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REVIEW

Mucosal delivery of tuberculosis vaccines: a review of current approaches and
challenges
Elena Stylianoua, Matthew J. Paul b*, Rajko Reljic b† and Helen McShane a†

aThe Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; bInstitute for Infection and Immunity, St George’s
University of London, Tooting, London, UK

ABSTRACT
Introduction: Tuberculosis (TB) remains a major health threat and it is now clear that the current
vaccine, BCG, is unable to arrest the global TB epidemic. A new vaccine is needed to either replace or
boost BCG so that a better level of protection could be achieved. The route of entry of Mycobacterium
tuberculosis, the causative organism, is via inhalation making TB primarily a respiratory disease. There is
therefore good reason to hypothesize that a mucosally delivered vaccine against TB could be more
effective than one delivered via the systemic route.
Areas covered: This review summarizes the progress that has been made in the area of TB mucosal
vaccines in the last few years. It highlights some of the strengths and shortcomings of the published
evidence and aims to discuss immunological and practical considerations in the development of
mucosal vaccines.
Expert opinion: There is a growing body of evidence that the mucosal approach to vaccination against
TB is feasible and should be pursued. However, further key studies are necessary to both improve our
understanding of the protective immune mechanisms operating in the mucosa and the technical
aspects of aerosolized delivery, before such a vaccine could become a feasible, deployable strategy.
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1. Introduction

Tuberculosis (TB) is the most common cause of death due to
a single infectious agent. There were an estimated 1.6 million
deaths due to TB in 2017, and 10 million new cases [1]. TB is
caused by Mycobacterium tuberculosis (M.tb) and is transmitted
when a person with active disease coughs, sneezes or exhales
releasing thousands of bacilli in the air. TB is primarily
a disease of the lung but the bacterium can also infect other
parts of the body resulting in extrapulmonary TB.

The increasing number of drug-resistant strains of M.tb
further highlights the urgent need for an effective vaccine
that could either prevent M.tb infection and/or TB disease.
The only available vaccine against TB, Bacillus-Calmette
Guerin (BCG), was developed in 1921 after the attenuation of
a strain of Mycobacterium bovis. Although BCG is protective
against childhood forms of TB such as TB meningitis and
miliary disease, its efficacy is variable against adult pulmonary
disease, the form responsible for the majority of incident cases
[2,3]. BCG is typically administered via the intradermal route,
resulting in the induction of strong systemic, but weak muco-
sal immune responses [4,5]. Mimicking the route of infection
with vaccination, either with BCG or with a novel mucosal
vaccine, might be a more successful vaccination strategy, as
it would target the induction of immune responses at the
point of entry of the bacteria. Furthermore, a needle-free
immunization approach is safer compared to injectable

vaccination. This review summarizes important immunological
and practical considerations in the development of mucosal
vaccines, and highlights key information gained from studies
using animal experimental models.

1.1. Mucosa

The respiratory system in mammals can be divided into upper
and lower parts. The upper parts include the nasal and oral
cavities and the lower include the trachea and lung. The
luminal side of the respiratory tract contains an epithelial
layer of cells with tight and adherent junctions designed to
control the communication between the lumen and lamina
propria throughout the mucosa. The release of mucus and
antimicrobial agents along with the ciliary action of epithelial
cells is designed to trap, kill and remove invading patho-
gens [6].

The mucosal immune system can be divided into inductive
and effector sites. The inductive sites are referred to as
mucosa-associated lymphoid tissue (MALT), where the induc-
tion and activation of immune responses takes place.
Activated immune cells then travel to effector sites via the
lymphatic system in what is known as the common mucosal
immune system [7,8].

MALT is composed of epithelial cells and differentiated
microfold (M) cells, which sample foreign particles in the
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lumen before transporting to DCs on the basal side [9]. DCs
will take up and process antigens before migrating back to
MALT or draining lymph nodes for the initiation of pathogen-
specific immune responses by T and B cells [10]. Differences in
MALT between different animal species and humans exist. In
rodents and non-human primates (NHP), NALT (nasopharynx-
associated lymphoid tissue) is composed of paired lymphoid
structures at the entrance and nasopharynx whereas in
humans a more complex ring of lymphoid tissues forming
a ring-like structure referred to as Waldeyer’s ring, including
tonsils, allows sampling of food, air and water [11,12]. Both
NALT and Waldeyer’s ring play an important part in inducing
mucosal immune responses at the upper respiratory system.
Bronchus-associated lymphoid tissue (BALT) however is not
found in the lower respiratory tract of all mammalian species,
including humans and mice, but seems to be induced by
microbial exposure or other inflammatory stimulants [13]. For
this reason, it is usually referred to as inducible BALT (iBALT).
Apart from the conventional induction of responses in the
lymph nodes, the contribution of iBALT in generating anti-
gen-specific immune responses, particularly during influenza
infection, is now appreciated [12]. In the absence of lymph
nodes, iBALT formation was enough to control M.tb infection
in the lungs of mice [14]. Large areas of organized iBALT that
surround granulomas are present in monkeys with latent M.tb
infection but not with active disease and also in humans [15].
In an NHP model of TB/simian immunodeficiency virus (SIV)
co-infection, a number of animals were able to prevent TB
reactivation despite the lack of CD4+ cells [16]. The presence
of memory CD8 + T cells and iBALT correlated with this
observation. Protection induced by aerosol vaccination with
an attenuated M.tb strain was also associated with the gen-
eration of iBALT in NHP [17].

In addition to differences in the structure of the MALT,
evolutionary pressure exerted by rapid pathogen adaptation
as well as functional redundancy in immune effectors has led
to significant biases in the immune response profile between
mammalian species. These differences complicate model
selection and necessitate routine testing of candidate mucosal
vaccines in multiple models to support progression to clinical
trials. Comparison between bronchoalveolar lavage (BAL) cells
in cynomolgous macaques and humans indicated a large
degree of similarity between the two species [18]. This, in
combination with the ability of these animals to develop

both active and latent infection after low-dose M.tb exposure,
makes them a good model to study vaccine immunogenicity
and efficacy [19]. However, 50% of the infected animals will go
on to develop active disease, a situation different to humans.
In addition, the high cost of NHP experiments justifies the
testing of only the most promising vaccine candidates [20].
As a result, smaller animal models are still necessary for early-
stage vaccine efficacy testing.

1.1.1. Innate immune responses
The nonspecific and specific beneficial effects of BCG have high-
lighted the important role of trained innate immunity in the
control of infections [21,22]. More recently group 3-innate lym-
phocyte cells (ILC3) have been shown to play an important role
in controlling M.tb infection in mice [23]. Whether and how these
cells, and other ‘trained innate immunity members’ can be
exploited by vaccination remains to be determined. Donor-
unrestricted T cells such as mucosally associated invariant
T cells (MAIT), γδ T, and invariant natural killer cells (iNKT) have
also been shown to have important roles in immunity to M.tb
infection [24–27]. In particular, MAIT cells, which are situated
mostly at mucosal sites, are activated by both M.tb infection
and BCG vaccination in NHPs [28]. If they are confirmed to be
protective, mucosal vaccines targeting MAIT cells, e.g. using MAIT
antigens, could potentially improve early control of infection.

1.1.2. Adaptive immune responses
Humoral immune responses in the mucosa are mainly
mediated by secretory IgA (sIgA), which is considered the
hallmark antibody. sIgA is resistant to proteases and functions
by neutralizing pathogens, toxins, and allergens and it also has
anti-inflammatory functions [29,30]. Systemically delivered
vaccines are generally poor inducers of sIgA at mucosal sites,
as upregulation of mucosal homing receptors on cognate
B cells is efficient only when priming occurs in MALT inductive
sites [29]. Although the role of antibodies in TB protection
remains unclear, there are a number of studies to suggest an
important role for sIgA. For example, mice deficient in either
IgA or sIgA through deletion of the polymeric IgA receptor
were less able to control mycobacteria compared to wild-type
controls [31,32]. The most likely mechanism of action seems to
be the opsonization of bacilli and therefore antibodies that
recognize antigens on the bacterial surface might be more
effective in controlling disease [33–35]. In human FcalphaR
(CD89) transgenic mice, intranasal instillation of an immu-
notherapy containing human IgA recognizing the exposed
antigen Acr (hspX) and IFN-gamma, reduced bacterial burden
when treatment was given either before, during or up to
a week post challenge (manuscript in preparation, Dr Rajko
Reljic, St George’s University of London, personal communica-
tion). This protective effect was previously shown to depend
on both components of the immunotherapy and the use of
the CD89 transgenic mouse line [36]. The capacity to induce
mucosal IgA to surface antigens is therefore likely to be
a feature of an effective mucosal vaccine.

A recently discovered population of non-circulating resi-
dent memory B cells in the lungs (Brm) have been shown to
play an important protective role during influenza infection in
mice [37]. The generation of and importance of this cell

Article highlights

● Matching the route of infection with the route of vaccination is an
attractive approach for the development of vaccines against TB.

● A number of successful mucosal vaccines against other diseases
support the feasibility of this route for vaccination

● An increasing body of evidence in rodents, non-human primates, and
humans highlight the immunogenicity and safety of mucosal TB
vaccines.

● Better understanding of innate and adaptive immune responses
against M.tb in the mucosa is required

● Future research should address the remaining key challenges, namely
vaccine aerosolization, dosing and distribution within the respiratory
mucosa
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population in M.tb infection remains to be determined; how-
ever, it is important to note that antigen-encounter was
required for Brm lung localization. This might mean that
respiratory rather than systemically administered vaccines
will be more likely to generate this cell population.

Cellular immunity is of paramount importance for TB control
but these responses do not always correlate with protection
[38–43]. Vaccination induces memory immune cells that can
quickly differentiate and expand upon infection [44]. It is gen-
erally accepted that there are two populations of memory cells,
effector (Tem) and central (Tcm) [45]. These populations are
characterized by differential expression of lymphocyte-endothe-
lial cell adhesion molecule CD62L and the chemokine receptor
CCR7, with Tcm (CD62Llo, CCR7hi) cells restricted to circulation
through the lymphatics and vasculature, while the Tem
(CD62Lhi, CCR7lo) population interacts with non-lymphoid tis-
sue. Mucosal immunization approaches are efficient at inducing
significant Tem and Tcm at primary lymphoid sites [17,46].
However, more recently a memory population that perma-
nently resides in non-lymphoid tissues has been identified,
termed as resident memory cells (Trm) [47,48]. With the help
of the intravascular (iv) staining technique, that discriminates
cells that are in the interstitium (iv-) from cells in circulation (iv
+), Trm have also been identified in the lungs [49–52]. They
have subsequently been shown to play an important role in
protecting against influenza infection in mice [50]. The site of
infection seems to define the location of these cells, highlight-
ing that matching the route of vaccination to the route of
infection might be optimal for their generation [53]. In M.tb

infection, iv- CD4+ cells isolated from the lung were more
protective compared to the corresponding iv+ population
[54]. There are some reports to show that the life span of
these cells is shorter compared to Trm in other locations such
as the skin [55]. In a study by Bull et al., the intranasal admin-
istration of BCG was more protective compared to the systemic
route [5]. This superior protection was associated with a higher
number of Trm, with both declining at a later time point post
vaccination, in agreement with the influenza data. Approaches
designed to supplement vaccine profiles with lung Trm using
subunit vaccines have been met with mixed results. Using the
H56:CAF01 in a systemic prime-mucosal boost schedule
resulted in a significant enhancement of long-lived lung Trm
cells and the promotion of early T cell responses in the lungs of
challenged mice [56]. However, the presence of ESAT-6 specific
lung CD4+ Trm was not associated with improved bacterial
control, and furthermore, control of infection was found to be
sensitive to blocking recruitment of leukocytes from the sys-
temic compartment with FTY720. In contrast, pulmonary immu-
nization with recombinant influenza virus expressing M.tb
peptides induced TB-specific CD4+ Trm and protection that
was insensitive to extensive treatment with FTY720 [57]. The
presence of vaccine-elicited CD8+ lung Trm has been asso-
ciated with protection in other studies [46,58]. Further work
with other vaccine candidates is therefore needed to establish
the circumstances in which Trm may contribute to protection
and establish other important characteristics of the Trm
response, such as their life span. A summary of some of these
responses induced by M.tb infection is shown in Figure 1.

Figure 1. Respiratory mucosal responses following M.tb infection or mucosal vaccination. DC = dendritic cells, EC = epithelial cells, sIgA = secreroty IgA, Brm =
resident memory B cells, Trm = resident memory T cells, M.tb= Mycobacterium tuberculosis, iBALT = inducible bronchus-associated lymphoid tissue. Created with
Biorender.com.
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Mucosal vaccination has been shown to induce higher levels of
IL-17 compared to the systemic route and to be important for
protection. Mucosal administration of BCG in mice and NHP
resulted in IL-17 responses that were associated with protection
[59–62]. In addition, mucosal adjuvants such as cholera toxin,
monophosphoryl lipid A (MPL)with chitosan and type II heat liable
enterotoxin (LT-IIb) have been shown to induce potent IL-17
responses and improve protection [62–64].

2. Mucosal vaccines

2.1. Mucosal vaccines for other diseases

A number of successful mucosal vaccines against other dis-
eases are already in widespread use, emphasizing the feasibly
and safety of this route. These include vaccines against polio,
cholera, rotavirus, salmonella, and influenza. Vaccines against
the first four diseases are administered via the oral route
whereas for influenza via the nasal route. Currently, all muco-
sal vaccines are whole cell or whole virus preparations, either
attenuated or inactivated, and only one (Dukoral™ OCV) given
in formulation with an adjuvant cholera toxin B subunit (CTB).
Interestingly, inactivated polio vaccine (IPV) is less effective
than attenuated polio vaccine (OPV) in inducing mucosal
immunity in the gut [65], suggesting that the interaction of
the attenuated virus with the host contributes to building an
effective immune response. The addition of CTB in the Dukoral
formulation is of uncertain benefit; however, Dukoral has been
reported to offer better immediate protection than non-adju-
vanted OCVs [66]. The current mucosal influenza vaccines,
MedImmune’s FluMist™ and FluMist Quadrivalent™, and
AstraZeneca’s FluEnz Tetra™ consist of live, attenuated viruses
and have clearly demonstrated efficacy against some targeted
influenza strains, although not all [67]. Recombinant subunit
influenza vaccines have been developed for systemic applica-
tion either with (Sequirus FluAD™) or without adjuvants
(Sanofi-Pasteur FluBlok™). The efficacy of unadjuvanted formu-
lation has attributed in part to the efficient formation of virus-
like particles (VLPs), which are efficient activators of APCs and
promote cross-presentation [68]. The aerosol route of vaccina-
tion is also been investigated for measles. Although the sys-
temic route of the measles vaccine is safe and effective, it is
believed that aerosol administration might increase vaccine
coverage due to its ease of administration and reduced risks
associated due to the lack of needles. Results from a number
of studies demonstrated the safety of this approach and iden-
tified the aerosol route to be at least as efficacious as the
subcutaneous route [69]. The immunogenicity of the aerosol
route, based on seropositivity and seroconversion, was shown
to be inferior in infants 9–12 months old, compared to the
subcutaneous route [70]. Whether this observation can be
attributed to the route or administration, e.g. duration of
nebulization or breathing rate is yet to be determined.
However, the aerosol route could be used to more efficiently
boost previous immunity induced by subcutaneous measles
vaccination, as previously shown in schoolchildren [71].
Lessons learnt from the development of these mucosal vac-
cines can inform the design of TB vaccines targeting the
respiratory mucosa.

Aerosolized vaccine delivery could be potentially also
applicable to infants from the age of one year and above, as
demonstrated by the aerosolized measles (1 y) and flu (2 y)
vaccines. Younger infants, on the other hand, might require
substantial further technological adjustments in order to dose
the vaccine correctly and this approach may not be as suita-
ble. However, considering that BCG vaccine will continue to be
recommended to neonates for the foreseeable future, the
aerosolized vaccine approach would most likely be best suited
for a booster vaccination later in infancy/childhood or in
adolescence/adulthood.

2.2. Mucosal vaccines for TB

There are currently no confirmed immune responses that
correlate with protection against TB. This represents a big
obstacle in the vaccine development field for all types of TB
vaccines and routes. In the absence of a surrogate marker of
protection efficacy, experiments in animal models are
a necessary requirement.

2.2.1. BCG and attenuated whole-cell live vaccines
There is a body of evidence supporting the safety of orally
delivered M. bovis BCG substrain Moreau Rio de Janeiro due to
its long-term historical use in Brazil, and more recent clinical
studies in the UK [72,73]. A single dose of oral BCG was found
to boost PPD-specific IFNγ responses in previously BCG i.d.
vaccinated individuals for at least 3 months after vaccination.
It is interesting to note that this particular substrain of BCG
carries a unique RD16 region, which has been associated with
its safety profile when delivered orally [72]. The oral vs intra-
dermal administration of BCG Danish was also investigated in
a small-scale trial in humans with no detectable adverse
effects [4]. Although intradermal BCG induced stronger
immune responses in the blood, oral BCG resulted in stronger
mucosal responses in BAL and secretory IgA in nasal washes
and tears. Oral vaccine administration is an attractive route
mainly due to the ease of administration resulting in improved
compliance but also due to the ability to induce responses at
distal mucosal sites [4]. However, developing an oral vaccine
has its challenges as it needs to be robust enough to with-
stand the harsh acidic environment in the stomach and
requires the inclusion of an adjuvant to reduce the risk of
tolerance [74]. Since M.tb primarily infects the lung, matching
the route of infection to the route of vaccination might be
a more effective approach when developing TB vaccines. The
oral route might be more efficient as a boost to a prior
respiratory or systemic vaccination [75].

Studies investigating the aerosol delivery of BCG using gui-
nea pigs date back to the 1950s [76]. Since then there has been
accumulating evidence in mice to further highlight the super-
iority of the respiratory route of BCG immunization in
controlling M.tb infection [5,58–60,77,78]. This finding was con-
firmed both in guinea pigs and NHP [79–81]. NHP vaccinated
with intratracheal (i.t.) BCG as a boost to a previous intradermal
(i.d.) BCG vaccination had a reduced level of pulmonary disease
compared to i.d. BCG after aerosol M.tb infection [82].
Endobronchial instillation of BCG was able to protect rhesus
macaques, significantly more than systemic administration [83].
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More recently, BCG administered endobronchially protected
NHP from a repeated low-dose M.tb infection [60]. NHP that
were vaccinated mucosally had a higher proportion of CD4+
IFNγ+/TNFα+/IL2+/IL17+, CD8+ IFNγ+/TNFα+ and more T cells in
their bronchoalveolar lavage (BAL). In addition, granzyme B,
IL10, granulocyte-macrophage colony-stimulating factor (GM-
CSF) and levels of IgA were higher in the mucosal compartment
after mucosal immunization compared to the intradermally
immunized group. Polyfunctional Th17 cells, IL10 and IgA cor-
related with the protective efficacy observed in this study.

In addition, in cattle, the simultaneous administration of
BCG endobronchially and systemically, resulted in significant
protection against M.bovis infection compared to unvacci-
nated control animals [84].

In humans, aerosolized BCG was first administered to chil-
dren and young adults without reported side-effects in the
1960s [85]. Ongoing clinical trials are currently evaluating aero-
sol BCG administration, in healthy BCG-naïve adults
(NCT02709278 NCT03912207). To date, this route of immuniza-
tion is well tolerated with no Serious Adverse Events (Prof.
Helen McShane, University of Oxford, personal communication).

To date, BCG remains the only whole-cell vaccine to be
investigated as a mucosal vaccine. Genetically engineered live
vaccines have been demonstrated to outperform BCG in pre-
clinical studies when delivered systemically [86,87].
Development of a rationally designed whole-cell vaccine can-
didate specifically for the mucosal route is an intriguing pos-
sibility, and approaches could include engineering of
overexpressed mucoadherins alongside modifications made
to optimize antigen presentation. For example, exposure of
BCG to human alveolar lining fluid, to expose underlying
epitopes, resulted in improved BCG protection in mice [88].
Selective removal of inflammatory lipids from BCG rendered it
more protective and resulted in less lung pathology compared
to conventional BCG when delivered mucosally in mice [89].

Due to the protective effects against childhood TB mani-
festations, the systemic route of BCG administration is unlikely
to be abandoned in the future. Even so, studies described
above highlight the advantages of pursuing novel live vac-
cines for delivery via the mucosal route.

2.2.2. Viral vectors
Although the efficacy result from the first prophylactic vaccine
in clinical trials, MVA85A, was disappointing, this vaccine has
an excellent safety record [90–93]. The safety of MVA85A
allowed its aerosol administration in humans, the first TB
vaccine to be evaluated using this route of administration in
humans [94]. MVA85A was administered in BCG-vaccinated
healthy volunteers either via aerosol or intradermally.
Volunteers that received the aerosol vaccination had stronger
mucosal and equally strong systemic responses compared to
the intradermal group. Interestingly the mucosal route had
a lower level of systemic humoral anti-vector responses. In
a follow up phase I experimental medicine study, it was
hypothesized that the lower levels of anti-vector responses
would result in improved Ag85A-specific responses in
a sequential homologous prime-boost immunization [95].
Surprisingly there was no boosting of antigen-specific
responses in the aerosol-intradermal group, in contrast to

the intradermal-aerosol group were a boosting effect was
detected. However, whereas aerosol followed by intradermal
MVA85A was well tolerated, the intradermal-aerosol group
was associated with transient but significant respiratory side
effects. The reasons behind these observations are not known
but these data are important to the development of aeroso-
lized vaccines. It is worth noting that preliminary data from
the aerosol administration of MVA85A to adults with latent TB
were not associated with any safety concerns (ClinicalTrials.
gov NCT02532036). In mice, intranasal administration of MVA
was able to induce iBALT in the lungs [96].

Adenoviral vectors have been widely used for intranasal
administration mainly due to their natural tropism for the
respiratory epithelium. These viruses are typically rendered
replication-deficient and modified to express different myco-
bacterial antigens [97]. Advantages include their large antigen
packing capacity and their intrinsic adjuvanticity [98]. In addi-
tion, they have an excellent safety record in humans [99,100].
Examples include adenovirus type 5, expressing Ag85A
(AdHu5.85), and adenovirus type 35 that have both completed
phase I clinical trials [100,101]. In cattle, the simultaneous
delivery of systemic BCG with endobronchial AdHu5.85A
resulted in a lower number of animals with visible pathology
and granulomata, compared to naïve control animals [84].
Interestingly, in mice, the intranasal route of AdHu5.85 was
more protective compared to the intramuscular route how-
ever differences between the two routes were not as striking
in NHP [102]. Recently, an AdHu5-based vaccine candidate
failed to enhance BCG mediated protection in Rhesus maca-
ques when delivered simultaneously by the aerosol and intra-
muscular routes, despite eliciting robust lung T cell responses
[103]. Due to the presence of neutralizing antibodies against
adenoviruses, chimpanzee adenoviruses are now utilized as
safe and effective alternative approach [104,105]. The intrana-
sal delivery of chimpanzee adenovirus expressing Ag85A
(ChAdOx1.85A) boosted with modified vaccinia Ankara 85A,
improved the efficacy of BCG-primed mice [106]. Aerosolized
ChAdOx1.85A is now in phase I clinical trials [107] (Prof. Helen
McShane, University of Oxford, personal communication).
Other i.n. chimpanzee adenoviruses that have shown promise
in mice include ChAdOx1.PPE15 and AdCh68.85A [108,109].
Other viral-based vaccines that have shown promise include
recombinant influenza virus expressing mycobacterial anti-
gens [57].

2.2.3. Protein-adjuvant vaccines
Non-viral vaccines are more challenging to develop for muco-
sal administration. In part, this is due to the need to formulate
subunit vaccines to withstand the physical and chemical bar-
riers presented at the mucosa but also due to a dearth of
suitable adjuvants. There are currently no adjuvants with reg-
ulatory precedent for intranasal/aerosol delivery in humans.
However, some compounds have entered clinical studies
designed to investigate their potential as mucosal adjuvants
(Table 1). Many others are currently under testing in animal
models with some promise [110]. Adjuvants such as Bis-(3′,5′)-
cyclic dimeric guanosine monophosphate (c-di-GMP) and fla-
gellin have been shown to induce strong mucosal immune
responses [111,112].
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Other approaches for effective vaccination in the airways
include active targeting of vaccines and/or formulation of
particulates for more efficient uptake by antigen-presenting
cells. Examples include liposomes, virus-like particles (VLP) and
nanoparticles. A DNA vaccine encoding heat shock protein
(hsp65) encapsulated in cationic liposomes was more efficient
when administered i.n. compared to the i.m. route [118].
Intranasal delivery of wax nano-particles conjugated to
Ag85A-HBHA, for specific targeting to heparin on epithelial
cell was safe and protective in mice [119]. Spores from Bacillus
subtilis have been used as an adjuvant and antigen-coating
vehicle for the delivery of a fusion protein FP1 (Ag85A-Acr-
HBHA) to the lungs of mice [46]. This candidate vaccine sig-
nificantly reduced post-challenge bacterial burden in the
lungs of BCG-vaccinated and unvaccinated guinea pigs and
mice when delivered with the TLR3 ligand polyI:C [46]
(Dr. Simon Clark, PHE, Prof. Martin Rottenberg, Karolinska
Institute, personal communication), and induced a significant
expansion of Trm cells in the lung. This candidate is currently
under evaluation in the NHP challenge model (Dr. Rajko Reljic,
St George’s University of London, personal communication).
Data from the NHP model for mucosal subunit vaccines are
currently extremely limited. In cynomolgus macaques, aerosol
delivery of H56 (Ag85B, ESAT6 and Rv2660) in formulation
with CAF01 liposomes resulted in increased bacterial clearance
compared to intranasal or intramuscular administration,
although other aspects of disease pathology did not differ
between the vaccination routes [120]. Table 2 lists mucosal
prophylactic TB vaccines that have been tested in multiple
animal models or human clinical trial(s), along with some
selected other studies.

3. Challenges

Targeting the respiratory mucosa is a relatively new field in
human vaccination and there are therefore a lot of uncertain-
ties when choosing the route and method of administration,
precise dosing, and vaccine composition.

3.1. Aerosolization

An effective method for the aerosolization of a vaccine candi-
date needs to be reproducible both in its effect on the vaccine
itself and the quality of the aerosol it generates. Various types of
equipment exist for the nebulization of liquid for inhalation
without heating, based on air pressure, ultrasonics or vibrating
meshes. Shear forces or heat generation by any of these techni-
ques can rapidly degrade proteinaceous material, and the result-
ing aggregation then rapidly decreases device performance and
aerosol quality. Wax nanoparticles have been shown to protect
a TB antigen fusion protein during aerosolization with
a vibrating mesh nebulizer (Omron U22) [131]. Aerosols can
also be created from a dry powder using appropriate excipients
to avoid physical damage to the vaccine [132]. The dry-powder
approach has been used to vaccinate mice via the pulmonary
route with a vaccine based on the cutinase-like protein (Culp)
and a TLR2 agonist with positive results [133]. The WHO aerosol
measles vaccine effort, having established an effective aerosol
immunization approach based on liquid inhalers, is now lookingTa
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toward dry-powder inhalers to boost vaccination rates by
increasing the cost-effectiveness of the vaccine [134].

3.2. Physical barriers

A vaccine has to be robust enough to withstand physical
barriers presented at the mucosa, such as pH differences,
enzyme degradation and overcoming the mucocilliary action
for deposition on the mucosal surface.

3.3. Deposition

The intranasal, endobronchial and intratracheal routes are
normally used in pre-clinical studies but more translatable
approaches such as intranasal or aerosolization would be
more appropriate for humans. However, the choice of admin-
istration will have an effect on the location of the induced
immune response. For example, an intranasally administered
vaccine is more likely to induce immune responses locally and
in the upper airways [135]. In contrast, an aerosolized vaccine
might have the capacity to get deposited in different parts of
the respiratory tract depending on particle size (Figure 2).
Targeting different lung regions depends on particle size as
well as breathing pattern [136]. As a rough guide particles of
0.5–5 μm will be deposited in the bronchotracheal and alveo-
lar space, whereas larger sized particles up 10 μm are more
likely to be deposited in the upper airways [137]. The majority
of M.tb particles generated when an infected person coughs

or sneezes are under 100 μm, with 0.5–5 μm being the most
effectively transmitted [137,138]. Nevertheless, larger size par-
ticles can still result in disease and therefore a mucosal vaccine
that results in the generation of broader size particles might
be likely to induce responses to the sites of mycobacterial
deposition. The surface tension of droplets is also a factor
influencing spreading of formulation after deposition in the
airways [139].

3.4. Dose

Variations in breathing rate, vaccine losses during administra-
tion and the inability to precisely quantify the amount of
vaccine administered to the lungs are likely to result in
a higher variability in the immune responses induced. Losses
in aerosolization are typically high. In one study of albuterol
administration, the maximum achieved proportion of inhaled
and retained drug was 14%, and humidity and patient respira-
tory impairment was identified as factors likely to increase
variability [140]. Nebulizers have been successfully used to
administer viral vector vaccines and BCG, in NHP and in clinical
trials, with loses ranging from 0% in viral vectors to 50% with
BCG [94,141] (Stylianou E. et al., unpublished data). Studies
using the mucosal route of administration should therefore
make an appropriate allowance for this variability in power
calculations and when interpreting data.

4. Microbiome

Recent evidence has suggested a possible role of the micro-
biome on mucosal vaccine efficacy [142,143]. It has been
reported that the immunogenicity and efficacy of orally admi-
nistered vaccines tend to be lower in low and middle-income
countries. For example, the orally administered rotavirus vac-
cine efficacy ranges from 90% in high-income to 39% in low-
income counties [144–147]. Higher levels of Actinobacteria
were associated with higher responses to BCG, oral polio and
tetanus toxoid vaccine, whereas Enterobacteriales,
Pseudomonadales, and Clostridiales with lower responses in
Bangladeshi infants [148]. The important role of the gut micro-
biome on distal sites such as the lung is now beginning to be
better understood [149]. Helminth infections and H.pylori have
been shown to affect both BCG-induced immune responses
and have a potential effect on disease control [150–153]. In
a cohort of household contacts living with an active TB
patient, MAIT cell number and function correlated with the
presence of specific gut microbes [25]. The relationship
between the gut microbiome and MAIT cell generation was
further emphasized in a mouse model of microbial dysbiosis
[154]. Here, a healthy gut microbiome was associated with
MAIT cell accumulation in the lungs and subsequently better
early control of M.tb infection.

Although to date, the majority of studies have focused on
the gut and the gut microbiome, next-generation sequencing
revealed the presence of a microbiome throughout the
respiratory tract [155]. These microbes have a huge impact in
controlling respiratory infections from progressing from the
upper to the lower respiratory tract. The presence of different
microbes together with M.tb and how this interaction can

Figure 2. Respiratory system in man and vaccine deposition following aerosol
delivery (created with BioRender.com).
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influence M.tb control is now beginning to emerge [156].
Whether the lung microbiome has a role on mucosal vaccine
efficacy and immunogenicity is yet to be determined.

5. Conclusion

Mucosal vaccination, a needle-free vaccination approach offers
many advantages over traditional systemic routes, such as
safety and ease of administration the later of which could
improve compliance and result in higher vaccine coverage.
The mucosal route is particularly attractive for TB vaccines
due to the induction of immune responses in the lung, the
primary site of M.tb infection. There are however also
a number of challenges associated with this approach. Some
of these include the need for effective adjuvants but also the
difficulty in replicating the route of aerosol vaccination in
humans to small animal models. Nevertheless, there have
been significant steps in recent years with a number of candi-
date mucosal vaccines already tested in clinical trials that
highlight the safety and feasibility of this route.

6. Expert opinion

There are undoubtedly both immunological and practical
advantages in mucosal delivery of a TB vaccine. By targeting
respiratory mucosa and the lungs, a mucosal vaccine is more
likely to induce a protective immune response at the site of
infection than a parenterally administered vaccine. By avoid-
ing the use of needles and the attendant risks of pathogen
cross-contamination, a mucosal vaccine would be easier to
administer in large vaccination campaigns. Importantly, suc-
cessful mucosal vaccines against other respiratory pathogens
such as influenza and polio have established an important
precedent, lending further support to the feasibility of
a mucosal TB vaccine approach. However, this approach is
not without its challenges and consequently the progress so
far has been relatively slow. Some of those challenges are not
unique to mucosal vaccines per se but apply to TB vaccines in
general, namely, the lack of immune correlates of protection,
inadequate experimental animal models and insufficient
understanding of protective mechanisms involved. Others
are specific to the mucosal approach and involve the lack of
understanding of the mucosal immune mechanisms and the
unresolved technical aspects of mucosal vaccine delivery.
Most licensed mucosal vaccines utilize the oral route but
with the exception of the orally administered BCG this route
is probably not feasible for a new TB vaccine. Likewise, most
animal studies of mucosal vaccine candidates involve intrana-
sal or intratracheal instillation of the vaccine in liquid form, yet
this is not a feasible route for human application. In humans,
a mucosal TB vaccine is almost certainly likely to be delivered
in some form of aerosol (wet or dry) through the mouth or the
nose. This poses a challenge when validating mucosal vac-
cines in animal studies. Aerosolized vaccine delivery is not
practical in small animal models (mice and guinea pigs), leav-
ing only the costly and not easily accessible nonhuman pri-
mate (NHP) model to perform such studies. Indeed, most of
the current knowledge of aerosolized TB vaccine delivery
comes from a limited number of NHP studies using BCG or

viral vector vaccines. What transpired from these studies is
that it is very difficult to control the delivered dose in the
lungs and even more difficult to control the vaccine distribu-
tion throughout the respiratory system. Even before getting
into the lungs, vaccine may be negatively affected by the
process of aerosolization. Furthermore, very little is known
about aerosolization of protein- and other types of vaccine
formulations. This means that there is a clear need to improve
and understand better the technical aspects of aerosol deliv-
ery as well as the aerobiology of the lungs. We also need to
improve our understanding of the immune mechanisms, both
innate and adaptive, operating in the respiratory mucosa, so
that they can be optimally exploited to the vaccine’s benefit.
Perhaps such detailed studies of immune mechanisms should
be performed only after the proof of concept has been firmly
established that a mucosal vaccine is protective and that this
route of immunization is superior to the systemic route. In that
regard, the current evidence from small animal models and
NHP is encouraging although not yet entirely compelling and
consequently more studies need to be performed, especially
in NHP and possibly also in humans. When it comes to NHP,
the main challenges are to improve the efficacy of aerosolized
delivery and also register a more profound protective effect
than has been observed so far. To achieve the latter, one
approach could be to circumvent the aerosolized delivery
and the associated dosing issues by presenting the vaccine
directly to the lung mucosa by bronchoscopic instillation, as it
was done by Dijkman et al. [60]. While not a deployable route
in humans, this route of delivery can help establish the proof
of concept that mucosal-vaccine-induced immunity can be
more protective than that induced by parenteral immuniza-
tion. If so, then it would be fully warranted to pursue the
aerosolized approach and try and reproduce such protection
by a more deployable route such as aerosol.

In conclusion, much progress has been achieved with
mucosal vaccine approaches in TB but significant challenges
still remain to make this into a successful vaccine strategy. In
our view, further progress in mucosal TB vaccination approach
could be achieved by focusing on the following priorities,
which we outlined at the recent meeting of the Aerosol and
Mucosal Vaccination group at the CTVD (Collaboration for TB
Vaccine Discovery) meeting in Seattle, at the Bill and Melinda
Gates Foundation:

● Establishing firmly if aerosolized BCG vaccination is
superior to intradermal in NHP studies

● Performing proof of concept human studies with aero-
solized BCG

● Optimizing experimental models and delivery systems
for different mucosal vaccine formulations (live organ-
isms, viral vectors, and protein vaccines)

● Better understanding of the mechanisms of protective
innate and adaptive immunity in the lungs

● Better understanding of the aerobiology of the lungs and
respiratory vaccine delivery, in terms of aerosol particle
size, distribution and viable vaccine recovery.

● Translating experimental models of mucosal delivery to
potential human application and back translating human
findings into preclinical studies to further improve models
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