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Curved free shear layers exist in many engineering problems involving complex flow
geometries, such as the backward facing step flow, flows with wall injection, the flow inside
side-dump combustors, or flows generated by vertical axis wind turbines, among others.
Most of the studies involving centrifugal instabilities have been focused on wall flows where
Taylor instabilities between two rotating concentric cylinders or Görtler vortices in bound-
ary layers resulting from the imbalance between centrifugal effects and radial pressure
gradients, are generated. Curved free shear layers, however, did not receive sufficient at-
tention. An examination of the stability characteristics and the flow structures associated
with curved free shear flows should provide a better understanding of these complex flow
problems. In this work, we study the development of Görtler vortices inside a curved shear
layer in both the incompressible and compressible regimes using a numerical solution to
a parabolized form of the Navier-Stokes equations, in the assumption that the stream-
wise wavenumber associated with the vortex flow is much smaller than the crossstream
wavenumbers. Various results consisting of contour plots of centrifugal instabilites in cross-
flow planes, and energy and streak amplitude distributions along the streamwise direction
are reported and discussed. In addition, we conduct a biglobal stability analysis to study
the growth rates and the eigenmodes associated with these flows.

I. Introduction

The stability of an incompressible flow in curved shear layers depend on the velocity difference across
the shear layer, and the streamline curvature. For a free shear layer with no curvature (as known as a plane
shear layer) the Kelvin-Helmholtz instability is the dominant mechanism.17 In this case, two-dimensional
disturbances are more unstable than their three-dimensional counterpart,27 and the Kelvin-Helmholtz in-
stability introduces predominantly spanwise oriented vortices. Rayleigh21 proved that the existence of an
inflection point in the basic velocity profile was a necessary condition for the Kelvin-Helmholtz instability.
For the case of a flow in curved mixing layer with an inflectional velocity profile, it may be expected that the
Kelvin-Helmholtz instability mechanism is still present, but it will be mixed with centrifugal instabilities in
the form of streamwise oriented Görtler type vortices.

Görtler vortices are mostly known to appear inside a boundary layer flow along a concave surface due to
the imbalance between radial pressure gradients and centrifugal forces (e.g., Gortler,7 Hall,8–10 Swearingen
& Blackwelder,28 Malik & Hussaini,16 Saric,23 Li & Malik,12 Boiko et al.,2 Wu et al.,31 or Sescu et al.,25,26
Ren & Fu,22 Dempsey et al.,4 Xu et al.32). For highly curved walls, for example, vortex formation occurs
more rapidly and can significantly alter the mean flow causing the laminar flow to breakdown into turbu-
lence. Under certain conditions, Görtler vortices can be efficient precursors to transition: they consist of
counter-rotating streamwise vortices that grow at a certain rate, depending on the surface curvature and the
receptivity of the boundary layer to environmental disturbances and surface imperfections. It is important
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to understand the fundamental processes that lie behind these centrifugal instabilities, and to predict their
occurrence using efficient and tractable methods.

The first to study this problem was Görtler7 himself (the instabilities actually bear his name), who ob-
tained solutions of the disturbance equations in the form of streamwise, counter-rotating vortices. Although
in reality the flow over concave surfaces is not parallel, Görtler made a local parallel flow assumption, and
employed normal mode analysis to show that the instabilities may occur when a certain dimensionless param-
eter, Re

√
δ/R, where Re is Reynolds number in terms of free-stream velocity, the boundary layer thickness

is δ, and R is the radius of the curvature, exceeds a critical value. Gregory and Walker5 performed the first
set of experimental measurements using china-clay surface visualization to educe Görtler vortex structure,
while Tani30 later on used hot-wire measurements of the flow inside the boundary layer for the detection
method. These experiments, and others that followed, showed that the type of instability is convective, and
develops along the streamwise direction.

Other early studies relied on so-called normal-mode analysis as the approach of reducing the governing
Navier-Stokes equations to a set of ordinary differential equations (assuming a constant growth rate along
the streamwise direction), the Görtler problem is then solved using an eigenvalue analysis. Hall9 was the first
to consider a nonparallel formulation of the Görtler problem, wherein the solution to the resulting partial
differential equations was obtained by a marching technique. He found that the stability depends on the
location and form of the initial disturbance and concluded that it was not possible to determine a unique
neutral stability curve for the Görtler problem. However, Day et al.3 found modest differences between the
normal-mode analysis and the marching scheme in their investigations, concluding that the normal-mode
analysis can be used for engineering studies via appropriate empirical corrections. Boiko et al.? studied
(theoretically and experimentally) the steady and unsteady linear Görtler instability. They carried out
calculations based on locally-parallel and nonlocal/non-parallel linear-stability theories, and compared the
results with experimental data.

Centrifugal instabilities on curved incompressible free shear layers has been studied theoretically and
numerically. Plesniak et al.19,20 conducted extensive experimental measurements in order to study curved
two-stream mixing layers to show how centrifugal effects yield streamwise vortices. The untripped case
within this suite of experiments exhibited organized streamwise vorticity, while the tripped cases did not.
They explained this by the existence of spatially stationary streamwise vortices, which are seen to provide
extra entrainment (Bell & Mehta1 showed this for a plane mixing layer). Hu et al.11 and Liou,14 concerned
with the effect of the curvature on the inflectional Rayleigh modes, found that it appears to be small,
although the curvature excites an unstable three-dimensional disturbance with the amplitude increasing as
the streamwise wavenumber decreases. Otto et al.,18 through a combined analytical and numerical study,
showed that the unstable modes are largely dependent on surface curvature. Otto et al.18 also employed
numerical simulations to solve for a set of parabolic equations, where the wavenumber and the Görtler
number were taken to be of oder one. They found that as the difference between the free-stream speeds
increased, the layer became more susceptible to centrifugal instabilities.

The focus of the present work is on the analysis of centrifugal instabilities that develop in curved free
shear layers in both incompressible and compressible regimes, by using a numerical algorithm that solves a
parabolized version of the Navier-Stokes equations, under the assumption that the streamwise wavenumber
associated with the disturbances is much smaller than the crossflow wavenumbers. We targeted the nonlinear
development of these developing centrifugal instabilities, which resembles many similarities with the Görtler
vortices that evolve in boundary layer flows over concave surfaces. We vary the spanwise separation that
characterizes the upstream disturbance (dictating the spanwise separation of the downstream disturbances)
and the Mach number of the fastest stream. In addition, we conduct a biglobal stability analysis to study
the growth rates and the eigenmodes associated with these flows, which provide information about the types
of secondary instability mechanism (varicose or sinuous) that may be prevalent here.

In section II, the mathematical model is introduced and described; we include a discussion of the scalings
of appropriate independent and dependent variables, the initial and boundary conditions, as well as the
numerical algorithm. In section III, results for various spanwise separations and Mach numbers are shown
in addition to results from the biglobal stability analysis. Concluding remarks are given in section IV.
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II. Problem formulation and numerical algorithm

A. Scalings

All dimensional spatial coordinates (x∗, y∗, z∗) are normalized by the spanwise separation λ∗, while the
dependent variables by their respective freestream values, except the pressure, which is normalized by the
dynamic pressure:

t̄ =
t∗

λ∗/V ∗∞
; x̄ =

x∗

λ∗
; ȳ =

y∗

λ∗
; z̄ =

z∗

λ∗
(1)

ū =
u∗

V ∗∞
; v̄ =

v∗

V ∗∞
; w̄ =

w∗

V ∗∞
; ρ̄ =

ρ∗

ρ∗∞
(2)

p̄ =
p∗ − p∗∞
ρ∗∞V

∗2
∞

; T̄ =
T ∗

T ∗∞
; µ̄ =

µ∗

µ∗∞
; k̄ =

k∗

k∗∞
(3)

where λ∗ is the spanwise wavelength of the disturbances, (u∗, v∗, w∗) are the velocity components, ρ∗ the
density, p∗ is pressure, T ∗ temperature, µ∗ dynamic viscosity, k∗ thermal conductivity, and all quantities
with ∞ at the subscript represent conditions at infinity.

Reynolds number based on the spanwise separation, Mach number and Prandtl number are defined as

Rλ =
ρ∗∞V

∗
∞λ
∗

µ∗∞
, Ma =

V ∗∞
a∗∞

, P r =
µ∗∞Cp
k∗∞

(4)

where µ∗∞, a∗∞ and k∗∞ are freestream dynamic viscosity, speed of sound and thermal conductivity, respec-
tively, and Cp is the specific heat at constant pressure. As for boundary layer flows over curved surfaces, we
here define the equivalent global Görtler number as

Gλ =
R2
λλ
∗

r∗
(5)

where r∗ is the radius of the curvature.

B. Boundary region equations: a parabolized form of the Navier-Stokes equations

If the streamwise wavenumber of the disturbances evolving inside the shear layer are much larger that the
wavenumbers corresponding to the crossflow directions, then the Navier-Stokes equations can be transformed
into a parabolic set of equations in the framework of high Reynolds number asymptotics.

For a full compressible flow, the primitive form of the Navier-Stokes equations in non-dimensional vari-
ables are considered here in the form

Dρ̄

Dt
+ ρ

(
∂ū

∂x̄
+
∂v̄

∂ȳ
+
∂w̄

∂z̄

)
= 0 (6)

ρ̄
Dū

Dt̄
= −∂p̄

∂x̄
+

1

Reλ

∂

∂x̄

[
2

3
µ

(
2
∂ū

∂x̄
− ∂v̄

∂ȳ
− ∂w̄

∂z̄

)]
+

∂

∂ȳ

[
µ

(
∂ū

∂ȳ
+
∂v̄

∂x̄

)]
+

∂

∂z̄

[
µ

(
∂w̄

∂x̄
+
∂ū

∂z̄

)]
(7)

ρ̄
Dv̄

Dt̄
= −∂p̄

∂ȳ
+

1

Reλ

∂

∂ȳ

[
2

3
µ

(
2
∂v̄

∂ȳ
− ∂ū

∂x̄
− ∂w̄

∂z̄

)]
+

∂

∂x̄

[
µ

(
∂v̄

∂x̄
+
∂ū

∂ȳ

)]
+

∂

∂z̄

[
µ

(
∂v̄

∂z̄
+
∂w̄

∂ȳ

)]
(8)

ρ̄
Dw̄

Dt̄
= −∂p̄

∂z̄
+

1

Reλ

∂

∂z̄

[
2

3
µ

(
2
∂w̄

∂z̄
− ∂ū

∂x̄
− ∂v̄

∂ȳ

)]
+

∂

∂x̄

[
µ

(
∂w̄

∂x̄
+
∂ū

∂z̄

)]
+

∂

∂ȳ

[
µ

(
∂v̄

∂z̄
+
∂w̄

∂ȳ

)]
(9)
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ρ̄
DT̄

Dt̄
=

1

PrReλ

[
∂

∂x̄

(
k
∂T̄

∂x̄

)
+

∂

∂ȳ

(
k
∂T̄

∂ȳ

)
+

∂

∂z̄

(
k
∂T̄

∂z̄

)]
− (γ − 1)M2

∞

[
p

(
∂ū

∂x̄
+
∂v̄

∂ȳ
+
∂w̄

∂z̄

)
− 2

3
µ

(
∂ū

∂x̄
+
∂v̄

∂ȳ
+
∂w̄

∂z̄

)2
]

(10)

+ (γ − 1)M2
∞

µ

Reλ

[
2

(
∂ū

∂x̄

)2

+ 2

(
∂v̄

∂ȳ

)2

+ 2

(
∂w̄

∂z̄

)2

+

(
∂ū

∂ȳ
+
∂v̄

∂x̄

)2

+

(
∂w̄

∂x̄
+
∂ū

∂z̄

)2

+

(
∂v̄

∂z̄
+
∂w̄

∂ȳ

)2
]

where

D

Dt̄
=

∂

∂t̄
+ ū

∂

∂x̄
+ v̄

∂

∂ȳ
+ w̄

∂

∂z̄
(11)

is the substantial derivative. The pressure p, the temperature T and the density of the fluid are combined in
the equation of state in non-dimensional form, p̄ = ρ̄T̄ /γM2

∞, assuming that non-chemically-reacting flows are
considered. Other notations include the dynamic viscosity µ, Reynolds number Re = ρ∞V

∗
∞λ
∗/µ based on a

characteristic velocity V ∗∞, and a characteristic length L,the free-stream Mach number M∞ = V ∗∞/a
∗
∞. The

dynamic viscosity and thermal conductivity k is linked to the temperature using a power law in dimensionless
form,

µ = T b; k =
Cpµ

Pr
(12)

where b = 0.76, Cp = γR/(γ − 1), γ = 1.4, and Pr = 0.72 for air.
In the assumption that the streamwise wavenumber of the disturbance is much larger, we assumed that

x/Rλ = O(1), which implies that the scales x = x̄/Rλ, t = t̄/Rλ can be considered. Also, the crossflow
velocity components and the pressure variation are expected to be small. This suggests the scaling:

u = ū; v = v̄/Rλ; w = w̄/Rλ; ρ = ρ̄; p = p̄/R2
λ; T = T̄ ; µ = µ̄; k = k̄; (13)

Working out the order-of-magnitude analysis of the Navier-Stokes equations, we obtain the parabolic set
of equations (which we call compressible boundary region equations)

Dρ

Dt
+ ρ∇ · ~V = 0

ρ
Du

Dt
= ∇c · (µ∇cu)

ρ
Dv

Dt
= −∂p

∂y
+

∂

∂y

[
2

3
µ

(
3
∂v

∂y
−∇ · ~V

)]
+

∂

∂x

(
µ
∂u

∂y

)
+

∂

∂z

[
µ

(
∂v

∂z
+
∂w

∂y

)]
−Gλu2 (14)

ρ
Dw

Dt
= −∂p

∂z
+

∂

∂z

[
2

3
µ

(
3
∂w

∂z
−∇ · ~V

)]
+

∂

∂x

(
µ
∂u

∂z

)
+

∂

∂y

[
µ

(
∂v

∂z
+
∂w

∂y

)]
ρ
DT

Dt
=

1

Pr
∇c · (k∇cT ) + (γ − 1)M2

∞µ

[(
∂u

∂y

)2

+

(
∂u

∂z

)2
]

where ∇c is the crossflow nabla operator:

∇c =
∂

∂y
~j +

∂

∂z
~k (15)

The mean inflow condition is given as a tangent hyperbolic function:

u = 1− 1

2
∆u [1− tanh (α(y − y0))] (16)
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where α is the width of the shear layer, y0 the location of the shear layer, and ∆u is the velocity difference
across the shear layer. Temperature is obtain from the Crocco-Busemann equation:

T = −1

2
u2 +

(
1− u2

u1

γ − 1
+
M∞

2

)
u+

u2
u1(γ − 1)

+
M2
∞

2
−M∞

(
1− u2

u1

γ − 1
+
M∞

2

)
(17)

where u1 and u2 are the velocity in the two regions separated by the shear layer.
A small artificial disturbance is imposed on the base flow in the form:

v′ = A cos
(πz
λ

)
exp

[
− (y − y0)2

σ2

]
(18)

where A is a small amplitude, λ is the spanwise wavenumber (dictating the spanwise separation of the
centrifugal instabilities), and σ represents the extent of the disturbance in the y-direction.

C. Biglobal linear stability analysis

Modal flow linear instability is considered by perturbing the solution to the Navier-Stokes equations to
determine whether a small-amplitude disturbance that sets itself into the shear layer has a tendency to
either grow or decay. The basic state is assumed independent of one spatial coordinate, x, in a Cartesian
framework. Flow quantities are then decomposed as:

q(x, y, z, t) = q̄(y, z) + εq̃(x, y, z, t) (19)

where q̄ = (ρ̄, ū, v̄, w̄, T̄ ) is the mean crossflow and q̄ = (ρ̃, ũ, ṽ, w̃, T̃ ) is a 3D disturbance. Unlike the
incompressible case, pressure or density is a predictive variable in, rather than a constraint. Substituting
this into the Navier-Stokes equations, subtracting the equations from the base flow, and linearizing, the
linearized compressible Navier-Stokes equations are obtained. We then consider the ansatz

q̃(x, y, z, t) = q̂(y, z) exp [i (αx− Ωt)] , (20)

where α is the streamwise wavenumber, and Ω is a complex eigenvalue, and plug it into the linerized Navier-
Stokes equations. The real part of the eigenvalue, Ω, is related with the frequency of the global eigenmode,
while the imaginary part represents its growth rate.

The eigenvalue problem is obtained in the form

[A]{Q}+ [B]{Q}y + [C]{Q}z + [D]{Q}yy + [E]{Q}yz + [F ]{Q}zz = ω[G]{Q}, (21)

where y at the subscript represents a derivative with respect to y, {Q} = {p, u, v, w, τ}T is the vector of
eigenmodes, and the coefficients of all matrices are given in the appendix. This equation is subject to
appropriate boundary conditions (disturbances are 0 at infinity, for example). This eigenvalue problem
is solved to determine the complex frequency for a given wavenumber, where the imaginary part of the
frequency represents the growth rate of the disturbance.

III. Results and Discussion

Numerical simulations for a curved free shear layer with the Mach number ranging between 0.2 and 4.0
in the faster stream were carried out. The relative velocity difference across the shear layer is 0.2, while the
Reynolds number (per unit length) and the global Görtler number are commensurate with the freestream
velocity (the radius of curvature is 2 m). The spanwise separation of the vortices is varied between 0.3 cm
and 1.2 cm. The flow domain and the grid are shown in figure 1; stretching was used in the radial direction,
towards the farfield boundaries, while equally spaced grid points were use in the streamwise and spanwise
directions. In fact, there is no grid in the streamwise direction since the equations are parabolic and the
solution advances in a marching procedure, but the spatial step along the streamwise marching direction is
constant.

Centrifugal instabilities are excited by a steady small disturbance of non-dimensional amplitude of 0.01
(relative to the fastest stream), and imposed on the base flow at the inflow boundary. No disturbances are
imposed to excite Kelvin-Helmholtz type instabilities, as the focus is on the development on the longitudinal
centrifugal instabilities in the form of Görtler vortices.
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Figure 1. Flow domain and grid configuration.

In figures 2-5, we plot contours of velocity magnitude in several crossflow planes, for different spanwise
separations and different Mach numbers, in both incompressible and compressible regimes; the upper stream
(shown in dark red) is the faster flow. The results in figure 2 are for the lowest Mach number, 0.2, corre-
sponding to the incompressible regime. As a result, the Reynolds number associated with this flow is smaller
than the other cases, which implies a higher diffusion in the mixing. The top row in figure 2 indicates that
for the smaller spanwise separation of 0.3 cm the centrifugal instability is ’weak’ in the sense that the mixing
between the two streams is not efficient. As the spanwise separation is increased, the mushroom shapes
start to show up, as seen in the other three rows of figure 2. In figure 3, corresponding to the Mach number
0.8, the shapes of the instabilities for the smallest spanwise separation, 0, 3, look slightly different from the
incompressible case. The mixing is increased as the spanwise separation is increased, and the large spanwise
separations in the last two rows show some spiraling streaks at the third stramwise location, which break
down in the next spanwise separations.

In the supersonic regime, plotted in figures 4 and 5 for Mach 2.0 and 4.0, respectively, the mixing is
more efficient, and the spiraling streaks are more visible at multiple spanwise separations. We also noticed
secondary mushroom shapes developing at some spanwise separations, such as the last two streamwise
locations for the spanwise separation of λ = 1.2 (figure 4d). So, we identify the ’primary’ mushroom shape
the one that develops as the main instability as seen, for example, at the second streamwise locations in
figure 4 or 5. The ’secondary’ mushroom shape is defined as the instability that develops from the edge of
the main/primary mushroom cap, the best seen in the last streamwise location of figure 4d.
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a)

b)

c)

d)

Figure 2. Contour plots of the streamwise velocity at different streamwise locations, for M = 0.2: a) λ = 0.3;
b) λ = 0.6; b) λ = 0.9; b) λ = 1.2.
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a)

b)

c)

d)

Figure 3. Contour plots of the streamwise velocity at different streamwise locations, for M = 0.8: a) λ = 0.3;
b) λ = 0.6; b) λ = 0.9; b) λ = 1.2.
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a)

b)

c)

d)

Figure 4. Contour plots of the streamwise velocity at different streamwise locations, for M = 2.0: a) λ = 0.3;
b) λ = 0.6; b) λ = 0.9; b) λ = 1.2.
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a)

b)

c)

d)

Figure 5. Contour plots of the streamwise velocity at different streamwise locations, for M = 4.0: a) λ = 0.3;
b) λ = 0.6; b) λ = 0.9; b) λ = 1.2.

Figure 6 shows the kinetic energy distribution of the disturbance, calculated according to

E(x) =

z2ˆ

z1

∞̂

−∞

[
|u(x, y, z)− um(x, y)|2 + |v(x, y, z)− vm(x, y)|2 + |w(x, y, z)− wm(x, y)|2

]
dzdy, (22)

where um(x, y), vm(x, y), and wm(x, y) are the spanwise mean components of velocity, and z1 and z2 are the
coordinates of the boundaries in the spanwise direction. In figure 6, this energy is plotted (in logarithmic
scale on the vertical axis) as a function of the streamwise coordinate, for different spanwise separations
and different Mach numbers. As the spanwise separation is increased, the scaled kinetic energy maximum
increases. Also, the streamwise location where the energy saturation (the point where the energy starts to
level off) occurs, moves downstream as the spanwise separation is increased.
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a) b)

c) d)

Figure 6. Vortex energy distribution: a) M = 0.2; b) M = 0.8; c) M = 2.0; d) M = 4.0.

Streak amplitude is defined here as the difference between the maximum and minimum streamwise
velocity disturbance over 0 < y <∞ and 0 < z < πl, where λ/2 is half from the spanwise separation,

S(x) = max
0<y<∞
0<z<λ/2

[u(x, y, z)− um(x, y)]− min
0<y<∞
0<z<λ/2

[u(x, y, z)− um(x, y)]

In figure 7, we plot this streak amplitude as a function of the streamwise coordinate for all spanwise sepa-
rations and Mach numbers. It is interesting to notice that there is not a direct relationship with the scaled
kinetic energy plotted in the previous figure 6 because the location where the streak amplitude becomes
maximum seems to be almost the same for all spanwise separations, which is not the case for the maximum
kinetic energy. The level of the streak amplitude corresponding to the smallest spanwise separation of the
M = 0.2 incompressible case is much lower than the other cases; this is a consequence of the weak mixing
that was observed in the contour plots in figure 2a.
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a) b)

c) d)

Figure 7. Streak amplitude distribution: a) M = 0.2; b) M = 0.8; c) M = 2.0; d) M = 4.0.

Finally, we show several typical results from the biglobal linear stability analysis. The growth rates
associated with the first and second modes are plotted in figure 8 far all spanwise separations (the Mach
number is 0.2 for these results). As expected the maximum growth rates increase as the spanwise separation
is increased as was observed from the distribution of kinetic energy. The corresponding wavenumber of the
first mode, however, seems to decrease as the spanwise separation is increased, but for the second mode, the
wavenumber corresponding to the maximum growth rate increases as the spanwise separation increases.

Figure 8. Growth rates.
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Contours of û-component eigenmodes, corresponding to the first and second highest growth rates, are
plotted in figure 9. The eigenmodes are shown in color with the most intense regions highlighted in dark
blue, while the black contour lines indicate the base flow. All contour plots suggest that the instability is
of varicose type, which is not surprising since the dominant instability in a free shear layer is the Kelvin-
Helmholtz instability which is of varicose type.

a) b) c) d)

Figure 9. Eigenmodes from the stability analysis (mode 1 in the first row, and mode 2 in the second row): a)
λ = 0.3; b) λ = 0.6; b) λ = 0.9; b) λ = 1.2.

IV. Conclusions

We studied centrifugal instabilities that develop in curved free shear layers in both incompressible and
compressible regimes, by using the numerical solution to a parabolized form of the Navier-Stokes equations.
We targeted the nonlinear development of these centrifugal instabilities, which resemble many similarities
with the Görtler vortices that evolve in boundary layer flows over concave surfaces. The spanwise separation
that characterizes the upstream disturbance (and dictate the spanwise separation of the downstream distur-
bances) and the Mach number of the fastest stream were varied. A biglobal linear stability analysis was also
performed to calculate the growth rates of these instabilities, and to determine whether they are of sinuous
or varicose type.

A wide range of spanwise separations was considered, and the Mach number covered both the incom-
pressible and compressible regimes. The results showed that for the smallest spanwise separation of 0.3 cm
the centrifugal instability is ’weak’ in the sense that the mixing between the two streams is not efficient.
As the spanwise separation was increased, the mushroom shapes started to show up, resembling Gortler
vortices that are characteristic to boundary layer flows over concave surfaces. The mixing between the two
streams increases as the spanwise separation increases, and the large spanwise separations showed spiraling
streaks. For the high Mach number cases, the mixing was more efficient, and the spiraling streaks were
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more prevalent at multiple spanwise separations. We also noticed secondary mushroom shapes developing
at some spanwise separations. We identified the primary mushroom shape the one that develops as the
main instability, and the secondary mushroom shape as the instability that develops from the edge of the
main/primary mushroom cap.

The kinetic energy of the instabilities was calculated an plotted against the streamwise coordinate. It
was observed that as the spanwise separation is increased, the scaled kinetic energy maximum increases,
and that the streamwise location where the energy saturation sets in, moved downstream as the spanwise
separation was increased. We also calculated the streak amplitude and plotted it versus the streamwise
coordinate, and noticed that the streak amplitude corresponding to the smallest spanwise separation of the
M = 0.2 incompressible case is much lower than the other cases.

From the biglobal linear stability analysis, we plotted the growth rates associated with the first and
second modes in figure 8 for all spanwise separations. The maximum growth rates increased as the spanwise
separation was increased. The corresponding wavenumber of the first mode, however, seemed to decrease as
the spanwise separation was increased, but for the second mode, the wavenumber corresponding to the max-
imum growth rate increased as the spanwise separation increased. The eigenmodes contour plots suggested
that the instability is of varicose type, which is not surprising since the dominant instability in a free shear
layer is the Kelvin-Helmholtz instability, which is of varicose type.

V. Appendix

The elements of matrices [A], [B], [C], [D], [E], [F ], and [G] from the biglobal linear stability analysis
are

a11 = W z −
T zW

T
+ V y −

T yV

T
+ iαU

a12 = iαP

a13 = −T yP
T

+ P y

a14 = −T zP
T

+ P z

a15 = −W zP

T
+

2PT zW

T
2 − P zW

T
− V yP

T
+

2PT yV

T
2 − P yV

T
− iαPU

T

a21 =
γM2UzW

T
+
γM2UyV

T
+ iα

a22 =
iαγM2PU

T
+

2α2µ

Re
+
α2λ

Re

a23 =
γM2PUy

T
−
iαµTT y
Re

a24 =
γM2PUz

T
−
iαµTT z
Re

a25 = −γM
2PUzW

T
2 − γM2PUyV

T
2 −

iαλTW z

Re
−
iαλTV y
Re

−
µTUzz
Re

−
µTTT zUz

Re
−
µTUyy
Re

−
µTTT yUy

Re
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a31 =
γM2V zW

T
+
γM2V yV

T

a32 = −
iαλTT y
Re

a33 =
γM2PV y

T
+
iαγM2PU

T
+
α2µ

Re

a34 =
γM2PV z

T

a35 = −γM
2PV zW

T
2 − γM2PV yV

T
2 −

λTTT yW z

Re
−
µTW yz

Re
−
λTW yz

Re
−
µTTT zW y

Re
−
µTV zz
Re

−
µTTT zV z

Re
−

2µTV yy
Re

−
λTV yy
Re

−
2µTTT yV y

Re
−
λTTT yV y

Re
−
iαµTUy
Re

a41 =
γM2W zW

T
+
γM2W yV

T

a42 = −
iαλTT z
Re

a43 =
γM2PW y

T

a44 =
γM2PW z

T
+
iαγM2PU

T
+
α2µ

Re

a45 = −γM
2PW zW

T
2 − γM2PW yV

T
2 −

2µTW zz

Re
−
λTW zz

Re
−

2µTTT zW z

Re
−
λTTT zW z

Re
−
µTW yy

Re

−
µTTT yW y

Re
−
µTTT yV z

Re
−
µTV yz
Re

−
λTV yz
Re

−
λTTT zV y

Re
−
iαµTUz
Re

a51 =
γM2T zW

T
+
γM2T yV

T
− iαEcU

a52 = −2iαEcλW z

Re
− 2iαEcλV y

Re

a53 =
γM2PT y

T
− 2iαEcµUy

Re
− EcP y

a54 =
γM2PT z

T
− 2iαEcµUz

Re
− EcP z

a55 = −γM
2PT zW

T
2 − γM2PT yV

T
2 +

iαγM2PU

T
−

2EcµT (W z)
2

Re
−
EcλT (W z)

2

Re

−
2EcλTV yW z

Re
−
EcµT (W y)2

Re
−

2EcµTV zW y

Re
−
EcµT (V z)

2

Re
−

2EcµT (V y)2

Re
−
EcλT (V y)2

Re

−
EcµT (Uz)

2

Re
−
EcµT (Uy)2

Re
−
kTT zz
PrRe

−
kTT (T z)

2

PrRe
−
kTT yy
PrRe

−
kTT (T y)2

PrRe
+

α2k

PrRe

b11 = V ; b12 = 0; b13 = P ; b14 = 0; b15 =
PV

T

b21 = 0; b22 =
γM2PV

T
−
µTT y
Re

; b23 = − iαµ
Re
− iαλ

Re
; b24 = 0; b25 = −

µTUy
Re
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b31 = 1

b32 = − iαµ
Re
− iαλ

Re

b33 =
γM2PV

T
−

2µTT y
Re

−
λTT y
Re

b34 = −
µTT z
Re

b35 = −
λTW z

Re
−

2µTV y
Re

−
λTV y
Re

b41 = 0; b42 = 0; b43 = −
λTT z
Re

; b44 =
γM2PV

T
−
µTT y
Re

; b45 = −
µTW y

Re
−
µTV z
Re

b51 = −EcV

b52 = −2EcµUy
Re

b53 = −2EcλW z

Re
− 4EcµV y

Re
− 2EcλV y

Re

b54 = −2EcµW y

Re
− 2EcµV z

Re

b55 =
γM2PV

T
−

2kTT y
PrRe

c11 = W ; c12 = 0; c13 = 0; c14 = P ; c15 =
PW

T

c21 = 0; c22 =
γM2PW

T
−
µTT z
Re

; c23 = 0; c24 = − iαµ
Re
− iαλ

Re
; c25 = −

µTUz
Re

c31 = 0; c32 = 0; c33 =
γM2PW

T
−
µTT z
Re

; c34 = −
λTT y
Re

; c35 = −
µTW y

Re
−
µTV z
Re

c41 = 1

c42 = − iαµ
Re
− iαλ

Re

c43 = −
µTT y
Re

c44 =
γM2PW

T
−

2µTT z
Re

−
λTT z
Re

c45 = −
2µTW z

Re
−
λTT z
Re

−
λTV y
Re
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c51 = −EcW

c52 = −2EcµUz
Re

c53 = −2EcµW y

Re
− 2EcµV z

Re

c54 = −4EcµW z

Re
− 2EcλW z

Re
− 2EcλV y

Re

c55 =
γM2PW

T
−

2kTT z
PrRe

d11 = 0; d12 = 0; d13 = 0; d14 = 0; d15 = 0

d21 = 0; d22 = − µ

Re
; d23 = 0; d24 = 0; d25 = 0

d31 = 0; d32 = 0; d33 = − 2µ

Re
− λ

Re
; d34 = 0; d35 = 0

d41 = 0; d42 = 0; d43 = 0; d44 = − µ

Re
; d45 = 0

d51 = 0; d52 = 0; d53 = 0; d54 = 0; d55 = − k

PrRe

e11 = 0; e12 = 0; e13 = 0; e14 = 0; e15 = 0

e21 = 0; e22 = 0; e23 = 0; e24 = 0; e25 = 0

e31 = 0; e32 = 0; e33 = − µ

Re
− λ

Re
; e34 = 0; e35 = 0

e41 = 0; e42 = 0; e43 = 0; e44 = − µ

Re
− λ

Re
; e45 = 0

e51 = 0; e52 = 0; e53 = 0; e54 = 0; e55 = 0

f11 = 0; f12 = 0; f13 = 0; f14 = 0; f15 = 0

f21 = 0; f22 = − µ

Re
; f23 = 0; f24 = 0; f25 = 0
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f31 = 0; f32 = 0; f33 = − µ

Re
; f34 = 0; f35 = 0

f41 = 0; f42 = 0; f43 = 0; f44 = − 2µ

Re
− λ

Re
; f45 = 0

f51 = 0; f52 = 0; f53 = 0; f54 = 0; f55 = − k

PrRe

g11 = i; g12 = 0; g13 = 0; g14 = 0; g15 = − iP
T

g21 = 0; g22 =
iγM2P

T
; g23 = 0; g24 = 0; g25 = 0

g31 = 0; g32 = 0; g33 =
iγM2P

T
; g34 = 0; g35 = 0

g41 = 0; g42 = 0; g43 = 0; g44 =
iγM2P

T
; g45 = 0

g51 = −iEc; g52 = 0; g53 = 0; g54 = 0; g55 =
iγM2P

T
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