
Publication Charges and Reprints 
 

There  has  been  a  change  in  our  author  billing  and  reprint  ordering 
system. Publication  charges  and  reprint  orders  are  now  handled  by 
Dartmouth Journal Services using a web‐based system.  
 
Within  the  next  24  hours  you  will  receive  an  e‐mail  from 
aubilling.djs@sheridan.com.  This  e‐mail will  include  a  link  to  an  online 
reprint order  form and to an estimate of your publication charges. From 
this secure website you will be able to review the estimated charges for 
your  article  and order  reprints. Please  log  in  to  this website  as  soon  as 
possible  to  ensure  that  there  will  be  no  delay  to  your  article  being 
published.  
 
Please  note  that  this  is  a  change  in  procedure. If  you  have  questions 
regarding  this  change,  about  the  e‐mail  you will  receive,  or  about  the 
website, please contact aubilling.djs@sheridan.com or call 802‐882-1655.  
 



1

1. Update to Adobe Acrobat Reader DC
The screen images in this document were captured on a Windows PC running Adobe Acrobat Reader DC. Upgrading to the 
newest version is not always necessary, but it is preferable, and these instructions apply only to Adobe Acrobat Reader DC. 
You can also create annotations using any version of Adobe Acrobat. Adobe Acrobat Reader DC can be downloaded at no 
cost from http://get.adobe.com/reader/

2. What are eProofs?
eProof files are self-contained PDF documents for viewing on-screen and for printing. They contain all appropriate formatting 
and fonts to ensure correct rendering on-screen and when printing hardcopy. SJS sends eProofs that can be viewed, anno-
tated, and printed using either Adobe Acrobat Reader or Adobe Acrobat. 

3. Show the Comment Toolbar
The Comment toolbar isn’t displayed by default. To display it, choose View > Tools > Comment > Open.

Pilgrim Five, Suite 5
5 Pilgrim Park Road

Waterbury, VT 05676

Annotating PDFs using Adobe Acrobat Reader DC
Version 1.7   June 27, 2016

Refer to Page 2 for  
annotation examples. 

4. Using the PDF Comments menu
To insert new text, place your cursor where you would like to insert the new text, 
and type the desired text. To replace text, highlight the text you would like to 
replace, and type the desired replacement text. To delete text, highlight the text 
you would like to delete and press the Delete key. 

Acrobat and Reader will display a pop-up note based on the modification (e.g., 
inserted text, replacement text, etc.). To format text in pop-up notes, highlight the 
text, right click, select Text Style, and then choose a style. A pop-up note can be 
minimized by selecting the X button inside it.  When inserting or replacing text, 
a  symbol indicates where your comment was inserted, and the comment is 
shown in the Comments List. If you do not see the comments list, you are 
editing the live text instead of adding comments, and your changes are not 
being tracked. Please make certain to use the Comments feature instead. 

5. Inserting symbols or special characters
An insert symbol feature is not available for annotations, and copying and 
pasting symbols or non-keyboard characters from Microsoft Word does not 
always work. Use angle brackets < > to indicate these special characters (e.g., 
<alpha>, <beta>).

6. Editing near watermarks and hyperlinked text
eProof documents often contain watermarks and hyperlinked text. Selecting 
characters near these items can be difficult using the mouse. To edit an eProof 
which contains text in these areas, do the following: 

• Without selecting the watermark or hyperlink, place the cursor near the area 
for editing.

• Use the arrow keys to move the cursor beside the text to be edited.
• Hold down the shift key while simultaneously using arrow keys to select the 

block of text, if necessary.
• Insert, replace, or delete text, as needed.

7. Reviewing changes
To review all changes, open the Comment menu and the Comment List is displayed. 
 Note: Selecting a correction in the list highlights the corresponding item in 
the document, and vice versa.

8. Still have questions?
Try viewing our brief training video at  
https://authorcenter.dartmouthjournals.com/Article/PdfAnnotation



2

A. Inserted text

B. Replaced text

C. Deleted text

D. Sticky Note

B

C

D

A



The Journal of Immunology

ChoiceQ:1; 2; 3 of Host Cell Line Is Essential for the Functional
GlycosylationQ:4; 5; 6 of the Fc Region of Human IgG1 Inhibitors of
Influenza B VirusesQ:7; 8; 9

Q:10 Patricia A. Blundell,* Dongli Lu,† Anne Dell,† Stuart Haslam,† and Richard J. Pleass*

Abs are glycoproteins that carry a conserved N-linked carbohydrate attached to the Fc whose presence and fine structure

profoundly impacts on their in vivo immunogenicity, pharmacokinetics, and functional attributes. The host cell line used to

produce IgG has a major impact on this glycosylation, as different systems express different glycosylation enzymes and trans-

porters that contribute to the specificity and heterogeneity of the final IgG-Fc glycosylation profile. In this study, we compare two

panels of glycan-adapted IgG1-Fc mutants expressed in either the humanQ:12 endothelial kidney 293-F or Chinese hamster ovary–K1

systems. We show that the types of N-linked glycans between matched pairs of Fc mutants vary greatly and in particular, with

respect, to sialylation. These cell line effects on glycosylation profoundly influence the ability of the engineered Fcs to interact with

either human or pathogen receptors. For example, we describe Fc mutants that potently disrupted influenza B–mediated agglu-

tination of human erythrocytes when expressed in Chinese hamster ovary–K1, but not in human endothelial kidney 293-F

cells. The Journal of Immunology, 2020, 204: 000–000.

I
nQ:13 therapeutic; 14 approaches in which the Fc of human IgG1 is
critically important, receptor binding and functional prop-
erties of the Fc are lost after deglycosylation or removal of

the Asn-297 N-linked glycosylation attachment site located in the
body of the Fc (1–3). More detailed studies into the types of
sugars involved in this functionality have shown enhanced
FcgRIIIA binding and Ab-dependent cellular cytotoxicityQ:15 of IgG1
in the absence of fucose (4, 5); enhanced FcgRIIIA binding but
rapid clearance from the circulation of IgG1 enriched for oligo-
mannose structures (6–8); and improved solubility, anti-
inflammatory activity, thermal stability, and circulatory half-life
of terminally sialylated glycans from IgG1 (9–13).
These findings have generated an incentive to modify the

existing IgG1 glycans attached to Asn-297, either by

glycoengineering/chemoenzymatic means (12, 14), by mutagen-
esis programs on the Fc protein backbone that disrupt the protein–
Asn-297–carbohydrate interface (15), or by expression in
glycosidase-adapted transgenic cell lines (reviewed in Ref. 16).
For example, the Food and Drug Administration Q:16–approved hu-
manized Ab mogamulizumab, which is used to treat lymphoma
and is manufactured in Chinese hamster ovary (CHO) cell lines in
which the a (1–6)–fucosyltransferase (FUT8) gene is removed,
results in an afucosylated IgG1 with enhanced FcgRIIIA-
dependent tumor cell killing by Ab-dependent cellular cytotox-
icity (17). Although similar approaches have yielded enhanced
sialylation of IgG, with zero to moderate improvements in binding
to FcgRs (12, 15, 18, 19), these have not led to significant en-
hancements in binding to inhibitory glycan receptors that are
important in controlling unwanted inflammation (19, 20), a finding
we and others have attributed to the buried location of the Asn-
297–attached glycan within the Fc (21, 22).
Less is known about glycosylation of the receptors to which the

IgG1-Fc binds. Although recent studies implicate an active role for
Fcg receptor–associated carbohydrates in fine-tuning Ab–receptor
interactions (23, 24), aglycosylated FcgRs expressed in Escher-
ichia coli still retain the ability to bind IgG (25–27), bringing into
question the exact role of Fcg receptor glycosylation to IgG1-Fc
binding. Similar arguments apply for most of the glycan receptors.
For example, DC-SIGN and DC-SIGNR when expressed by E.
coli still bind Man9GlcNAc2 Q:17oligosaccharides with high affinity
(28). The N-linked glycans on glycan receptors are mostly not
located near the CRD binding sites but are involved in cis-medi-
ated clustering of receptors within the plasma membrane. For
example, refolded recombinant E. coli–expressed Siglec-5 is
sufficient for binding sialylated carbohydrates (29).
We took an alternative approach to enhancing the sialic acid

content of the Fc of IgG1 (30, 31) by adding the 18-aa tailpiece
from IgM to the C terminus of the IgG1 Fc, into which a cysteine-
to-alanine substitution is made at Cys-575, and including an extra
N-glycosylation site to the N terminus at position Asn-221. The
tailpiece also contains an N-glycosylation site at Asn-563. This
site is known to contain a high proportion of oligomannose
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glycans that may explain earlier observations of enhanced binding
of IgM to mannose-dependent receptors (30–32). When expressed
in CHO-K1 cells, these molecules displayed enhanced binding to
the low-affinity Fcg receptors (FcgRIIIA and FcgRIIB), and to
multiple glycan receptors that control excessive inflammation by
IVIG (30, 31, 33). Two such hypersialylated molecules (D221N/
C575A and D221N/C309L/N297A/C575A) also bound recombi-
nant hemagglutinin (HAQ:18 ) from influenza A and B viruses and
disrupted influenza A–mediated agglutination of human erythro-
cytes (31).
CHO cell–based systems remain, by far, the most common

mammalian cell line used by the pharmaceutical industry; 84% of
products are produced in this cell system, and the remaining ap-
proved Abs are produced in either NS0 or Sp2/0 cells (34). Al-
though CHO cells account for the largest number of FoodQ:19 and
Drug Administration–approved biotherapeutics (34), they do not
express a1,2/3/4 fucosyltransferase and b-1-4-N-
acetylglucosaminyl-transferase III, which are enzymes expressed
in human cells (35). Furthermore, humans have active a2,6-sia-
lyltransferase. As such, CHO-derived IgG1 Fcs are only sialylated
through a2,3 linkages, whereas both a2,3 and a2,6 linkages can
be found on human IgG1 Fc (30, 35). Previous detailed N-glycan
structural analysis has confirmed that CHO cells produce only
a2,3-sialylated N-glycans, whereas human endothelial kidney
(HEK) cells produce both a2,3- and a2,6-sialylated N-glycans
(36, 37). Most nonhuman mammalian cell lines can also attach N-
glycolylneuraminicQ:20 acid. Humans do not have an active CMP; 21 –N-
acetylneuraminic acid hydroxylase and, so, do not attach N-

glycolylneuraminic acid, which can elicit immunogenic responses
(35), and consequently, nonhuman cell lines are stringently
screened to identify clones that produce proteins with desirable
glycan profiles (38).
Human cell lines are a promising alternative to nonhuman cell

lines, as they possess fully human posttranslational modifications
that reduce downstream processing costs and, more importantly,
circumvent any risks associated with immunogenicity from non-
human glycans. However, human cell lines also have significant
limitations, including the capacity to produce sialyl-Lewisx, which
binds to endothelial selectins in areas of inflammation (39). Al-
though this may potentially be favorable for anti-inflammatory
therapies (39), the attached sialyl-Lewisx may also adversely af-
fect the biodistribution and pharmacokinetics of an Fc when used
in other clinical contexts, for example, antitumor mAbs. Human
cell lines also carry the risk of contamination and forward trans-
mission of human pathogens, in particular viruses, that may ex-
plain why CHO-K1 cells are still the preferred cell line used by
the pharmaceutical industry (34). These issues led us to compare
the functional properties of a panel of Fc mutants generated in
CHO-K1 cells with the same set of proteins manufactured by HEK
293-F cells (31).

Materials and Methods
Production of mutants

The Q:22generation of glycan mutants in all combinations has been described
previously for the hexa-Fc that contains cysteines at both positions 309 and
575 (30). To make the new mutants described in Fig. 1 in which Cys-575 F1

FIGURE 1. Schematic showing the various HEK 293-F glycan mutants in which Cys-575 is mutated to alanine to create the C575A panel of mutants.

Stars indicate the hinge Asn-221, the Cg2 Asn-297, and the tailpiece Asn-563 glycan sites, respectivelyQ:40 .
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was mutated to alanine, PCR overlap extension mutagenesis was used with
a pair of internal mismatched primers 59-ACCCTGCTTGCTCAACTCT-
39/39-GGCCAGCTAGCTCAGTAGGCGGTGCCAGC-59 for each plasmid
vector coding for a designated glycan modification. The parental plasmids
used for these new PCR reactions have been described previously (30).
The resulting C575A mutants were then further modified to remove Cys-
309 using primer pair 59-TCACCGTCTTGCACCAGGACT-39/39-
AGTCCTGGTGCAAGACGGTGA-59 to create the panel of double cys-
teine knockouts described in Fig. 2. To verify incorporation of the desired
mutation and to check for PCR-induced errors, the open reading frames of
the new mutants were sequenced on both strands using previously de-
scribed flanking primers (30). CHO-K1 cells (European Collection of Cell
Cultures) were stably transfected with plasmids using FuGENE (Promega),
stable cell lines were created, and Fc-secreting clones were expanded and
proteins purified as previously describedQ:23 (22, 40). HEK 293-F cells were
transiently transfected using the FreeStyle MAX 293 Expression System
(Life Technologies) and proteins purified as for CHO-K1 cells.

Size analysis using size exclusion HPLC

AnQ:24 SEC 3000 (3003 7.8 mm) Column (Beckman Coulter) was set up on a
Dionex ICS 3000 HPLC System and pre-equilibrated with 0.2-mm-filtered
PBS. Protein samples at concentrations ranging from 0.5 to 1 mg/ml were
placed in a precooled autosampler at 4˚C, and 10 ml of each was se-
quentially injected onto the column. Each sample was run for 1.5 column
volumes in PBS at a flow rate of 0.25 ml/min. Elution was monitored at
280 and 214 nm. The column was calibrated by running standard proteins
(thyroglobulin, bovine IgG, OVA, myoglobin, and cyanocobalamin; Bio-
Rad Laboratories) under the same conditions.

Receptor and complement binding assays

Methods describing the binding of mutants to tetrameric human DC-SIGN
(Elicityl) and Siglec-1, Siglec-4, and Siglec-3 (Stratech Scientific) have all
been described previously (22, 40). The same ELISA protocol was used for
Siglec-2, CD23, dectin-1, dectin-2, C-type lectin (clec Q:25)–4a, clec-4d,
mannose-binding lectin (MBL), and macrophage mannose receptor
(Stratech Scientific or Bio-Techne). Binding of C1q has been described
previously (22, 40). ELISAs were used to investigate binding of Fc glycan
mutants to human FcgRI, FcgRIIA, FcgRIIB, FcgRIIIA, and FcgRIIIB
(Bio-Techne). Receptors were coated down onto ELISA plates (Nunc) in
carbonate buffer (pH 9) (Sigma-Aldrich) at 2 mg/ml overnight at 4˚C,
unless otherwise specified. The plates were blocked in PBS/0.1% Tween
20 (PBST) containing 5% dried skimmed milk. Plates were washed three
times in PBST before adding Fc mutant proteins at the indicated con-
centrations and left at 4˚C overnight. Plates were washed as above and
incubated for 2 h with 1:500 dilution of an alkaline phosphatase–conju-
gated goat F(ab9)2 anti-human IgG (The Jackson Laboratory).

Binding of the secondary detecting F Q:26(ab9)2 and levels of Ag coating
were checked using either anti-human Fc (Fig. 3A) or anti-histidine
(Fig. 3B) Abs, respectively, by direct ELISAs to every mutant and/or re-
ceptor to ensure potential biases in the detection of binding of different
mutants to different receptors could be considered. Because some of the
receptors used are not histidine tagged (e.g., DC-SIGN and MBL) or were
poorly recognized by the detecting anti-histidine mAb (e.g., dectin-1,
dectin-2, clec-4a, and clec-4d), we also checked protein concentrations
prior to coating to plates by SDS-PAGE (Fig. 3C).

Plates were washed and developed for 15 min with 100 ml/well of a
SIGMAFAST p-Nitrophenyl phosphate solution (Sigma-Aldrich) for al-
kaline phosphatase–conjugated Abs or with 3,39,5,59-tetramethyl-
benzidine dihydrochloride (T3405; Sigma-Aldrich) phosphate-citrate

F2

F3

FIGURE 2. Schematic showing the HEK 293-F C575A panel of glycan mutants from Fig. 1 in which the Cys-309 and Leu-310 are changed to leucine

and histidine, as found in the native IgG1 Fc sequence to create the C309L/C575A panel of mutants. Stars indicate the hinge Asn-221, the Cg2 Asn-297,

and the tailpiece Asn-563 glycan sites.
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buffer (P4922; Sigma-Aldrich) for HRP-conjugated Abs. Plates were read
at 405/450 nm and the data plotted with GraphPad Prism.

Hemagglutination inhibition assay

Native influenza B Hong Kong 5/72 was obtained from Meridian Life
Science. To determine the optimal virus-to-erythrocyte ratio, 2-fold virus
stock dilutions were prepared in U-shaped 96-well plates (Thermo Fisher
Scientific). The same volume of a 1% human O+ RBC suspension (Inno-
vative Research) was added to each well and incubated at room temper-
ature for 1 h until erythrocyte pellets had formed. After quantifying the
optimal virus-to-erythrocyte concentration (4 HA units), serial 2-fold di-
lutions of Fc, control IVIG (Gammagard; Baxter Healthcare), and poly-
clonal goat anti–influenza B (Bio-Rad Laboratories) were prepared, all
starting at a concentration of 2 mM, and mixed with 50 ml of the optimal
virus dilution. After 30 min incubation at room temperature, 50 ml of the
human erythrocyte suspension was added to all wells, and plates were
incubated at room temperature for 1 h, after which erythrocyte pellets
could be observed in the positive controls and positive samples.

Binding to FcgRs by biacore

Binding to FcgRs was carried out using a Biacore T200 biosensor (GE
Healthcare). Recombinantly expressed FcgRS (R&D Systems or Sino
Biological) were captured via their histidine tags onto CM5 chips pre-
coupled with ∼9000 reflective units anti-His Ab (GE Healthcare) using
standard amine chemistry. Fc mutants were injected over captured recep-
tors at a flow rate of 20 ml/min, and association and dissociation monitored
over indicated time scales before regeneration with two injections of
glycine (pH 1.5) and recalibration of the sensor surface with running buffer
(10 mM HEPES, 150 mM NaCl [pH 7]). Assays were visualized with
Biacore T200 evaluation software v2.0.1.

N-glycomic analysis

N-glycomic analysis was based on previous developed protocol with some
modifications (41). Briefly, the N-glycans from 50 mg of each sample was
released by incubation with New England Biolabs Rapid PNGase F and
isolated from peptides using Sep-Pak C18 cartridges (Waters). The re-
leased N-glycans were permethylated prior to MALDI MS analysis. Data

were acquired using a 4800 MALDI-TOF/TOF mass spectrometer (Ap-
plied Biosystems) in the positive ion mode. The data were analyzed using
Data Explorer (Applied Biosystems) and GlycoWorkbench (42). The
proposed assignments for the selected peaks were based on composition
together with knowledge of biosynthetic pathways.

Results
Disulfide bonding and glycosylation influence the
multimerization states of Fc mutants expressed by HEK
293-F cells

Two panels of glycosylation- and cysteine-deficient mutants pre-
viously expressed by CHO-K1 cells were generated in HEK 293-F
cells Q:27(Figs. 1–3). As observed with CHO-K1 cells, the HEK 293-F
cells were capable of making all the mutants to high yields (∼30
mg/l) with the exception of the N297A/N563A/C575A mutant, for
which we were unable to generate sufficient protein for further
work. Generally, all the mutants migrated on SDS-PAGE with the
expected molecular weights for their glycosylation or disulfide
bonding states (Fig. 4) and as previously described for the same
mutants expressed by CHO-K1 cells (30, 31).
In an earlier study with CHO-K1 cells, we demonstrated that a

proportion of molecules in which the tailpiece Asn-563 glycan was
substituted for alanine ran as multimers in solution when examined
by size exclusion HPLC (31). The loss of the bulky Asn-563
glycan exposes hydrophobic amino acid residues in the tailpiece
that facilitate noncovalent interactions in solution. Such N563A-
dependent multimerization was also observed with mutants
expressed by HEK 293-F cells, although the proportion of mul-
timers to monomers (with the notable exception of the N563A/
C575A mutant) was generally lower when mutants were made by
this cell line (Fig. 5). Clearly, the choice of cell line and,

F4

F5

FIGURE 3. Characterization of detecting reagents and recombinant receptors. (A) Characterization of mutant HEK 293-F Fc proteins by direct ELISA.

Mutant Fcs were titrated directly onto plates in carbonate buffer overnight. After blocking in PBST 5% skimmed milk, mutants were detected with a 1:1000

dilution of the alkaline phosphatase-conjugated goat F(ab9)2 anti-human IgG (The Jackson Laboratory) and developed as per methods. (B) Characterization

of receptor binding by direct ELISA. The receptors were coated down at 0.2 mg per well in carbonate buffer overnight. After blocking in PBST 5%

skimmed milk, mutants were detected with 50 ng/ml of an anti-His mAb (MA1-135; Invitrogen) followed by a 1:4000 dilution of a peroxidase-labeled rat

anti-mouse k (1170-05; Southern Biotech). ELISAs were developed as per methods. (C) Receptors were visualized by Coomassie blue staining (as per

methods). Two micrograms of each receptor was run on 4–12% SDS-PAGE gradient gels under nonreducing conditions. Note that MBL, macrophage

mannose receptorQ:41 , and FcgRIIIB are sold with BSA as a carrier, which clearly masks the receptor bands.
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consequently, the types of posttranslational modifications dra-
matically impact on the biophysical properties of these molecules
in solution.

Fc glycan mutants expressed by HEK 293-F cells show
differences in binding to glycan receptors when compared with
CHO-K1 proteins

To determine the impact of the cell line on receptor binding by the
two panels of Fc mutants, we investigated their interaction with
soluble recombinant glycan receptors by ELISA (Fig. 6,
Supplemental Fig. 1). For most of the Fc mutants, including hexa-
Fc, C575A, N297A/C575A, D221N/N297A/N563A/C575A,
C309L/C575A, D221N/C309L/C575A, D221N/C309L/N297A/
C575A, and D221N/C309L/N297A/N563A/C575A, expression
in HEK 293-F cells reduced the binding to glycan receptors when
compared with equivalent molecules expressed in CHO-K1 cells

(Fig. 6). However, two Fc mutants (D221N/N563A/C575A and
D221N/C309L/N573A/C575A) were notable for their enhanced
and nonspecific binding to all the glycan receptors investigated
when expressed in HEK 293-F cells. Given that both mutants
multimerize, although not as efficiently as their equivalents made
in CHO-K1 cells (Fig. 5), we attribute this enhanced nonspecific
glycan receptor binding not only to increased avidity effects, but
also to fine differences in the attached glycan structures
(Supplemental Figs. 3, 4). Therefore, the choice of cell line can
dramatically impact on the ability of individual Fc mutants to
interact with glycan receptors.

F6

FIGURE 4. Characterization of mutant HEK 293-F Fc proteins by SDS-PAGE. (A) Cys-309 competent mutants in which Cys-575 is mutated to alanine

to create the C575A panel of mutants. Mutants with N563A run as laddered multimers. Insufficient material was obtained with N297A/N563A/C575A for

further analysis. The addition of the N-X-(T/S) glycan sequon to generate N-terminally glycosylated hinges (the D221N series of mutants) did not affect

multimerization but rather increased the molecular mass of all mutants. The N297A mutants run as monomers, dimers, and trimers. (B) The same mutants

as in (A) but run under reducing conditions. The D221N/C575A mutant has the largest mass, because it has three glycans attached. The types of glycans

attached at Asn-221, Asn-297, and Asn-563 for all the mutants are shown in Fig. 9 andQ:42 Supplemental Figs 1–4. The decreasing molecular masses seen in the

Fc represent the sequential loss of N-linked glycans. (C) The same mutants as in (A) but stained with Coomassie reagent. (D) Substitution of Cys-309 with

leucine onto the C575A mutants shown in (A) to create the double cysteine knockouts, which all run as monomers. C309L in which Cys-575 is present also

multimerizes. (E) The same mutants as in (D) but run under reducing conditions. Note that the D221N/C309L/C575A mutant with three glycan sites has the

largest mass, as seen with the equivalent mutant D221N/C575A in (A). (F) Coomassie-stained gel of (D). All proteins were run under either nonreducing (A

and D) or reducing conditions (B and E) at 2 mg protein per lane on 4–8% acrylamide gradient gels, transferred to nitrocellulose, and for (A), (B), (D), and

(E) blotted with an anti-human IgG Fc (Sigma-Aldrich). (C) and (D) are stained with Coomassie blue, showing that only Fc proteins are present after

purification. For comparison, the same mutants purified from CHO-K1 cells are shown in (24).
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Fc glycan mutants expressed by HEK 293-F cells show
differences in binding FcgRs receptors compared with
CHO-K1 cell proteins

Given the observed differences in binding to glycan receptors of the
same Fc mutants expressed by two different cell lines, we also
tested the impact of cell line on binding to the classical human
FcgRs (Fig. 7, Supplemental Fig. 2).
The largest difference observed was the ability of certain HEK-

expressed mutants (N563A/C575A, D221N/N563A/C575A,
D221N/N297A/N563A/C575A, C309L/N563A/C575A, C309L/
N297A/N563A/C575A, and D221N/C309L/N563A/C575A) to
bind human FcgRIIA (Arg-167) and FcgRIIIB. This is in stark
contrast to the same proteins expressed in CHO-K1 cells, in which
not one single mutant from either panel bound the two low-affinity
receptors [Fig. 7 and (31)].
To examine the interaction with human FcgRIIA (Arg-167) and

FcgRIIIB in more detail, we tested binding of two of these mu-
tants (C309L/N563A/C575A and D221N/C309L/N563A/C575A)
to FcgRIIIB and FcgRIIA (Arg-167), respectively, byQ:28 surface
plasmon resonance analysisQ:29 (Fig. 8, Tables I, II). Both mutants
displayed slower apparent off rates compared with the control
IgG1-Fc monomer, consistent with avidity effects either through
binding to multiple immobilized FcgR molecules or rebinding
effects (Fig. 8). Therefore, the choice of cell line impacts on the
ability of individual Fc mutants to interact with FcgRs and, in
particular, FcgRIIA (Arg-167) and FcgRIIIB.

Fc glycan mutants expressed by HEK 293-F cells show
improved binding to human C1q

An important functional and safety attribute for therapeutic ad-
ministration of Fc fragments is their ability to bind C1q and, thus,
initiate the classical pathway of complement activation. Binding of
C1q was assessed by ELISA to selected mutants expressed from
each cell line (Fig. 9). Mutants D221N/C575A, D221N/C309L/
C575A, C309L/N297A/N563A/C575A, and C309L/N563A/C575
expressed in HEK 293-F cells showed improved binding to C1q,
compared with their counterparts expressed in CHO-K1 cells, and
no change in binding in either direction was observed for IgG1-Fc,
D221N/N563A/C575A, D221N/N297A/C575A, D221N/C309L/
N297A/C575A, D221N/C309L/N297A/N563A/C575A, and
C309L/N297A/C575A (Fig. 9).
Both the D221N/C575A and D221N/C309L/N297A/C575A

mutants from CHO-K1 cells have been shown previously to
block influenza-mediated hemagglutination [(24) and Figs. 10–12,
below Q:30], and thus, D221N/C575A expressed in HEK 293-F cells
that binds C1q may not be favored for clinical development over
the same molecule expressed by CHO-K1 cells (35).

Fc glycan mutants expressed in HEK 293-F cells have more
complex glycosylation profiles than the equivalent mutants
expressed in CHO-K1 cells

The structure of the N-glycans on the Fc of IgG Abs has been
shown to influence multiple receptor interactions (3, 43, 44).
Unlike the relatively simple glycosylation of the Fc mutants pre-
viously described for CHO cells (30, 31), HEK cells are capable of
producing more complex N-glycan structures on their glycopro-
teins (45).

F7

F8

T1

T2

F9

F10

FIGURE 5. Size-exclusion chromatography analysis of individual Fc mutants expressed by either HEK 293-F (black traces) or CHO-K1 cells (gray

traces) as published previously (31). Dotted lines indicate the approximate molecular weights of the control 50 kDa Fc fragment (sample 10) or 158 kDa

human IgG (sample 9). The m.w. standards (including 670 kDa thyroglobulin) or the indicated numbered mutants were run and eluted from the column as

described in theMaterials and Methods. (A) The C575A panel of mutants: 1, D221N/N297A/N563A/C575A; 2, D221N/N563A/C575A; 3, D221N/N297A/

C575A; 4, D221N/C575A; 5, N563A/C575A; 6, N297A/C575A; 7, C575A; 8, Hexa-Fc; 9, IVIG (Gammagard); and 10, IgG1-Fc. (B) The C309L/C575A

panel of mutants: 11, D221N/C309L/N297A/N563A/C575A; 12, D221N/C309L/N563A/C575A; 13, D221N/C309L/N297A/C575A; 14, D221N/C309L/

C575A; 15, C309L/N297A/N563A/C575A; 16, C309L/N563A/C575A; 17, C309L/N297A/C575A; 18, C309L/C575A; and 19, C309L.
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We investigated the nature of the N-glycans on the two panels of
glycosylation- and cysteine-deficient mutants by MALDI-TOF
mass spectrometry–based glycomic analysis (complete dataset
for both panels of mutants provided in Supplemental Figs. 3, 4). A
core-fucosylated biantennary structure without antennary gal-
actosylation, m/z 1835 (GlcNAc4Man3Fuc1), is the base peak of

spectra from all IgG1-Fc mutants produced by HEK cells (Fig. 10,
Supplemental Figs. 3, 4).
An indication of the types of glycans attached to either Asn-221,

Asn-297, or Asn-563 could be determined using both the C575A or
the C309L/C575A panels of mutants. For example, only N-glycans
attached to Asn-297 are available for sampling in either the
N563A/C575A or C309L/N563A/C575A, mutants that, therefore,

FIGURE 7. Shading matrix showing the differential

binding of HEK 293-F or CHO-K1 mutant proteins to

rFcg receptors. Results from at least two independent

ELISA experiments are expressed as fold change (up

or down) with respect to the internal IgG1 Fc control

run on each plate. Standalone ELISA data are provided

in the Supplemental Fig. 2.

FIGURE 6. Shading matrix showing the differential binding of HEK 293-F or CHO-K1 mutant proteins to recombinant glycan receptors. Results from at

least two independent ELISA experiments are expressed as fold change (up or down) with respect to the internal IgG1 Fc control run on each plate.

Standalone ELISA data are provided in the Supplemental Fig. 1. White boxes, not tested.
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also allow the contribution of disulfide bonding to glycosylation at
Asn-297 to be elucidated.
In these mutants, N-glycosylation of Asn-297 is dominated by

core-fucosylated biantennary glycans (m/z 1835 and 2040) with
varied galactosylation levels (Gal0–2GlcNAc4Man3Fuc1), and a
Man5GlcNAc2 (m/z 1579) oligomannose structure is also observed
(Fig. 10B). The Asn-563 N-glycans are much more complex and
heterogeneous. Abundant truncated structures at m/z 2081 and
2285 have potentially terminal N-acetylglucosamine (GlcNAcQ:31 ) or
N-acetylgalactosamine (GalNAc) (Fig. 10A). Antennal fucosyla-
tion and sialylation are also observed on structures that can as-
semble sialyl–N-acetyllactosamine, sialyl-Lewis x/a, fucosylated
LacdiNAc, or sialylated LacdiNAc (GalNAc–GlcNAc), for ex-
ample, peak m/z 4039 (NeuAc2Gal4GlcNAc6Man3Fuc2). The
presence of m/z 2674 (GalNAc2GlcNAc4Man3Fuc3) in the
N297A/C575A mutant confirms the presence of fucosylated
LacdiNAc epitopes on the Asn-563 site. Thus, glycosylation at
Asn-563 is different to that seen from CHO-K1 cells that assemble
less-diverse structures without antennal fucosylation and, there-
fore, more terminal sialyl–N-acetyllactosamine (30, 31). In
agreement with earlier work (32) and irrespective of the cell line
used for their manufacture, a high proportion of oligomannose
structures can be found attached to Asn-563 (e.g., in the C309L/
N297A/C575A mutant) (Supplemental Fig. 4), although these
were not observed in the corresponding N297A/C575A mutant
(Fig. 10A). We do not have an obvious explanation for these Asn-
563 differences, although the presence of redox-sensitive cysteines
are known to modify protein glycosylation in other systems (46).
The Asn-221 site is mainly composed of biantennary complex

structures (Fig. 10C). Excluding the base peak, four structures in
the C575A background (m/z 2081, 2285, 2459, and 2646) or five

structures in the C309L/C575A background (2081, 2285, 2459,
2489, and 2734) could form LacdiNAc antenna (GalNAc–
GlcNAc). Antennal fucosylation and sialylation is also observed
(Fig. 10C, Supplemental Fig. 4).
In summary, these data show that the types of glycans attached to

either Asn-221, Asn-297, or Asn-563 are different between cell
lines but are not grossly affected by disulfide bonding.

Fc glycan mutants expressed in HEK 293-F cells are less
sialylated than the equivalent mutants expressed in
CHO-K1 cells

Site-specific levels of sialylation were semiquantitatively assessed
for both panels of mutants and compared with levels seen in the
equivalent mutants expressed in CHO-K1 cells (Fig. 11). Although
levels of sialylated glycans attached at positions Asn-297 (the
N563A/C575A mutant) and Asn-563 (the N297A/C575A mutant)
are similar for both cell lines (Fig. 11), a marked reduction in

F11

Table I. Summary for kinetic data obtained for human FcgRIIIB
(CD16B) from SPR analysis

Protein KD (M)a RMAX x2 (RU2)

Irrelevant IgG1 1.34 3 1025 102.6 0.425
C309L/N563A/C575A 1.38 3 1026 98.7 9.7

2.23 3 1026 113.9 8.39
D221N/C309L/N563A/

C575A
1.53 3 1026 80.6 3.7
2.87 3 1026 95.5 3.95

aProteins were run at the milligram per milliliter equivalent of the Fc control.
Curves on each graph in Fig. 8 are approximate equivalent molar concentrations
assuming a monomeric Fc. KD values are calculated assuming a monomeric Fc.
Numbers in brackets indicate experiment number.

SPR, surface plasmon resonance.

FIGURE 8. SurfaceQ:43 plasmon resonance analysis. Binding of selected mutants to human FcgRIIIB (A–C) or FcgRIIA-Arg167 (D–F) by Biacore. Control

IgG1 Fc (A and D) is compared with C309L/N563A/C575A (B and E) and D221N/C309L/N563A/C575A (C and F). Curves show equivalent molar

concentrations doubled diluted from the highest concentration shown. Because of the varying stoichiometry of the molecules shown (as seen in Figs. 3 and

4), an accurate determination of the interaction kinetics is not possible, and KD values are calculated assuming a monomeric Fc. Summary tables for the

kinetic values obtained from duplicate experiments are shown in Table I. Binding was to receptors sourced from R&D Systems (Bio-Techne).
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levels of sialylated glycans at Asn-221 (the D221N/N297A/
N563A/C575A mutant) is observed when this mutant is
expressed in HEK cells (2.8% against 81.8% in CHO; Fig. 11).
Removal of Asn-297 generally enhanced levels of sialylation at
both Asn-221 and Asn-563, irrespective of the cell line or the
multimerization state of the proteins (e.g., compare N297A/
C575A versus C575A and C309L/N297A/C575A versus C309L/
C575A) (Fig. 11). The choice of cell line, therefore, dramatically
affects the overall levels of sialylation at individual N-linked at-
tachment sites within the glycan-modified Fc variants.

Asn-221–containing mutants are poor inhibitors of
hemagglutination by influenza virus when expressed in
HEK 293-F cells

To test if the choice of cell line affected the functionality of the two
panels of mutant Fcs, we used the World Health Organization
hemagglutination inhibition assay (HIA) to quantify the inhibitory

titers for each mutant against an influenza B virus (Fig. 12). As
shown previously with an avian influenza A (H1N1) (31), mutants
containing Asn-221 hinge–attached glycans, and, in particular, the
D221N/C309L/N297A/C575A mutant, prevented hemagglutina-
tion by an influenza B virus at concentrations as low as 30 nM, an
8-fold improvement over equimolar IVIG or polyclonal anti–in-
fluenza B antisera (Fig. 12). In stark contrast, the same mutants
expressed by HEK 293-F cells were unable to inhibit hemagglu-
tination by either influenza A (data not shown) or influenza B
virus (Fig. 12). This shows that the functional potential of indi-
vidual glycan-modified Fc mutants is dependent on the choice of
cell line used for their manufacture.

Discussion
We have shown using CHO-K1 cells that the structure and effector
function of human IgG1-Fc can be profoundly altered by the ad-
dition or removal of N-linked glycosylation (30, 31). For example,
we could show that Fc fragments containing complex biantennary
glycans attached to both the N- and C-terminal ends of the Fc
could inhibit influenza A–mediated agglutination of human
erythrocytes (31). The aim of the current study was to reveal
possible variation in functional glycosylation related to differences
in two host cell lines, CHO-K1 and HEK 293-F, particularly as
Abs and Fc fusions are the fastest growing therapeutic class in the
pharmaceutical industry (34, 47, 48).
Two intriguing aspects of N-linked glycosylation are relevant to

this study. First, the differential binding seen to human glycan
(Fig. 6) and Fcg (Fig. 7) receptors between the same mutants
expressed by two different cell lines. These differentially manu-
factured mutants now need to be compared in relevant in vivo

F12

FIGURE 9. Binding of selected C575A and C309L/C575A mutants to complement component C1q. Mutants expressed in HEK 293-F cells bind human

C1q better than the equivalent mutants expressed in CHO-K1 cells. Compare for example the D221N/C575 mutant made in CHO-K1 cells (open triangle)

against the same mutant made in HEK 293-F cells (open circle) and compared on the same plate. Error bars represent SD around the mean value (n = 2

independent ELISA experiments).

Table II. Summary for kinetic data obtained for human FcgRIIA167Arg

(CD32A) from SPR analysis

Protein KD (M)a RMAX x2 (RU2)

Irrelevant IgG1 5.98 3 1026 190.1 11.8
C309L/N563A/C575A 6.20 3 1027 131.9 13.3

1.96 3 1026 61.2 2.62
D221N/C309L/N563A/

C575A
6.62 3 1027 92.9 1.38
1.75 3 1026 34.1 0.49

aProteins were run at the milligram per milliliter equivalent of the Fc control.
Curves on each graph in Fig. 8 are approximate equivalent molar concentrations
assuming a monomeric Fc. KD values are calculated assuming a monomeric Fc.
Numbers in brackets indicate experiment number.

SPR, surface plasmon resonance.
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disease models in which the Fc is therapeutically useful, given that
differential sialic acid linkages, a2,6 and a2,3, are known to
impact on the anti-inflammatory properties of the Fc (49, 50).
Such nuanced glycosylation may also explain why the therapeutic
efficacy of molecules generated by different expression systems,
and subsequently tested in different animal models, do not always
translate to efficacy in human studies (51).
Second, we have studied the exquisite impact of the host cell line

on the efficacy of sialylated Fcs to inhibit influenza viruses
(Fig. 12). One possible explanation is that overall sialylation
levels for all the influenza blocking mutants, in particular the
D221N/C309L/N297A/C575A mutant, are ∼5-fold lower when
expressed by HEK 293-F cells (Fig. 11). However, overall level of
sialylation is not the only possible explanation for the relative
efficacy of the CHO-K1 mutants in inhibiting influenza virus

hemagglutination, as the CHO-K1–expressed D221N/C575A
mutant also contained ∼5-fold-less sialyation than the D221N/
C309L/N297A/C575A mutant made in the same cell line
(Fig. 11). This indicates that the fine specificity (e.g., a2,3 versus
a2,6 linkages) of these sialylated glycans may also be a contrib-
uting factor to their efficacy.
As demonstrated previously for influenza A (31), binding and

inhibition of influenza B viruses is stronger with mutants con-
taining Asn-221 and, in particular, by the monomeric mutant
D221N/C309L/N297A/C575A in which the N- and C-terminal
sialylated sugars are spaced ∼60 Å apart [Fig. 12 and (31)]. Re-
cent biophysical studies with alternative glycan–decorated scaf-
folds have shown that ∼1000-fold enhancements over monovalent
binding to HA can be achieved with only two sialylated ligands,
provided the sugars are arranged 50–100 Å apart (52, 53).

FIGURE 10. MALDI-TOF MS profiles of permethylated N-glycans from the N297A/C575A (Asn-563) (A), N563A/C575A (Asn-297) (B), and D221N/

N297A/N563A/C575A (Asn-221) (C) Fc glycan mutants expressed in HEK 293-F cells. Linkage-determined monosaccharides are positioned above the

bracket on a structure. Poly-hexose contaminants are highlighted with crosses. The data were acquired in the positive ion mode to observe [M+Na]+

molecular ions. All the structures are based on composition and knowledge of N-glycan biosynthetic pathways. Structures shown outside a bracket have not

had their antenna location unequivocally defined.
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As observed with Fc-multimerizing mutants from panel 1, no
additional benefit with respect to virus neutralization was gained
with larger, more complex sialylated structures (Fig. 12, and as

seen with the D221N/N297A/N563A/C575A and D221N/N563A/
C575A mutants). The lack of monomers observed for both these
mutants when expressed by HEK cells (Fig. 5A) may offer a

FIGURE 12. Impact of Fc glycosylation on influenza B–mediated hemagglutination. Mutant Fcs manufactured in either HEK 293-F or CHO-K1 cells

were compared with equimolar concentration of IVIG or polyclonal anti–influenza B Abs at inhibiting virus-mediated agglutination of human erythrocytes.

1, L309C; 2, C575A; 3, N297A/C575A; 4, N563A/C575A; 5, no protein; 6, D221N/C575A; 7, D221N/N297A/C575A; 8, D221N/N563A/C575A; 9,

D221N/N297A/N563A/C575A; 10, C309L; 11, C309L/C575A; 12, C309L/N297A/C575A; 13, C309L/N575A/C575A; 14, C309L/N297A/N563A/C575A;

15, D221N/C309L/C575A; 16, D221N/C309L/N297A/C575A; 17, D221N/C309L/N563A/C575A; and 18, D221N/C309L/N297A/N563A/C575A. A

constant amount of influenza B Hong Kong 5/72 virus was incubated with titrated amounts of the Fc glycan mutants and added to human O+ erythrocytes

that were then allowed to sediment at room temperature for 1 h. Nonagglutinated RBCs form a small halo (n = 3 independent experiments).

FIGURE 11. Semiquantitative determination of sialylated (black) against neutral (gray) glycans from the C575A and C309L/C575A mutants expressed

in CHO-K1 or HEK 293-F cells. Values shown in brackets under the names of each mutant show percentage-sialylated structures as determined from

summed intensities.
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simpler explanation for why the HEK-expressed proteins did not
inhibit influenza viruses in the HIA, yet their equivalents
expressed by CHO-K1 cells and that contain a large proportion of
monomers did partially inhibit hemagglutination by virus
(Fig. 12). As multimers, neither of the sialylated Fc-capping
glycans (Asn-221 or Asn-563) may be optimally available for
interactions with HA as they are with mutants that uniquely exist
as monomers (e.g., D221N/C309L/N297A/C575A) (30, 31).
We do not yet know if sialylated Fcs are susceptible to cleavage

by the viral neuraminidase (NAQ:32 ). Although a decoy for NA may be
a therapeutically attractive strategy (54), we have not observed a
direct decay in the HIA after prolonged incubation. This suggests
that the high specific avidity of these molecules for HA may re-
duce their susceptibility to NA, a hypothesis that fits with the
relatively low efficiency of NA (kcat = 30–155s21), together with
the asymmetric distribution of NA in relation to HA on the surface
of filamentous influenza viruses (55–57).
To be useful compounds when administered intranasally, or as an

aerosol, the sialylated Fc needs to outcompete sialylated mucins
that viruses use through ratchet-like interactions with HA and NA
to migrate to the underlying respiratory epithelium (55). Of the 15
known human mucins in the human lung, only MUC5 has been
shown to protect from influenza (58, 59). Most sialic acid found
on human mucins are O-glycosylated, and where N-linked at-
tachments do occur, these are mostly sialylated via a2,6-linkages
(59). Thus, we were surprised that none of the Fc leads inhibited
influenza A (H1N1 propagated in hen eggs) or influenza B (Hong
Kong 5/72 propagated inQ:33 Madin–Darby canine kidney cells) ag-
glutination of human O+ erythrocytes when manufactured by HEK
293-F cells that attach more human type a2,6-linked sialic acid
(Fig. 10).
The apparent importance of a2,3-linked N-glycans to inhibition

of both influenza A and B by the CHO-K1 Fc mutants indicates
that viruses can evolve away from inhibition by mucus whose
predominant O-linked glycans are mostly a2,6-linked. Our
working hypothesis is that HEK-expressed compounds may
therefore inhibit influenza viruses that circulate in human pop-
ulations or that are propagated in cell lines that attach more
human-like a2,6-linked sialic acid.
Consequently, by careful consideration of the cell line used in

their manufacture, new glycan repertoires with desirable binding
attributes and functionality can be imparted to the therapeutically
attractive Fc moleculeQ:34 .
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41—Please confirm that “MMR” has been expanded correctly in the legend for Fig. 3 or amend as

needed.
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Key Points

� Choice of cell line is critical for functional glycosylation of human IgG1-Fc.
� Sialylated IgG1-Fc monomers block influenza B only when made by CHO-K1 cells.




