seq has revolutionised and stimulated cellular studies. In addition to facilitating the

discovery of new cell types, it enables the study of stochastic principles in cellular gene network

regulation and the trajectories of transcriptomic changes underlying cell fate choices and organ

functionality [13–17].

As a new technique that has thus far been substantially applied only in animal/human tissues, the true

potential of scRNA-seq for diverse aspects of plant science has just started to be recognised. Here,

we highlight the opportunities and challenges associated with performing scRNA-seq in plants. The

scope of this review is to focus on droplet-based methods, primarily Drop-seq and 10X platforms, as

these are the methods that have been applied to plant studies so far. However, analyses of data from

other droplet-based methods are highly similar to what is reviewed below. Importantly, we introduce

the technical principles of scRNA-seq approaches for plant-based studies, explain how scRNA-seq

systems operate, and outline standard analytical workflows including underlying statistical analyses

of scRNA-seq data.

Common Approaches in Analysing Cell-Specific Signalling Networks

Prior to the invention of droplet-based scRNA-seq, single-cell analyses relied on dissecting individual

cells in situ using laser microdissection (LMD) or fluorescence-activated cell sorting (FACS). The

disadvantage of LMD is that it is low throughput, capturing 4–40 cells, and is technically challenging

[18–21]. FACS-based approaches, in turn, have advanced our understanding of gene networks on a

cell-type or tissue level by employing fluorescent marker lines to isolate specific cell populations.

Using FACS in combination with microarrays, Birnbaum et al. produced the first gene expression

map of the arabidopsis root encompassing five cell types and three developmental zones [2].

Together with subsequent higher-resolution studies, it revealed a specific transcriptional identity

for each cell type [3]. Similarly, further studies of cell type-specific responses to salt stress, iron depri-

vation, nitrogen depletion, varied pH levels, and immunity all revealed the activation of distinct stress
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Figure 1. Generation of Singe-Cell Transcriptomic Data Using Microfluidic Technology.

(A) Complex tissue is dissociated into individual cells. Root cross-section was adapted from the Plant Illustrations

repository (E. Sparks, 2017; https://doi.org/10.6084/m9.figshare.4688371.v1). (B) Microparticle beads covered with

DNA probes are used to capture mRNA molecules and introduce barcodes for cells into the cDNA. Probes

comprise a PCR handle, a cell barcode common to all probes on a bead, unique molecular identifiers (UMIs)

enabling computational removal of PCR duplicates, and poly-dT sequences. (C) Individual cells are

encapsulated in droplets together with a barcoded bead and lysis buffer. (D) Cells are lysed within droplets. (E)

Reverse transcription yields cDNA molecules hybridised to probes on beads. (F) Sequencing of cDNA yields a

library of transcriptomes of thousands of individual cells. (G) Software is used to count unique reads per gene

and per cell yielding a digital gene expression (DGE) matrix. Created with BioRender.com.

Glossary
Barcoded beads: microparticles
that carry DNA oligonucleotide
probes for capturing and barcod-
ing of mRNA transcripts.
Digital gene expression (DGE)
matrix: matrix of unique read
counts per gene per cell.
Drop-seq: a microfluidics-based
method to quantify mRNA tran-
script levels in thousands of single
cells by encapsulating individual
cells in droplets containing bar-
coded beads.
Fluorescence-activated cell sort-
ing (FACS): technique to isolate
single cells based on their cell
type-specific marker gene-associ-
ated fluorescence.
Index of Cell Identity (ICI):
adapted algorithm used to assign
known cell-type identities to sin-
gle cells without relying on unique
marker genes.
Laser microdissection (LMD):
laser-based isolation of single
cells or cell clusters from tissue for
subsequent analyses.
Principal component analysis
(PCA): dimensionality reduction
method based on linear algebra.
Pseudotime: algorithm used to
assign a cell’s position along a
trajectory of transcriptomic
changes such as differentiation.
Single-cell RNA sequencing
(scRNA-seq): set of methods for
the sequencing of transcriptomes
of single cells.
Single-cell transcriptomes
attached to microparticles
(STAMPs): cDNA molecules
derived from a single cell hybri-
dised to probes on the surface of
barcoded beads.
t-Distributed Stochastic Neigh-
bourhood Embedding (tSNE):
machine learning algorithm to
compute positions in a low-
dimensional (normally 2D) space
for a set of high-dimensional data
points such that the proximity of
close data points is preserved.
Uniform Manifold Approximation
and Projection (UMAP): a method
for dimensionality reduction de-
signed to preserve more of the
structure of distance relationships
than tSNE.
Unique molecular identifier
(UMI): short DNA sequence syn-
thesised randomly which is used
to uniquely label DNA molecules.

Please cite this article in press as: Rich-Griffin et al., Single-Cell Transcriptomics: A High-Resolution Avenue for Plant Functional Genomics,
Trends in Plant Science (2019), https://doi.org/10.1016/j.tplants.2019.10.008

Trends in Plant Science
gene networks in each cell type [4,22–25]. While FACS has provided essential insights into root tissue

organisation, its dependence on fluorescent marker lines has limited its use to studies of known cell

type lineages in model plants (mostly Arabidopsis).

Drop-seq was the first single-cell technology to use microfluidics combined with a barcoding system

to enable parallel, high-throughput sequencing of single-cell transcriptomes [26]. This ground-

breaking new approach has transformed single-cell analysis in mammalian studies and is beginning

to be implemented in plants [8–12].
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Drop-seq inDrop

Supplier 10X Genomics Bio-Rad Dolomite Bio Academic 1CellBio Academic

Bead type Hydrogel Solid Solid Solid Hydrogel Hydrogel

Main features Gel bead in

emulsion (GEM)

droplets; reverse

transcription

within droplets

Commercial

pairing with

Illumina reagents

for an end-to-end

solution

Temperature control;

no proprietary

biochemical reagents

(sourced on open

market)

Droplet breakage

occurs before reverse

transcription in bulk;

no proprietary

biochemical reagents

Very high cell-

capture rate

(see below)

Reverse transcription is

performed in droplets;

no proprietary

biochemical reagents

System name Chromium ddSeq Nadia inDrop

Cells captured

per sample

80 000+ 300–375 per well 50 000+ User defined,

�10 000 per hour

40 000+ 4000–1200 per hour

Samples

per run

Up to 8 Up to 4 Up to 8 1 Up to 6

Run time <9 min <5 min 20 min User defined

Capture

efficiency

Up to 65% 3% 10% 5% >90% Cells 1 in 5–10

droplets, beads

90% droplets

Doublet rate �0.9% for 1000

captured cells;

�8% for 10 000

captured cells

�6% for

1384 cells

6–8% 0.36–11.3%

dependent

on cell loading

concentration

�4% �8%

Cost per cell <US$0.35

[including (incl.)

sequencing]

<US$0.35

[including (incl.)

sequencing]

US$0.16 [excluding

{excl.) sequencing]

US$0.065 [including

(incl.) sequencing]

US$0.65 [excl.

reverse

transcriptase

(RT) enzyme,

including (incl.)

sequencing]

Analysis

pipeline

Cell Ranger BaseSpace app Open source Open source OneCellPipe Open source

Ease of use Plug and play Plug and play Plug and play Hands on Plug and play

Refs [21,70] [71,72] [26,73] [26] [5,74] [5,74]

Table 1. An Overview of Available Microfluidics-Based Single-Cell Transcriptomics Devices
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For plant studies, processing tissue with cell walls has been a challenge for the application of single-

cell technologies, often resulting in low capture rates (discussed in the following section). Currently,

droplet-based single-cell methods produce relatively low resolution of transcriptomes (�10 000

reads per cell [21]) and thus the information gained from single-cell analytics can be limited to the

most highly expressed genes. However, the latest single-cell technologies (e.g., the 10X platform),

in combination with efficient tissue lysis protocols, have improved capture efficiency and gene detec-

tion thus increasing the resolution of single-cell analyses irrespective of tissue properties. There are a

range of droplet-based scRNA-seq basedmethods, including inDrop, Drop-seq, and 10X. All of these

methods utilise the same principles, whereby microfluidics is used to encapsulate single cells and

barcodes into subnanolitre droplets, where cell lysis and barcoding occur. The main features of these

various platforms are described in Table 1. The different technologies vary in terms of cell capture,

efficiency, doublet rate, and cost and the ideal platform is experiment dependent (reviewed in

[21]). Broadly speaking, inDrop and 10X have a higher capture rate, which is ideal for experiments

with less available tissue. Furthermore, 10X has the highest sensitivity, making it the better choice
Trends in Plant Science, --, Vol. --, No. -- 3



Box 1. Balancing Costs and Capacity: Considerations for scRNA-seq

How Many Cells Are Enough?

Typical numbers of single-cell transcriptomes identified for a single sample range from about 1000 to about

8000 cells. The input tissue required to achieve this will depend on the chosen platform. One should consider

the expected frequency of the rarest cell type of interest to the study when choosing the number of cells, but

also consider that many genes are not detected in single cells and this depth can be improved by capturing a

larger number of cells for each cell type. If it is anticipated that the population of cells to be captured will be

much smaller than 1000, one should consider using a well-based approach such as SMART-seq2 [27].

How Does the Number of Cells Recovered Affect Downstream Analyses?

The number of cells impacts the resolution of downstream analyses; that is, insufficient cells would mean that

the impact of drop-out would be higher in all populations and a marker gene/differentially expressed (DE)

genes may be hard to detect. Rare populations will also be missed. Careful choice of single-cell platform to

match the experimental requirements can mitigate this problem.

How Does the Sequencing Depth Affect the Sensitivity of Downstream Analyses?

The sequencing depth required for single-cell analysis depends on the platform and experimental design. 10X

recommends sequencing to a minimum 20 000 read pairs per cell. The sequencing saturation can be used to

determine whether a dataset has been sequenced enough, which in turn will depend on the experiment. If the

aim is to detect lowly expressed transcripts, sequencing saturation of >90% is required. If the aim is to

delineate cell types, a lower sequencing saturation is acceptable.

What Is the Trade-Off between Cell Number and Sequencing Depth Per Cell?

The experimental design and question should drive the decision of whether to prioritise cell numbers or

sequencing depth, based on the considerations above.
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for the detection of lowly expressed transcripts. Drop-seq is the most cost-efficient protocol but has a

lower capture rate and sensitivity. However, all of the methods produce high-quality data for single-

cell profiling [21], and key considerations for the usage of scRNA-seq are summarised in Box 1.

In addition to droplet-based approaches, there are also well-based approaches to scRNA-seq such as

SMART-seq2 [27]. The SMART-seq2 protocol requires cells to be sorted (often using FACS) into

individual wells on a plate, whereby each cell is processed ready for sequencing separately. The ad-

vantages of SMART-seq2 are a significantly higher capture rate and the sequencing of full-length

transcripts and lower technical noise at the cost of capturing fewer cells (a limit imposed by the num-

ber of plates that the experimenter is able to process). SMART-seq2 also has the highest sensitivity of

all scRNA-seq methods (exceeding 10X), making it the best choice for the detection of lowly ex-

pressed transcripts. Furthermore, rare tissues can be investigated by combining SMART-seq2 with

FACS, as reported by Efroni et al. (2016) [28] for their study of root meristem regeneration. As with

droplet-based approaches, well-based scRNA-seq has not been used widely in the plant community,

but it is particularly suited for experiments on small organs or rare tissues where the tissue yield is low.

Applying scRNA-seq to Plants

For plants, single-cell experiments require removal of the cell wall by enzymatic digestion (proto-

plasting) before the collection of a representative (unbiased) pool of cells. Differences in cell wall

composition (due to degree of lignification or suberisation) and the position of cell layers within a

tissue can result in an incomplete dissociation of cell files, resulting in biased cell harvesting unless

suitably accounted for in the digestion process. In addition, resuspension of protoplasts for input

to the single-cell systems must consider the properties of the resuspension buffer: (i) viscosity and

likelihood of crystallisation; (ii) compatibility (e.g., Ca2+-containing cell suspension buffers cause pre-

cipitation of Drop-seq lysis buffer); and (iii) osmolarity to maintain the viability of the cells without
4 Trends in Plant Science, --, Vol. --, No. --
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inducing transcriptomic changes – for instance, lactose has osmotic properties similar to sucrose,

while the latter is sensed by plant cells and regulates the transcription of energy-related signalling

processes [29]. Once the cells of interest have been captured in suspension, these are loaded on

the droplet-based scRNA-seq device for tagging using barcoded beads (Figure 1B).

The Drop-seq protocol encapsulates individual cells in droplets and utilises a unique primer-

barcode system attached to microparticle beads to identify both the cell of origin and a unique

molecular identifier (UMI) for each transcript [26] (Figure 1B). The use of UMIs ensures individual

tagging of each mRNA molecule and allows the identification of PCR duplicates. Bead-

primer-mRNA complexes are referred to as single-cell transcriptomes attached to microparticles

(STAMPs) [26]. In the microfluidic device, aqueous flows contain cells in suspension. The barcoded

beads are contained in a separate flow of a lysis buffer. The two flows come together and pass

through an oil channel, which leads to the formation of a droplet (Figure 1C). Once encapsulated

in a droplet, cells are immediately lysed, releasing RNA that binds to primers on the bead surface

where it is reverse transcribed into cDNA to generate comprehensive libraries comprising the

barcoded cDNA of thousands of single cells (Figures 1D–F). Following sequencing, these libraries

are quantified as a digital gene expression (DGE) matrix of read counts per gene and per cell bar-

code (Figures 1G and 2A).

In general, the number of droplets is much higher than the number of cells in the sample, such that the

majority of barcodes will come from droplets without a cell (referred to as ‘empty barcodes’) or one

cell. However, incomplete tissue protoplasting can produce droplets with two or more cells

(‘doublets’). Identifying empty barcodes and doublets are key challenges in the data analysis process.

The critical first step is to define the (approximate) cut-off point between empty and nonempty

barcodes. To make this estimate, there are two recommended diagnostic plots: the cumulative

distribution plot and the barcode rank plot. Both plots aim to identify the cut-off point based on

the distribution of read counts. First, the cumulative distribution plot of the cumulative number of

reads per cell barcode in descending order should reveal a ‘knee’ in the distribution indicative of a

transition from STAMPs to background noise. For barcode rank plots, cell barcodes are also ranked

by descending read count and the barcode ranks are plotted against the read counts using a log scale

on both axes. This renders an inverse S-curve, where the drop indicates the separation of STAMPs and

background. While these plots can support the decision about which cells to include in the down-

stream analysis, their quality and interpretability are dependent on the device used, the sequencing

depths, and the tissue type. Therefore, an unclear barcode rank or cumulative distribution plot does

not necessarily indicate a failed run. In boundary cases it is recommended to look at further charac-

teristics of the data (e.g., gene counts, UMI counts) to get a deeper insight into the data quality.

Representative examples for a barcode rank plot for 10X data can be found in [30] and for a cumula-

tive distribution plot in [31].

The next step is to remove further sources of technical and biological variation. These include empty

barcodes (not captured by initial filtering), doublets, and broken cells, henceforth referred to as low-

quality cells. The distributions of the numbers of genes and UMIs and the percentage of mitochon-

drial and plastid RNA across the cells can be visualised as distribution plots to determine appropriate

thresholds for filtering (Figure 2B). The outliers in these plots can represent either broken cells or dou-

blets. Barcodes with both low UMI and gene count (compared with the overall distribution of barcode

counts in the dataset, which is dependent on platform and sequencing depth) that also have a high

percentage (>10%) mitochondrial reads indicate loss of cytoplasmic RNA from perforated cells

[32,33]. The cells displaying these characteristics are likely to be broken and should be removed

from downstream analyses.

While empty barcodes and broken cells will have less genetic material, doublets will have more

genetic material than real cells (high numbers of detected genes and UMIs). Commonly, a high count

threshold is used to filter outliers based on the distribution of the data. Additionally, there are a

number of recently published doublet detection tools that offer more complex approaches for the

identification of doublets (e.g., Scrublet [34], Doublet Finder [35]).
Trends in Plant Science, --, Vol. --, No. -- 5



Figure 2. Analysis Workflow for Cell-Type Identification in Single-Cell Transcriptomic Data.

(A) Raw data organised in digital gene expression (DGE) matrix. Each row corresponds to a gene and each column

corresponds to a cell. (B) Filtering of cell barcodes by thresholding on the number of genes, the number of unique

reads, and the percentage of mitochondrial reads to reduce the number of cell barcodes corresponding tomultiple

cells in a single droplet, droplets containing broken cells, or droplets without cells containing ambient mRNA. (C)

Selection of variable genes. Positive (left) and negative (right) example of a gene is shown. (D) Dimensionality

reduction using principal component analysis (PCA) enables the use of popular clustering and visualisation

methods. (E) Data is clustered to reveal biologically significant cell groupings (e.g., cell types). (F) Visualisation

of the data using t-distributed Stochastic Neighbourhood Embedding (tSNE) or Uniform Manifold

Approximation and Projection (UMAP). Each dot corresponds to a cell. Cells with similar transcriptomes are

depicted close to each other. Colour corresponds to cluster identity. (G) Assessment of clustering quality using

a heatmap showing computationally identified marker genes for each cluster. A heatmap with a clear block

structure indicates good-quality clustering. Created with BioRender.com.
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Current best practice is to initially apply permissive quality control thresholds (Figure 2B), which can

be revisited if contamination becomes apparent in downstream analyses; for example, if one of these

quality control metrics is driving differences in clustering [33].
Cell-Type Identification Using Dimensionality Reduction and Clustering

Having extracted robust and high-quality cells, the biological features of the dataset can be analysed.

Currently, all available scRNA-seq datasets produced from plants were performed on roots using the
6 Trends in Plant Science, --, Vol. --, No. --
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10X Genomics or Drop-seq platforms [8–12]. The complex structure comprising many different cell

types make roots the ideal plant tissue for single-cell transcriptome studies. All of the current root

scRNA-seq studies used similar analytical pipelines, such as Seurat and Monocle for data processing

and stepwise analysis [36,37]. Briefly, the top most highly variable genes (HVGs) are used to perform

principal component analysis (PCA) and t-distributed Stochastic Neighbourhood Embedding

(tSNE) or Uniform Manifold Approximation and Projection (UMAP) to visualise the data

structure (Figure 2C,D). Visualisation techniques such as tSNE and UMAP have been developed to

dissect and visualise complex high-dimensional data such as scRNA-seq read counts [38,39]

(Figure 2E,F).

Analysis pipelines for scRNA-seq utilise only the most variable genes based on average gene

expression and dispersion to prioritise cell type-specific expression patterns (Figure 2C). HVGs

are characterised as being highly expressed in some cells and lowly expressed in others, making

them likely drivers of variance between cell subsets. Typically, the optimum number of HVGs is be-

tween 1000 and 5000, depending on the complexity of the dataset. Implementations of HGV

ranking programs (as in Seurat and Scanpy) include visualisation tools to help in guiding users to-

wards a correct threshold. If important genes are known, Luecken and Theis (2019) suggest that the

threshold could be varied to ensure that all of these are captured within the HVGs [33]. PCA is used

to further reduce the complexity of the dataset into fewer PCA dimensions prior to employing tSNE

or UMAP (Figure 2F shows an example of a tSNE visualisation) for visualisation and clustering algo-

rithms to identify cell subsets with similar transcriptional profiles. tSNE or UMAP take a high-dimen-

sional representation of a dataset and compute a 2D representation that preserves the underlying

structure, and in tSNE or UMAP plots, transcriptomically similar cells are usually close neighbours.

Clustering algorithms such as k-means or graph-based approaches are applied to the data to iden-

tify biologically significant groups, often corresponding to cell types. Clustering algorithms and

their application to single-cell data are reviewed in [40,41]. Showing the clusters on the tSNE or

UMAP visualisation by colouring cells can be an indicator of the quality of the clustering: if the clus-

ters are well defined and the colour identity matches the spatial arrangement, the clustering is likely

to reflect the underlying biology. As with the previous steps, tSNE and UMAP can be sensitive to

their parameters (particularly the perplexity parameter for tSNE), which need to be optimised for

each dataset. These dimensionally reduced and clustered data (e.g., using hierarchical clustering

or graph-based clustering) [40] can provide a better understanding of the data structure on which

biological expression patterns can be investigated (Figure 2G). Moreover, it can help to identify

groups of similar cells that can often be identified as cell types. Along the analytic pathway, a num-

ber of parameter settings need to be made. Optimal parameter settings depend on individual da-

tasets and changes to one parameter can affect the optimal choice of another (Figure 3). This

frequently leads to repeated analyses where the different parameter settings are adjusted until

the best choices have been identified.

Currently, twomethods are most widely applied to assign cell-type identity to clusters: examining the

expression of known cell-type markers (supervised) and unsupervised identification of the genes spe-

cifically expressed in each cluster. Denyer et al. (2019) and Shulse et al. (2018) both compared the

expressionmarker genes from Brady et al. (2007) using the Index of Cell Identity (ICI)method to iden-

tify cell types [3,8,9]. The ICI method computes an ICI score for each cell representing the relative

contribution of each known tissue type to the cell identity. This supervised classification approach

is based on comprehensive libraries of possible cell and tissue expression profiles that originate

from experiments from known cell types. Instead of relying on variable genes and similar expression

patterns, the set of informative markers used by the ICI method is chosen based on an adapted

approach from information theory and is not required to be uniquely expressed in a single cell

type [19]. In turn, Jean-Baptiste et al. (2019) used Spearman’s rank correlations as a supervised

approach to identify different cell types by comparing the gene expression within their clusters to ex-

isting markers [2,3,11]. Denyer et al. (2019) further used unsupervised cell clustering to identify poten-

tial novel cell-type markers and validated these in silico by comparison with the expression in the ex-

isting plant expression atlas and then in vivo with transcriptional reporter fusions [9].
Trends in Plant Science, --, Vol. --, No. -- 7



Figure 3. Key Decision Points in Common Analysis Workflows.

As optimal parameter choices do not just depend on the data analysed but are also interdependent, the analysis is

usually repeated a number of times for a range of combinations of parameter settings before a final conclusion is

reached. Created with BioRender.com. Abbreviations: tSNE, t-distributed Stochastic Neighbourhood Embedding;

UMAP, Uniform Manifold Approximation and Projection.

Please cite this article in press as: Rich-Griffin et al., Single-Cell Transcriptomics: A High-Resolution Avenue for Plant Functional Genomics,
Trends in Plant Science (2019), https://doi.org/10.1016/j.tplants.2019.10.008

Trends in Plant Science
Applying scRNA-seq to Arabidopsis roots has revealed that cell types can be readily identified from

the data. Specifically, clusters corresponding to pericycle cells, phloem sieve elements, and different

epidermis subpopulations were identified [8–11]. Even very small cell populations such as quiescent

centre (QC) cells have been discovered. For instance, Denyer et al. (2019) used the expression pat-

terns of 15 proposed QC genes to identify 36 putative QC cells, while Ryu et al. (2019) used 52 pro-

posed QC markers to identify two likely QC cells [9,10,19,42].

This indicates that plant/root scRNA-seq analyses can be used as a springboard to study gene

network organisation in rare cell types, helping to further develop our understanding of fundamental

aspects of plant life such as the processes regulating stem cell niche function in cell fate decisions,

root patterning, or root longevity [28,43–49]. However, given that these captured populations are

so small, great care must be taken to ensure sufficient statistical rigour.
Pseudotime Reveals Developmental Structures

One of the attractions of studying the gene expression patterns of roots is the regular patterning

of cell types and the existence of a clear developmental axis from stem cell niche and young

undifferentiated cells in the root meristem and newly differentiated cells in the elongation zone to

fully differentiated cells in the root maturation zone [1]. The concept of ‘pseudotime’ can be used

to investigate the development of undifferentiated meristematic cells into mature tissues. In this

differentiation process, the different developmental stages correspond to distinct changes in the

gene expression profile of the cells. However, cells may show transitions at different speeds. This

asynchrony means that gene expression changes should not be evaluated in dependence of time

but instead in dependence of progress through developmental processes. Pseudotime is an abstract

measure capturing this progress. Pseudotime methods (e.g., Monocle [37], TSCAN [50]) use machine

learning to order cells in ‘time’ along a trajectory, which delivers insights into developmental stages

and transition.
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Denyer et al. (2019) first used pseudotime to show large-scale differentiation from root meristematic

tissue to mature tissue. Interestingly, they defined some clusters as ‘meristematic’ tissue, indicating

that despite cell fate being defined after a single division, the transcriptional identity of these early

cells seems to be more strongly defined by the developmental stage than by cell type. Furthermore,

pseudotime can be used to decipher gene regulatory networks involved in cell differentiation, as

demonstrated for atrichoblast, trichoblast (root hair cell), and cortex differentiation [9–11], and

revealed the involvement of 3000 genes in trichoblast differentiation [9].
Potential of scRNA-seq in Plant Science

Fundamentally, a tissue’s function is defined by the specific functions of its constituent cell types. In

animal systems, scRNA-seq not only has enabled the examination of individual cell types in the

context of complex tissues but also has resulted in the identification of new cell types and cell-

type states [51–53]. This has given an unprecedented view of the gene expression dynamics in com-

plex tissues and how these change under differing physiological conditions (e.g., healthy vs diseased/

cancerous tissue) [54]. Alongside the improvements in single-cell technologies, novel bioinformatics

methods have arisen to study more complex gene regulatory principles such as transcriptional noise

and RNA velocity [55–57]. This enthusiasm for scRNA-seq studies has paved the way for the develop-

ment of a human cell atlas that aims to create an ‘ID card for each cell type’ and a ‘3D map of how cell

types form tissues’ [15].

As mentioned above, recent studies have demonstrated the feasibility of applying scRNA-seq to

plant systems and conducting projects on a similar scale as reported for animals. Defining gene net-

works from scRNA-seq data by combining cluster analyses with pseudotime methods allowed the

identification of cell type-specific gene expression profiles involved in the differentiation of root

cell lineages and, thus, the description of developmental trajectories in a whole tissue [8–11]. In addi-

tion to resolving developmental timelines, cell types might further affect the status of each other to

define the root body plan. scRNA-seq studies with Arabidopsismutants lacking defined cell lineages,

such as endodermis, trichoblast, or atrichoblast, showed altered single-cell transcriptomes as

indicated by an overall change in the patterning of cell-type clusters [9,10]. The ability to detect

such transcriptional variation further highlights scRNA-seq as a new resource to explain phenotypes

in mutants, plant germplasms, or natural plant populations.

In addition to broad studies of large tissues, such as whole roots, high-throughput scRNA-seq could

be utilised for the examination of specific tissue parts or developmental zones, such as the root mer-

istem (with stem cell niche) at root tips. Unlike in mature roots, FACS approaches are less suited to

root-tip studies due to the limited availability of appropriate fluorescent markers. It is also difficult

to capture cell states within a cell-type file and to process cell types that form only a very small

proportion in a tissue, such as the QC in the stem cell niche. The difficulty of identifying rare cell pop-

ulations is compounded in droplet-based scRNA-seq by low gene detection and ‘drop-out’; that is, if

a marker is lowly expressed, the chance of it being detected in an individual cell is low. However, cur-

rent methods do allow the capture and identification of QC cells [9,10], highlighting the sensitivity of

scRNA-seq in resolving distinct cell states whose differences might be mild across a cell-type file but

that are essential to steer the incremental transition of stem cells (e.g., epidermis initials) to meristem

and mature cells (e.g., trichoblasts).

In this respect, it is important to note that integrating data across experiments is a challenge

as biases are introduced between laboratories, due to varied cell dissociation protocols, library

preparation, and sequencing platforms, and across platforms [58]. Various computational

methods, such as mutual nearest neighbours (MNN), k-nearest batch-effect test (kBET), and canon-

ical correlation analysis (CCA), are being developed and applied to enable the integration of

multiple datasets [59–61]. Furthermore, Seurat v3 has the capacity to integrate multimodal

data through the identification of ‘anchor’ cells across datasets or through the use of a reference

dataset [36].
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Outstanding Questions

How close are we to virtually reas-

sembling complex plant tissues

based on single-cell

transcriptomes?

Which scRNA-seq parameters

represent limiting factors in ob-

taining deep transcriptome data?

Can we apply scRNA-seq technol-

ogy to any plant tissue and any

crop?

How do stem cell niche and indi-

vidual cell types define the plant/

root body plan?

Which gene networks define and

maintain the quiescent centre and

stem cells and their interaction?

How do stem cell initials define the

identity of cell types?

What determines the status of in-

dividual cell types and how much is

it influenced by neighbouring cells?

Which signals and gene networks

regulate the developmental transi-

tion of cell types?

What defines individual cell types

and to what extent does their status

change during development or

environmental stress?

How do cell types and cell-type

states contribute to plant develop-

ment and environmental stress

adaptation?

Which regulatory principles

beyond transcription and transla-

tion (e.g., transcriptional noise) are

prevalent in cell types during

different developmental stages

and under stress?
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scRNA-seq might further help in our understanding of the functional significance of ploidy. As root

cells develop and mature, these undergo a process almost unique to plants: root cells change their

ploidy [62,63]. This process is driven by endoreduplication (cell cycle without mitosis) and cell ploidy

increases with cell development [63,64]. As sessile organisms, plants are exposed to extreme and fluc-

tuating environmental conditions and ploidy is thought to support stress resilience by increasing cell

and genome stability [63,65]. In line with this, cells are known to change their ability to respond to

stress with cell age. Interestingly, cells lose their ability to regenerate a root stem cell niche once

these start to differentiate [28]. Cell type-specific microarray and RNA-seq studies further show

that cell identity plays a strong role in response to environmental stress [4,22–25]. To investigate

the extent to which stress responses vary between cell types of different age, single-cell studies

will be particularly useful. However, Jean-Baptiste et al. showed that when a strong treatment such

as heat shock is applied, it is challenging to assign clusters to specific cell identities due to the over-

whelming transcriptional impact of the stress and the downregulation of canonical marker genes. This

masking of more lowly expressed cell-type markers by more strongly expressed stress gene networks

must be considered during the experimental set up and may be corrected computationally [7,11].

Concluding Remarks and Future Perspectives

By enhancing spatiotemporal resolution, scRNA-seq enables us now to virtually dissect and scrutinise

whole organisms. To obtain more detailed insights into the organisation of gene regulatory networks

in single cells, however, requires further improvements, for instance, in single-cell tagging, labelling,

and capturing of mRNA as well as in the development of bioinformatic analyses, to reduce interfering

technical noise. Further technological developments are increasing the range and resolution of sin-

gle-cell measurements. Application of an assay for transposase-accessible chromatin using

sequencing (ATAC-seq) on the single-cell level provides access to the DNA regions harbouring the

regulatory codes underlying transcriptomic patterns observed in scRNA-seq data. In addition, the

combination of scRNA-seq data with imaging techniques is enabling the spatial and temporal recon-

struction of cell types and cell states in a tissue. The prospect of the technology, especially in com-

bination with cell epigenetics (e.g., based on scATAC-seq), multiomics approaches, high-resolution

imaging, and spatiotemporally resolved cell engineering, is to describe the synergy of ‘microproc-

esses’ in the development and behaviour of complex tissues under changing environments (see

Outstanding Questions). Bundling of those efforts will be essential in developing unprecedented in-

frastructures such as the creation of a plant cell atlas [66] to underpin new insights into how the inter-

actions between cells influence function, how cells act in a complex system to create an organ, and

how cells react as a network to pathogens or environmental changes [67,68]. In addition to advancing

fundamental research, a comprehensive plant cell atlas will form an essential scaffold on which to

base studies aimed at sustainable improvement of the productivity and value of agricultural ecosys-

tems [69].
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