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Abstract—In this paper, we explore present a scheduling
framework for large-scale electric vehicle charging to flatten duck
curves stemming from the imbalance between peak electricity
demand and renewable energy production. This situation adds
new constraints to power system operations and increases main-
tenance costs. The focus is on charging systems installed at park-
and-ride facilities which are gaining popularity in metropolitan
cities. The scheduling problem is modeled as an integer linear
problem and various case studies are generated and solved using
real-world collected data. The computational experiments show
that significant savings can be achieved in reducing power system
ramping requirements.

I. Introduction

In recent years, there has been an increasing rate of electric
vehicle (EV) adoption due to economic and environmental
benefits, and the share of electric transportation is expected
to rise even further in the near future. In parallel, proliferation
of renewable energy sources, especially from renewable solar
ones, is changing the electricity utility landscape. It is well
known that a high level of solar generation results in the
issue known as “duck curve” which requires additional power
ramping capabilities due to imbalance between peak demand
and renewable energy production [1], [2] (depicted in Fig. 1).
Frequent variations of the power generators output accelerates
mechanical aging, increase system maintenance cost, and lead
to negative electricity prices. Hence, it is desirable by grid
operators to improve system reliability and flexibility with
demand-side activities and minimize ramping requirements. In
this work, we develop a scheduling framework to optimally
charge stationary EVs located at park-and-ride facilities to
minimize overall ramping requirements.

The scheduling of electrical appliances at residential units is
a standard method for lessening the mentioned problem and
is a part of many demand response programs [3]. In such
approach, the jobs related to home appliances (typically has
less than 2 kW rating) are scheduled to minimize electricity
bills. A similar approach can be used in the context of EV
charging with Level 2 chargers which are typically deployed
at parking lots [4], [5]. In recent years, there has been extensive
research on convenient away-from-home charging infrastruc-
ture with a special focus on ones located at the workplace [6]–
[8]. In the work of Tulpule et al. [9] the potential benefits of
having such systems partially powered using solar energy are
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Fig. 1. A typical duck curve.

analyzed. Some interesting concepts and the evaluation of the
potential positive effects of smart scheduling of EVs charging
at workplace parking lots can be found in references [10],
[11] and [12]. Scheduling of stationary EVs present a great
opportunity for grid operators to improve system flexibility
because EVs are represented by large loads (e.g., 3-7 kW
charging for 4-8 hours) compared to residential appliances
and charging service can be partially completed as long as
a minimum charge level is met.

In this paper, we propose a scheduling framework to eval-
uate the potential benefits of charging stations deployed at
park-and-ride systems (PR) [13]. Such facilities are gaining
popularity in large metropolitans as they enable commuters
heading to city centers park their vehicles and continue with a
public transport option such as a bus, train, or metro system.
Policy-makers use such facilities to reduce traffic congestion,
lower emissions, and promote public transportation. Extensive
analyses of positive effects and methods for incorporating such
systems into existing infrastructure can be found in [14] and
[15]. From the known behavior of metro passengers [16], it can
be expected that at such parking lots, cars would commonly
spend 8-10 hours which makes them ideal for becoming Level
2 chargers for EVs [17]. Moreover, since the presence of
such parking lots increase [18] the ongoing projects can easily
include such chargers.

The scheduling problem described above is solved through
optimization of a combinatorial problem. To do so, the upper
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bound of the potential benefits is calculated for a setting where
arrivals and the level of charge of all the vehicles are known in
advance. This is done by developing an integer linear problem
(ILP) to model the system of interest and the proposed model
is evaluated by using real-world data. This is done by first
maximizing the potential of flattening the duck curve, and
secondly by maximizing the quality of service through the
increase in the total amount of charge received by the EVs.

The reminder of this paper is organized as follows. In the
next section, the mathematical model used to evaluate the
potential of the proposed concept is presented. In Section III
details about the data used and the method for generating prob-
lem instances. In the next section, the results of the performed
computational experiments are presented and analyzed. The
paper is finalized with concluding remarks.

II. MathematicalModel

In this section, an overview of the proposed mathematical
model used to flatten the duck curve is presented. In the
proposed model the following assumptions are made. First, the
scheduling is done for a time window T which is divided into
a set of periods {1, . . . ,T }. For each time period t = 1 . . .T a
parameter qt is defined corresponding to the base consumption
minus the solar generation. The EV charging station will
contain chargers of specific rate s (in kilowatts kW), and
indicates how much a battery can be charged in one time
period. In the model, it is assumed that each car i ∈ {1, . . . ,M}
visit the charging station and the arrival time ai and departure
time di are known in advance. Each car i has a battery of
capacity fi and initial battery charge at arrival 0 ≤ ba

i ≤ fi.
Each battery of an EV can only be charged until its full
capacity. At each time period, a maximally allowed charge
for the system can be given but in the proposed model it is
assumed that it is higher than the total charging potential of
the charging station. The flattening of the “duck curve” is done
by minimizing the change in total energy need (sum of qt and
energy used for charging EVs ) in successive time periods.

In the proposed model, it is further assumed that the
activation/deactivation of each charger is controlled. Since the
proposed system is modeled using an ILP, let us define binary
variables xit, for i = 1, . . . ,M and t = 1, . . . ,T , which state
if EV i is charged at time t. The objective of the proposed
model is to optimize the scheduling of active periods for all
the chargers. A minimum charge level is also guaranteed and
it is assumed that each EV i must receive a minimal amount
of charge r by the time it leaves the station. Similarly, let
us define real variables bit, for ∀i and ∀t, which indicate the
state of the battery (level of charge) of car i at time t. In
the definition of the ILP, for the sake of simplicity, instead
of parameters for arrival (ai) and departure times (di) for a
EV i, a set of binary parameters vit, for ∀i and ∀t, is used
to indicate if EV i is at the charging station at time period t.
Auxiliary variables ht, defined for ∀t, are used for the total
power consumption of the charging station. Moreover, let us
define variables dt for t = 1, . . . ,T − 1, which will be used to
store the change in energy consumption, or in other words the

absolute difference between ht and ht+1. Let us first define the
constraints in the model as follows.

bi,0 = ba
i i = 1 . . .M (1)

xit ≤ vit i = 1 . . .M, t = 1 . . .T (2)
bit+1 = bit + xit s i = 1 . . .M, t = 1 . . .T − 1 (3)

bit ≤ fi i = 1 . . .M, t = 1 . . .T (4)
biT ≥ ba

i + r i = 1 . . .M (5)
(6)

qt +
!

i∈M

xit s = ht t = 1 . . .T (7)

dt ≤ ht − ht+1 + Mgt t = 1 . . .T − 1 (8)
dt ≤ ht+1 − ht + M(1 − gt) t = 1 . . .T − 1 (9)

dt ≥ ht − ht+1 t = 1 . . .T − 1 (10)
dt ≥ ht+1 − ht t = 1 . . .T − 1 (11)

o ≥ dt t = 1 . . .T − 1 (12)

In (1), the constraint sets the initial value of the current
battery charge to the state of the battery at arrival. Further, (2)
is used to only allow charging at time periods when a vehicle
is at the charging station. The constraint related to the change
of battery charge of an EV, for one time period is given in (3).
The constraints limited to the maximal and minimal level of
battery charge of an EV are given in (4) and (5), respectively.
The total amount of power used by the charging station is
specified in (7). Equations (8)-(11) are used to set the values of
variables to dt to the absolute value of the difference between
ht of consequent time periods in the standard way. In these
equations M is used for a sufficiently large number, and gt are
auxiliary values which indicate if gt > gt+1 is satisfied. The
final constraint (12) is related to finding the maximal difference
in power consumption between consecutive time periods.

As previously discussed, for evaluating the model there
are two objectives of interest. The first one is minimizing
the change in power consumption between consecutive time
periods, which corresponds to flattening of the “duck curve”.
This can be done by minimizing the value of o as in the
following equation:

minimize o (13)

The second one is related to the benefits related to the charging
station operator and drivers of EVs. To be more precise, the
goal is to maximize the total amount of charge of all the EVs,
as in the following equation.

maximize
!

t=1...T

ht (14)

III. Generation of data for Experiments

To have a better comprehension of the potential benefits
of the proposed approach we have generated test instances
based on real world data. The group of parameters that needs
to be generated is related to EV visits to the PR facilities.
This has been done based on the hourly utilization rate of PR
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(a) Hourly total demand
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(b) Hourly solar generation

6 8 10 12 14 16 18 20

20

40

60

80

100

Hour

O
cc
u
p
an

cy
(%

)

(c) Hourly occupancy of park and ride facility

Fig. 2. Graphical illustration of data used for generating test instances taken from [13]. All the values are given in a normalized form and given in percentage.

facilities taken from [13], a graphical illustration can be seen
in Fig. 3(c). In addition, the data from [16] has been used
to reflect the behavior of passengers of metro services. To be
more precise, this study shows that 70% of performed trips are
related to work and the rest to the other activities. In practice,
in the method for generating problem instances 70% of the
EV’s parking time lengths are randomly selected from 8 to
10 hours. For other activities the parking time has randomly
selected from 2-6 hours. In both cases a uniform distribution
has been used. The times of arrivals of individual vehicles has
been randomly generated in a way that the hourly occupancy
of the PR facility would correspond to the data from [13]. To
be more precise, the total number of vehicles at PR facility at
each time period has been made to be proportional to the level
of occupancy at that time period. The battery types of EVs
have been randomly generated based on data related EV sales
taken from [19] and corresponding battery sizes [20]. The state
of the charge of individual batteries was randomly generated
form the range 15% - 80% using a uniform distribution.

The generated test instances are used to assess reductions
in ramping requirements for varying percentages of solar
generation and EV penetration levels. The information on the
total demand and production from solar generation are adopted
from publicly available data in California [21] and presented
in Figs. 3(a) and 3(b). For demand response programs, it has
been shown that the additional benefits of scheduling smart
appliances for more than a certain number of households
does not provide significant benefits [22]. It is reasonable
to assume a similar behavior for scheduling the charging of
EVs. Because of this, in the method for generating problem
instance, the number of vehicles N is initially selected and
the maximal total energy use for charging is calculated based
on the arrival and departure times for vehicles (generated as
previously described) for each time period. Next, these values
are used to generate the values of the load and solar generation
to satisfy the proportion. In other words, the normalized values
given in Fig. 2 are multiplied by constants to get the correct
proportion for EV consumption E, base load L and solar
production S .

IV. Results

In this section, we present the results of the performed
computational experiments. The proposed ILP has been im-
plemented using OPL in IBM ILOG CPLEX Optimization
Studio Version: 12.6.1.0, and executed using the default solver
settings. In generating the problem instances the time period
between 6:00 and 20:00 has been used to mimic actual
operational times of parking lots. Each time period in the
model corresponded to 15 minutes, which means the value
of parameter T is 56. In the generated problem instances a
fixed number N = 500 is used for the number of EVs visiting
the PR facility. The potential of scheduling EV charging to
minimize issue related to duck curve are evaluated for settings
where 10%, 20% and 30% of the maximal load is produced
from solar generation. The assumed power of the chargers is 4
kW, which translates to s = 1 inside of the model. The chosen
minimal amount of charge received by an EV was equivalent
to an hour of charging, which inside the model translates to
r = 4. The maximal amount of energy used for EV charging
was 2.5%, 5.0% and 10.0% of the total energy consumption.
Two objective given in Eqs. (13), (14) have been used in the
following way. First the model having constraints given in Eqs.
(1)- (12) is used to find the value (Min) of minimal change in
power consumption o is found. Next, in the constraint given
in (12) o is substituted with Min and the model is solved for
objective function given in (14), related to the total energy
used for charging the EVs. The focus of the paper is on the
potential benefits of scheduling EV charging and not on the
solution method for the model.On the other hand, it should be
noted that the time needed to find an optimal solution for a
problem instance would be less than a second.

The level of flattening of the duck curve, based on the
proposed model, by optimizing the charging periods of EVs
at PR facilities can be seen in Fig. 3. Several things can be
observed. In case only 2.5% energy used for EV charging
the positive effect is relatively small but noticeable. When
the energy use for the same purpose is relatively high (10%)
and the positive effect becomes significant. When 10% of
electric power comes from solar generation the issue of the
duck curve is to a large extend resolved. In case of higher
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(a) Solar generation 10%
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(b) Solar generation 20%
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Fig. 3. Comparison of the normalized values for required generation of electricity for different levels of solar production with different levels of consumption
related to charging of EVs. The notation Load − S ole is used for the case there is not EV charging, and EV −C to indicate the part of the load that is related
to EV charging.

TABLE I
Percentage (%) of reductions in ramping requirements

EV 2.5% EV 5% EV 10%

Solar 10% 3.76 7.51 17.85
Solar 20% 4.60 9.26 16.93
Solar 30% 5.52 11.22 24.61

amount of power generated from the same type of source, the
negative effects are lowered but still significant. An unexpected
effect of this type of scheduling is a significant increase at
the morning peak demand but with out increasing the change
in energy use between time periods. This is a consequence
that the highest occupancy of the PR facility is at this time.
Another observation that can be made is that although the use
of the proposed scheduling scheme results in a lower maximal
change in energy need between successive time periods, there
is a lower number of them when the energy need is relatively
constant.

Effectiveness of the proposed model can also be quantified
based on the amount of eliminated ramping requirements. For
instance, the difference between minimum and maximum load
for 30% solar is 45% of the total consumption from 2:25 pm to
8:00 pm (EV-C 10% case). However, by optimally scheduling
EVs (e.g., EV- C 10%), this requirement reduces to 32%
ramping in the same amount of time. In Table I, we present
percentage of reductions in ramping requirements compared
to no EV scheduling case. It can be easily observed that the
proposed method is very effective in flattening load curves.

V. Conclusion

Duck curves, introduced by high penetration of renew-
ables, creates new operational constraints and increases power

system operational cost. In this paper, we have presented
an analysis of the potential benefits of scheduling charging
periods of Level 2 EV chargers at park-and-ride facilities to
flatten duck curves. To achieve this, we have introduced a
new mathematical model using integer linear programming.
The evaluation has been done based on real-world data on
solar generation, hourly demand, driver behavior and EV sales.
The model and data have been used to asses the impact of
such systems for difference levels of adoption of EVs and
expansion of solar generation. The performed computational
results have shown significant savings can be achieve by
optimally charging stationary EVs

In the future, we plan to extend this research in two main
directions. The first one is observing the problem form a
multi-objective perspective to be able to have a more in
depth understanding. The second direction is in extending
the proposed model to an online version where only partial
information about EVs (battery state, arrival and departure
times) are known.
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