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ABSTRACT. Guo et al. [GMY17] are the first to study the strong convergence of the
explicit numerical method for the highly nonlinear stochastic differential delay equations

(SDDEs) under the generalised Khasminskii-type condition. The method used there is the
truncated Euler–Maruyama (EM) method. In this paper we will point out that a main
condition imposed in [GMY17] is somehow restrictive in the sense that the condition could
force the step size to be so small that the truncated EM method would be inapplicable. The

key aim of this paper is then to establish the convergence rate without this restriction.

1. Introduction. Stochastic differential delay equations (SDDEs) have been used
in many branches of science and industry (see, e.g., [Arn,CLM01,DZ92,Kha,LL]).
The classical theory on the existence and uniqueness of the solution to the SDDE
requires the coefficients of the SDDE satisfy the local Lipschitz condition and
the linear growth condition (see, e.g., [KM,M97,M02,Moh]). The numerical so-
lutions under the linear growth condition plus the local Lipschitz condition have
been discussed intensively by many authors (see, e.g., [BB,BB05,CKR06, DFLM,
HM05,KloP,KP,MS,Mil,Schurz,WM08]).
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The generalised Khasminskii-type theorems established by [M02, MR05] replace
the linear growth condition with the generalised Khasminskii-type condition in
terms of Lyapunov functions. The numerical solutions of SDDEs under the gen-
eralised Khasminskii-type condition were discussed by Mao [M11], and the theory
there showed that the Euler–Maruyama (EM) numerical solutions converge to the
true solutions in probability Influenced by [M15], Guo et al. [GMY17] were the first
to study the strong convergence of the truncated EM method for the SDDEs under
the generalised Khasminskii-type condition. In this paper, we will explain, via an
example, that a main condition imposed in [GMY17] is sometimes so restrictive that
the step size would be too small for the truncated EM method to be applicable. The
key aim of this paper is to establish the convergence rate without this restrictive
condition.

This paper is organised as follows: In Section 2, we will introduce the necessary
notation, recall the truncated EM method and review one of the main results of
[GMY17] and then point out a restrictive condition imposed in [GMY17] via an
example. In Section 3, we will establish the strong convergence theory without this
restrictive condition. In Section 4, we will compare our new result with the one in
[GMY17] to highlight our significant contribution in this paper. In Section 5, we
will establish the stronger convergence theory for the solutions over a finite time
interval and this was not discussed in [GMY17]. In Section 6, we will discuss three
more examples to illustrate our new theory. Finally, we will conclude our paper in
Section 7.

2. Preliminaries. In this section, we will recall the truncated EM method for the
SDDEs defined in [GMY17]. We will make some modification in order for the EM
method to be more flexible. The main aim of this section is to point out a restrictive
condition imposed in [GMY17] via an example. Removing this restrictive condition
is the motivation for us to write this paper.
2.1 Notation. Throughout this paper, we will use the same notation as used in
[GMY17]. However, for the convenience of the reader, we recall some here. Let | · |
be the Euclidean norm in Rn. If A is a vector or matrix, its transpose is denoted
by AT . If A is a matrix, its trace norm is denoted by |A| =

√
trace(ATA). Let

R+ = [0,∞) and τ > 0. Denote by C([−τ, 0];Rn) the family of continuous functions
from [−τ, 0] to Rn with the norm ∥φ∥ = sup−τ≤θ≤0 |φ(θ)|. Let (ω,F , {Ft}t≥0,P) be
a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions
(i.e., it is increasing and right continuous while F0 contains all P-null sets). Let
B(t) = (B1(t), · · · , Bm(t))T be an m-dimensional Brownian motion defined on the
probability space. Moreover, for two real numbers a and b, we use a∨ b = max(a, b)
and a ∧ b = min(a, b). If G is a set, its indicator function is denoted by IG, namely
IG(x) = 1 if x ∈ G and 0 otherwise. If a is a real number, we denote by ⌊a⌋ the
largest integer which is less or equal to a, e.g., ⌊−1.2⌋ = −2 and ⌊2.3⌋ = 2.
2.2 SDDEs. Consider an n-dimensional nonlinear SDDE

dx(t) = f(x(t), x(t− τ))dt+ g(x(t), x(t− τ))dB(t), t ≥ 0, (2.1)

with the initial data {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ C([−τ, 0];Rn), where

f : Rn × Rn → Rn and g : Rn × Rn → Rn×m.

We assume, as a standing hypothesis, that the coefficients f and g obey the local
Lipschitz condition, namely, for every positive number R there is a positive constant
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KR such that

|f(x, y)− f(x̄, ȳ)|2 ∨ |g(x, y)− g(x̄, ȳ)|2 ≤ KR(|x− x̄|2 + |y − ȳ|2)

for those x, y, x̄, ȳ ∈ Rn with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ R. As we are concerned with
highly nonlinear SDDEs, we will not impose the linear growth condition. Instead,
we need the Khasminskii-type condition.

Assumption 2.1. There are constants K1 > 0 and p̄ > 2 such that

xT f(x, y) +
p̄− 1

2
|g(x, y)|2 ≤ K1(1 + |x|2 + |y|2) (2.2)

for all (x, y) ∈ Rn × Rn.

It is known (see, e.g., [MR05]) that under Assumption 2.1, the SDDE (2.1) has
unique global solution x(t) on t ∈ [−τ,∞) which satisfies

sup
−τ≤t≤T

E|x(t)|p̄ < ∞, ∀T > 0. (2.3)

2.3 The truncated EM method. Recall the truncated EM numerical scheme
defined in [GMY17]. We first choose a strictly increasing continuous function µ :
R+ → R+ such that µ(u) → ∞ as u → ∞ and

sup
|x|∨|y|≤u

(
|f(x, y)| ∨ |g(x, y)|

)
≤ µ(u), ∀u ≥ 1. (2.4)

Denote by µ−1 the inverse function of µ and we see that µ−1 is a strictly increasing
continuous function from [µ(0),∞) to R+. Choose a constant ∆∗ ∈ (0, 1] and a
strictly decreasing function h : (0,∆∗] → (0,∞) such that

h(∆∗) ≥ µ(1), lim
∆→0

h(∆) = ∞ and ∆1/4h(∆) ≤ 1, ∀∆ ∈ (0,∆∗].
(2.5)

For a given step size ∆ ∈ (0,∆∗], let us define a mapping π∆ from Rn to the closed
ball {x ∈ Rn : |x| ≤ µ−1(h(∆))} by

π∆(x) = (|x| ∧ µ−1(h(∆)))
x

|x|
,

where we set x/|x| = 0 when x = 0. That is, π∆ will map x to itself when
|x| ≤ µ−1(h(∆)) and to µ−1(h(∆))x/|x| when |x| > µ−1(h(∆)). We then define the
truncated functions

f∆(x, y) = f(π∆(x), π∆(y)) and g∆(x, y) = g(π∆(x), π∆(y)) (2.6)

for x, y ∈ Rn. It is easy to see that

|f∆(x, y)| ∨ |g∆(x, y)| ≤ µ(µ−1(h(∆))) = h(∆), ∀x, y ∈ Rn. (2.7)

That is, both truncated functions f∆ and g∆ are bounded although f and g may
not.
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From now on, we will let the step size ∆ be a fraction of τ . That is, we will use
∆ = τ/M for some positive integer M . When we use the terms of a sufficiently
small ∆, we mean that we choose M sufficiently large.

Define tk = k∆ for k = −M,−(M − 1), · · · , 0, 1, 2, · · · . The discrete-time trun-
cated EM solutions are defined by setting X∆(tk) = ξ(tk) for k = −M,−(M −
1), · · · , 0 and then forming

X∆(tk+1) = X∆(tk) + f∆(X∆(tk), X∆(tk−M ))∆ + g∆(X∆(tk), X∆(tk−M ))∆Bk

(2.8)

for k = 0, 1, 2, · · · , where ∆Bk = B(tk+1) − B(tk). As in [GMY17], it is more
convenient to work on the continuous-time approximations. Recall that there are
two continuous-time versions. One is the continuous-time step process x̄∆(t) on
t ∈ [−τ,∞) defined by

x̄∆(t) =
∞∑

k=−M

X∆(tk)I[k∆,(k+1)∆)(t), (2.9)

where I[k∆,(k+1)∆)(t) is the indicator function of [k∆, (k + 1)∆) (please recall the
notation defined in the beginning of this section). The other one is the continuous-
time continuous process x∆(t) on t ∈ [−τ,∞) defined by x∆(t) = ξ(t) for t ∈ [−τ, 0]
while for t ≥ 0

x∆(t) = ξ(0) +

∫ t

0

f∆(x̄∆(s), x̄∆(s− τ))ds+

∫ t

0

g∆(x̄∆(s), x̄∆(s− τ))dB(s).
(2.10)

We see that x∆(t) is an Itô process on t ≥ 0 with its Itô differential

dx∆(t) = f∆(x̄∆(t), x̄∆(t− τ))dt+ g∆(x̄∆(t), x̄∆(t− τ))dB(t).
(2.11)

It is useful to know that X∆(tk) = x̄∆(tk) = x∆(tk) for every k ≥ −M , namely
three of them coincide at tk.
2.4 Review of the main result in [GMY17]. We recall one more notation used
in [GMY17]. Let U denote the family of continuous functions U : Rn × Rn → R+

such that for each b > 0, there is a positive constant κb for which

U(x, x̄) ≤ κb|x− x̄|2, ∀x, x̄ ∈ Rn with |x| ∨ |x̄| ≤ b.

Let us state the assumptions imposed in [GMY17] for the strong convergence rate.

Assumption 2.2. There is a pair of constants K2 > 0 and γ ∈ (0, 1] such that the
initial data ξ satisfies

|ξ(u)− ξ(v)| ≤ K2|u− v|γ , −τ ≤ v < u ≤ 0.

Assumption 2.3. Assume that there are positive constants α and K3 and a func-
tion U ∈ U such that

(x− x̄)T (f(x, y)− f(x̄, ȳ)) +
1 + α

2
|g(x, y)− g(x̄, ȳ)|2

≤ K3(|x− x̄|2 + |y − ȳ|2)− U(x, x̄) + U(y, ȳ) (2.12)
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for all x, y, x̄, ȳ ∈ Rn.

Assumption 2.4. Assume that there is a pair of positive constants r and K4 such
that

|f(x, y)− f(x̄, ȳ)|2 ∨ |g(x, y)− g(x̄, ȳ)|2

≤ K4(|x− x̄|2 + |y − ȳ|2)(1 + |x|r + |x̄|r + |y|r + |ȳ|r) (2.13)

for all x, y, x̄, ȳ ∈ Rn.

The following theorem is one of the main results in [GMY17].

Theorem 2.5. Let Assumptions 2.1-2.4 hold and p̄ > r. Assume that

h(∆) ≥ µ
(
(∆2γ ∨ [∆(h(∆))2])−1/(p̄−2)

)
(2.14)

for all sufficiently small ∆ ∈ (0, 1]. Then, for every such small ∆,

E|x(T )− x∆(T )|2 ≤ C(∆2γ ∨ [∆(h(∆))2]) (2.15)

and

E|x(T )− x̄∆(T )|2 ≤ C(∆2γ ∨ [∆(h(∆))2]). (2.16)

2.5 A motivating example. Let us now point out condition (2.14) is sometimes
so restrictive that the step size would be too small for the truncated EM method
to be applicable. Indeed, consider a highly nonlinear scalar SDDE

dx(t) = [−9x3(t) + |x(t− τ)|3/2]dt+ x2(t)dB(t), t ≥ 0, (2.17)

with the initial data {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ C([−τ, 0];R), where B(t) is a
scalar Brownian motion. Assume that ξ satisfies Assumption 2.2 with K2 = 1 and
γ = 0.5. Clearly, the coefficients

f(x, y) = −9x3 + |y|3/2 and g(x, y) = x2 (x, y ∈ R)

are locally Lipschitz continuous. Moreover, when p̄ = 18.5, we have, for x, y ∈ R,

xf(x, y) +
p̄− 1

2
|g(x, y)|2 = −9x4 + x|y|3/2 + 8.75x4.

But, by the well-known Young inequality,

x|y|3/2 ≤ (x4)1/4(y2)3/4 ≤ 0.25x4 + 0.75y2.

We therefore have

xf(x, y) +
p̄− 1

2
|g(x, y)|2 ≤ 0.75y2.

This shows that Assumption 2.1 is satisfied with p̄ = 18.5 and K1 = 0.75. To verify
Assumption 2.3, we note that, for x, x̄, y, ȳ ∈ R,

(x− x̄)(f(x, y)− f(x̄, ȳ)) = (x− x̄)
[
− 9(x3 − x̄3) + |y|3/2 − |ȳ|3/2

]
≤ −4.5|x− x̄|2(x2 + x̄2) + 0.5(x− x̄)2 + 0.5(|y|3/2 − |ȳ|3/2)2
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while
(x2 − x̄2)2 = (x− x̄)2(x+ x̄)2 ≤ 2|x− x̄|2(x2 + x̄2).

But, by the mean-valued theorem,

(|y|3/2 − |ȳ|3/2)2 ≤ 2.25|y − ȳ|2(
√
|y|+

√
|ȳ|)2 ≤ 4.5|y − ȳ|2(|y|+ |ȳ|)

≤ 4.5|y − ȳ|2(1 + 0.5y2 + 0.5ȳ2) = 4.5|y − ȳ|2 + 2.25|y − ȳ|2(y2 + ȳ2).

Hence, for α = 2.375,

(x− x̄)(f(x, y)− f(x̄, ȳ)) +
1 + α

2
|g(x, y)− g(x̄, ȳ)|2

≤ 2.25[|x− x̄|2 + |y − ȳ|2]− U(x, x̄) + U(y, ȳ),

where
U(x, x̄) = 1.125|x− x̄|2(x2 + x̄2).

We have hence verified Assumption 2.3 with α = 2.375, K3 = 2.25 and U being
defined above. It is also straightforward to show that Assumption 2.4 is satisfied
with r = 4 (and some K4 which is not important).

To apply Theorem 2.5, we still need to design functions µ and h satisfying (2.4)
and (2.5), respectively. Note that

sup
|x|∨|y|≤u

(|f(x, y)| ∨ |g(x, y)|) ≤ 10u3, ∀u ≥ 1.

We can hence have µ(u) = 10u3 and its inverse function µ−1(u) = (u/10)1/3 for
u ≥ 0. We also define h(∆) = ∆−1/5 for ∆ ∈ (0,∆∗], where ∆∗ = 10−5 (so
h(∆∗) = 10 = µ(1) as required). Then condition (2.14) becomes

∆−1/5 ≥ 10∆−9/82.5, namely, ∆ ≤ 10−11.

By Theorem 2.5, we can then conclude that the truncated EM solutions will ap-
proximate the true solution x(t) in the sense that

E|x∆(T )− x(T )|2 ∨ E|x̄∆(T )− x(T )|2 ≤ C∆3/5 (2.18)

for ∆ ≤ 10−11. The problem is that the stepsize needs to be so small that the
truncated EM is almost inapplicable.

This example shows that condition (2.14) is too restrictive sometimes. Could we
remove this condition and still establish the strong convergence theory? We will
give our positive answer in the next section.
3 Main Results
3.1 Lemmas. First of all, we modify the choice of function h to make it more

flexible by choosing a constant ĥ ≥ 1 and a strictly decreasing function h : (0, 1] →
[µ(0),∞) such that

lim
∆→0

h(∆) = ∞ and ∆1/4h(∆) ≤ ĥ, ∀∆ ∈ (0, 1]. (3.1)

From now on, our function h will satisfy this condition instead of (2.5). There are

lots of choices for h(·). For example, h(∆) = ĥ∆−ϵ for some ϵ ∈ (0, 1/4]. Before we
proceed, let us make a useful remark.
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Remark 3.1. Comparing (3.1) with (2.5), we here simply let ∆∗ = 1 and remove
condition h(∆∗) ≥ µ(1) while we also replace condition ∆1/4h(∆) ≤ 1 by a weaker

one ∆1/4h(∆) ≤ ĥ. In other words, we have made the choice of function h more
flexible. We emphasise that such changes do not make any effect on the results
in [GMY17]. In fact, condition h(∆∗) ≥ µ(1) was only used to prove [[GMY17],
Lemmas 2.4 and 4.2]. But, it is easy to show (see the proof of Lemma 3.2 below)
that both lemmas there still hold as long as we replace the constant 2K1 there by
2K1

(
1∨[1/µ−1(h(1))]

)
and this change does not affect any other results in [GMY17].

It is also easy to check that replacing ∆1/4h(∆) ≤ 1 by ∆1/4h(∆) ≤ ĥ does not
make any effect on the results in [GMY17].

The following lemma shows that the truncated functions defined by (2.6) preserve
the Khasminskii-type condition (2.2) to a very nice degree.

Lemma 3.2. Let Assumption 2.1 hold. Then, for every ∆ ∈ (0, 1], we have

xT f∆(x, y) +
1

2
|g∆(x, y)|2 ≤ K̂(1 + |x|2 + |y|2) (3.2)

for all x, y ∈ Rn, where K̂ = 2K1

(
1 ∨ [1/µ−1(h(1))]

)
.

Proof. This lemma was essentially proved in [GMY17] but we here need only h to
satisfy condition (3.1) instead of (2.5) and, in particular, we do not need condition
h(∆∗) ≥ µ(1) as we already pointed out in Remark 3.1.

Fix any ∆ ∈ (0, 1]. For x ∈ Rn with |x| ≤ µ−1(h(∆)) and any y ∈ Rn, the
assertion follows from (2.2) directly. For x ∈ Rn with |x| > µ−1(h(∆)) and any
y ∈ Rn, we have

xT f∆(x, y) +
p̄− 1

2
|g∆(x, y)|2

= π∆(x)
T f(π∆(x), π∆(y)) +

p̄− 1

2
|g(π∆(x), π∆(y))|2

+ (x− π∆(x))
T f(π∆(x), π∆(y))

≤ K1(1 + |π∆(x)|2 + |π∆(y)|2)

+
( |x|
µ−1(h(∆))

− 1
)
π∆(x)

T f(π∆(x), π∆(y)), (3.3)

where (2.2) has been used. But it also follows from (2.2) that

π∆(x)
T f(π∆(x), π∆(y)) ≤ K1(1 + |π∆(x)|2 + |π∆(y)|2).

Substituting this into (3.3) yields

xT f∆(x, y) +
1

2
|g∆(x, y)|2

≤ K1|x|
µ−1(h(∆))

(1 + |π∆(x)|2 + |π∆(y)|2)

≤ K1

(
1 ∨ [1/µ−1(h(1))]

)
(|x|+ |x|2 + |x||y|)

≤ 2K1

(
1 ∨ [1/µ−1(h(1))]

)
(1 + |x|2 + |y|2). (3.4)
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Namely, we have showed that the required assertion (3.2) also holds for x ∈ Rn

with |x| > µ−1(h(∆)) and any y ∈ Rn. The proof is hence complete. �
The following lemma shows that the truncated functions f∆ and g∆ preserve

Assumption 2.4 perfectly.

Lemma 3.3. Let Assumption 2.4 hold. Then, for every ∆ ∈ (0, 1], we have

|f∆(x, y)− f∆(x̄, ȳ)|2 ∨ |g∆(x, y)− g∆(x̄, ȳ)|2

≤ K4(|x− x̄|2 + |y − ȳ|2)(1 + |x|r + |x̄|r + |y|r + |ȳ|r) (3.5)

for all x, y, x̄, ȳ ∈ Rn.

Proof. For any x, y, x̄, ȳ ∈ Rn,

|f∆(x, y)− f∆(x̄, ȳ)|2 ∨ |g∆(x, y)− g∆(x̄, ȳ)|2

= |f(π∆(x), π∆(y))− f(π∆(x̄), π∆(ȳ))|2 ∨ |g(π∆(x), π∆(y))− g(π∆(x̄), π∆(ȳ))|2

≤ K4(|π∆(x)− π∆(x̄)|2 + |π∆(y)− π∆(ȳ)|2)(1 + |π∆(x)|r + |π∆(x̄)|r + |π∆(y)|r + |π∆(ȳ)|r).

This implies the assertion by noting that

|π∆(x)| ≤ |x|, |π∆(x)− π∆(x̄)|2 ≤ |x− x̄|2,

etc. The proof is complete. �
Recalling Remark 3.1, we can then cite two lemmas from [GMY17] on the

continuous-time truncated EM solutions defined by (2.9) and (2.11) for the use
of this paper. From now on we will fix T > 0 arbitrarily and let C stand for generic
positive real constants dependent on T,K1,K2, ξ etc. but independent of ∆ and its
values may change between occurrences.

Lemma 3.4. For any ∆ ∈ (0, 1] and any p ≥ 2, we have

E|x∆(t)− x̄∆(t)|p ≤ cp∆
p/2(h(∆))p, ∀t ≥ 0, (3.6)

where cp is a positive constant dependent only on p. Consequently

lim
∆→0

E|x∆(t)− x̄∆(t)|p = 0, ∀t ≥ 0. (3.7)

Lemma 3.5. Let Assumption 2.1 hold. Then

sup
0<∆≤1

sup
0≤t≤T

E|x∆(t)|p̄ ≤ C. (3.8)

Lemma 3.4 shows that x∆(t) and x̄∆(t) are close to each other in the sense of Lp.
We also observe that x̄∆(t) is computable, but x∆(t) is not in general. It is therefore
x̄∆(t) that we use in practice. However, for our analysis, it is more convenient to
work on both of them. We also emphasize that Lemma 3.4 holds for any p ≥ 2 but
Lemma 3.5 holds only for the specified p̄.
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3.2 Convergence rates. The following theorem is one of our main results in this
paper.

Theorem 3.6. Let Assumptions 2.1 - 2.4 hold and assume that p̄ > r + 2. Then,
for every ∆ ∈ (0, 1],

E|x(T )− x∆(T )|2 ≤ C
(
∆2γ ∨∆(h(∆))2 ∨ (µ−1(h(∆)))−(p̄−r−2)

)
(3.9)

and

E|x(T )− x̄∆(T )|2 ≤ C
(
∆2γ ∨∆(h(∆))2 ∨ (µ−1(h(∆)))−(p̄−r−2)

)
.

(3.10)

Proof. The proof is very technical so we divide it into three steps.

Step 1. We fix ∆ ∈ (0, 1] and the initial data ξ arbitrarily. Let i be any integer
such that i ≥ ∥ξ∥. Define the stopping time

θi = inf{t ≥ 0 : |x(t)| ∧ |x∆(t)| ≥ i},

where we set inf ∅ = ∞ (and ∅ denotes the empty set as usual). Set e∆(t) =
x(t) − x∆(t) for t ∈ [−τ, T ] and we know e∆(t) = 0 for t ∈ [−τ, 0]. By the Itô
formula as well as the elementary inequality (a+ b)2 ≤ (1 + α)a2 + (1 + α−1)b2 for
any real numbers a and b, we derive that, for 0 ≤ t ≤ T ,

E|e∆(t ∧ θi)|2

= E
∫ t∧θi

0

(
2eT∆(s)[f(x(s), x(s− τ))− f∆(x̄∆(s), x̄∆(s− τ))]

+ |g(x(s), x(s− τ))− g∆(x̄∆(s), x̄∆(s− τ))|2
)
ds

= E
∫ t∧θi

0

(
2eT∆(s)

(
[f(x(s), x(s− τ))− f(x∆(s), x∆(s− τ))]

+ [f(x∆(s), x∆(s− τ))− f∆(x̄∆(s), x̄∆(s− τ))]
)

+
∣∣g(x(s), x(s− τ))− g(x∆(s), x∆(s− τ))

+ g(x∆(s), x∆(s− τ))− g∆(x̄∆(s), x̄∆(s− τ))
∣∣2)ds

≤ E
∫ t∧θi

0

(
2eT∆(s)[f(x(s), x(s− τ))− f(x∆(s), x∆(s− τ))]

+ (1 + α)|g(x(s), x(s− τ))− g(x∆(s), x∆(s− τ))|2

+ 2eT∆(s)[f(x∆(s), x∆(s− τ))− f∆(x̄∆(s), x̄∆(s− τ))]

+ (1 + α−1)|g(x∆(s), x∆(s− τ))− g∆(x̄∆(s), x̄∆(s− τ))|2
)
ds.

(3.11)

By Assumption 2.3, we get

E|e∆(t ∧ θi)|2 ≤ H1 +H2, (3.12)
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where

H1 := E
∫ t∧θi

0

(
|e∆(s)|2 + 2K3(|e∆(s)|2 + |e∆(s− τ)|2)

− 2U(x(s), x∆(s)) + 2U(x(s− τ), x∆(s− τ))
)
ds

and

H2 := E
∫ t∧θi

0

(
|f(x∆(s), x∆(s− τ))− f∆(x̄∆(s), x̄∆(s− τ))|2

+ (1 + α−1)|g(x∆(s), x∆(s− τ))− g∆(x̄∆(s), x̄∆(s− τ))|2
)
ds.

Step 2. Let us now estimate H1 and H2. Noting that x(s) = x∆(s) whence
U(x(s), x∆(s)) = 0 for s ∈ [−τ, 0], we see that∫ t∧θi

0

U(x(s− τ), x∆(s− τ))ds ≤
∫ t∧θi

−τ

U(x(s), x∆(s))ds =

∫ t∧θi

0

U(x(s), x∆(s))ds.

Consequently, we have

H1 ≤ (1 + 4K3)E
∫ t∧θi

0

|e∆(s)|2ds ≤ (1 + 4K3)

∫ t

0

E|e∆(s ∧ θi)|2ds.
(3.13)

To estimate H2, we observe that

H2 ≤ H21 +H22, (3.14)

where

H21 := 2

∫ T

0

(
E|f(x∆(s), x∆(s− τ))− f∆(x∆(s), x∆(s− τ))|2

+ (1 + α−1)E|g(x∆(s), x∆(s− τ))− g∆(x∆(s), x∆(s− τ))|2
)
ds

and

H22 := 2

∫ T

0

(
E|f∆(x∆(s), x∆(s− τ))− f∆(x̄∆(s), x̄∆(s− τ))|2

+ (1 + α−1)E|g∆(x∆(s), x∆(s− τ))− g∆(x̄∆(s), x̄∆(s− τ))|2
)
ds,

where t ∧ θi has been replaced by T as t ∧ θi ≤ T and the order of integrations
has also been exchanged. By Assumption 2.4 and the Hölder inequality as well as
Lemma 3.5, we derive that

E|f(x∆(s), x∆(s− τ))− f∆(x∆(s), x∆(s− τ))|2

=E|f(x∆(s), x∆(s− τ))− f(π∆(x∆(s)), π∆(x∆(s− τ)))|2

≤K4E
[
(|x∆(s)− π∆(x∆(s))|2 + |x∆(s− τ)− π∆(x∆(s− τ))|2)

× (1 + 2|x∆(s)|r + 2|x∆(s− τ)|r)
]

≤C
(
E|x∆(s)− π∆(x∆(s))|2p̄/(p̄−r) + E|x∆(s− τ)− π∆(x∆(s− τ))|2p̄/(p̄−r)

)(p̄−r)/p̄

×
(
1 + E|x∆(s)|p̄ + E|x∆(s− τ)|p̄

)r/p̄
≤C

(
E
[
I{|x∆(s)|>µ−1(h(∆))}|x∆(s))|2p̄/(p̄−r)

]
+ E

[
I{|x∆(s−τ)|>µ−1(h(∆))}|x∆(s− τ))|2p̄/(p̄−r)

])(p̄−r)/p̄

.
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But

E
[
I{|x∆(s)|>µ−1(h(∆))}|x∆(s))|2p̄/(p̄−r)

]
≤
[
P{|x∆(s)| > µ−1(h(∆))}

](p̄−r−2)/(p̄−r)[E|x∆(s))|p̄
]2/(p̄−r)

]
≤C

[
P{|x∆(s)| > µ−1(h(∆))}

](p̄−r−2)/(p̄−r)

≤C
([ E|x∆(s)|p̄

(µ−1(h(∆)))p̄

](p̄−r−2)/(p̄−r)

≤C(µ−1(h(∆)))−p̄(p̄−r−2)/(p̄−r).

Similarly,

E
[
I{|x∆(s−τ)|>µ−1(h(∆))}|x∆(s− τ))|2p̄/(p̄−r)

]
≤ C(µ−1(h(∆)))−p̄(p̄−r−2)/(p̄−r).

Consequently,

E|f(x∆(s), x∆(s− τ))− f∆(x∆(s), x∆(s− τ))|2 ≤ C(µ−1(h(∆)))−(p̄−r−2).

Similarly, we can show

E|g(x∆(s), x∆(s− τ))− g∆(x∆(s), x∆(s− τ))|2 ≤ C(µ−1(h(∆)))−(p̄−r−2).

We therefore have

H21 ≤ C(µ−1(h(∆)))−(p̄−r−2). (3.15)

Let us now estimate H22. By Lemma 3.3 and the Hölder inequality as well as
Lemma 3.4 and Assumption 2.2, we derive that

E|f∆(x∆(s), x∆(s− τ))− f∆(x̄∆(s), x̄∆(s− τ))|2

≤K4E
[
(|x∆(s)− x̄∆(s)|2 + |x∆(s− τ)− x̄∆(s− τ)|2)

× (1 + |x∆(s)|r + |x̄∆(s)|r + |x∆(s− τ)|r + |x̄∆(s− τ)|r)
]

≤C
(
E|x∆(s)− x̄∆(s)|2p̄/(p̄−r) + E|x∆(s− τ)− x̄∆(s− τ)|2p̄/(p̄−r)

)(p̄−r)/p̄

×
(
1 + E|x∆(s)|p̄ + E|x̄∆(s)|p̄ + E|x∆(s− τ)|p̄ + E|x̄∆(s− τ)|p̄

)r/p̄
≤C(∆2γ ∨∆(h(∆))2).

Similarly, we have

E|g∆(x∆(s), x∆(s− τ))− g∆(x̄∆(s), x̄∆(s− τ))|2 ≤ C(∆2γ ∨∆(h(∆))2).

Consequently

H22 ≤ C(∆2γ ∨∆(h(∆))2). (3.16)

Step 3. Combining (3.12) - (3.16) together yields

E|e∆(t ∧ θi)|2 ≤ C

∫ t

0

E|e∆(s ∧ θi)|2ds+ C
(
∆2γ ∨∆(h(∆))2 ∨ (µ−1(h(∆)))−(p̄−r−2)

)
.
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The Gronwall inequality shows

E|e∆(T ∧ θi)|2 ≤ C
(
∆2γ ∨∆(h(∆))2 ∨ (µ−1(h(∆)))−(p̄−r−2)

)
Letting i → ∞ gives the first assertion (3.9). The second assertion (3.10) follows
from the first one and Lemma 3.4. The proof is therefore complete. �

We observe from Assumption 2.4 that

sup
|x|∨|y|≤u

(
|f(x, y)| ∨ |g(x, y)|

)
≤ K5u

(2+r)/2, u ≥ 1, (3.17)

for some K5 > 0. We can therefore let µ(u) = K5u
(2+r)/2 and h(∆) = ∆−ϵ for

some ϵ ∈ (0, 1/4]. This implies the following corollary immediately.

Corollary 3.7. Let Assumptions 2.1 - 2.4 hold and assume that p̄ > r + 2. Let
µ(u) = K5u

(2+r)/2 and h(∆) = ∆−ϵ for some ϵ ∈ (0, 1/4]. Then, for every ∆ ∈
(0, 1],

E|x(T )− x∆(T )|2 ≤ C∆2γ∧(1−2ϵ)∧(2ϵ(p̄−r−2)/(2+r)) (3.18)

and

E|x(T )− x̄∆(T )|2 ≤ C∆2γ∧(1−2ϵ)∧(2ϵ(p̄−r−2)/(2+r)). (3.19)

The following corollary is more useful sometimes.

Corollary 3.8. Let all the conditions of Corollary 3.7 hold. In particular, let
Assumption 2.1 hold for any p̄ > 2 (K1 depends on p̄ of course). Let µ(u) =
K5u

(2+r)/2 and h(∆) = ∆−ϵ for some ϵ ∈ (0, 1/4]. Then, for every ∆ ∈ (0, 1],

E|x(T )− x∆(T )|2 ≤ C∆2γ∧(1−2ϵ) (3.20)

and

E|x(T )− x̄∆(T )|2 ≤ C∆2γ∧(1−2ϵ). (3.21)

Proof. Choose p̄ > 2 sufficiently large for

2ϵ(p̄− r − 2)/(2 + r) > 1− 2ϵ.

The assertions then follow from Corollary 3.7. �
It is reasonable to regard the initial data ξ = {ξ(t) : −τ ≤ t ≤ 0} as the

observation of the solution on t ∈ [−τ, 0]. Recalling that the Brownian motion
is α-Hölder continuous for α ∈ (0, 0.5) (see, e.g., [KR88]), we may assume that
Assumption 2.2 holds for some γ ∈ (0, 0.5) close to 0.5. In this case, Corollary
3.8 shows the order of the convergence rate is close to 0.5. This is almost optimal
if we recall the order of the classical EM method applied to stochastic differential
equations (SDEs) is 0.5 under the global Lipschiz condition (see, e.g., [KP,M97]).

4 Comparison. Let us now compare our new Theorem 3.6 with the main result
of [GMY17], namely Theorem 2.5 in order to highlight the significant contribution
of our new result. Although the assumptions imposed in both theorems are almost
the same, we observe the following key differences:
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i). The key feature of Theorem 3.6 is that it does not require the restrictive
condition (2.14).

ii). The assertions of Theorem 3.6 hold for any ∆ ∈ (0, 1] while the assertions of
Theorem 2.5. hold only for sufficiently small ∆ which satisfies condition (2.14).

iii). Theorem 3.6 needs a slightly stronger condition on the parameters, namely
p̄ > r + 2, while Theorem 2.5 needs p̄ > r only.

iv). The assertions of Theorem 3.6 look slightly worse than those of Theorem 2.5
but could be the same when p̄ is sufficiently large, for example, 2ϵ(p̄−r−2)/(2+r) ≥
1− 2ϵ in Corollary 3.7.

The key advantage of our new Theorem 3.6 lies in that it does not need condition
(2.14). In Section 2.5, we have shown, via the example, that condition (2.14) could
sometimes make Theorem 2.5 inapplicable and hence our new Theorem 3.6 without
condition (2.14) is particularly useful in this situation.

5 Further Results. In Section 3, we showed that both truncated EM solutions
x∆(T ) and x̄∆(T ) converge to the true solution x(T ) in L2 for any T > 0. This is
sufficient for some applications e.g. when we need to approximate the European put
or call option value at time T (see, e.g., [HM05]). However, we sometimes need to
approximate quantities that are path-dependent, for example, the European barrier
option value. In these situations, we will need a stronger convergence result like

lim
∆→0

E
(

sup
0≤t≤T

|x∆(t)− x(t)|2
)
= 0.

We aim to establish such stronger results in this section. For this purpose, we need
to replace Assumption 2.4 with the following slightly stronger one.

Assumption 5.1. Assume that there is a pair of positive constants r and K4 such
that

|f(x, y)− f(x̄, ȳ)|2 ≤ K4(|x− x̄|2 + |y − ȳ|2)(1 + |x|r + |x̄|r + |y|r + |ȳ|r)
(5.1)

and

|g(x, y)− g(x̄, ȳ)|2 ≤ K4(|x− x̄|2 + |y − ȳ|2) (5.2)

for all x, y, x̄, ȳ ∈ Rn.

Let us make a useful remark.

Remark 5.2. As Assumption 5.1 is stronger than Assumption 2.4 so all the results
before hold if Assumption 2.4 is replaced with Assumption 5.1. Moreover, it is easy
to see that if Assumption 2.1 holds for some p̄ > 0, then it must hold for any p̄ > 2
as long as Assumption 5.1 holds as well. In fact, if Assumption 2.1 holds for some
p̄ > 0, then together with (5.2), there holds for any p > 2

xT f(x, y) +
p− 1

2
|g(x, y)|2 ≤ K̄1(1 + |x|2 + |y|2) (5.3)

for some K̄1. Recalling Corollary 3.8 and its proof, we can then conclude that the
term

C
(
∆2γ ∨ ∆(h(∆))2 ∨ (µ−1(h(∆)))−(p̄−r−2)

)
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throughout Section 3 can be replaced by

C∆2γ∧(1−2ϵ)

if Assumption 2.4 is replaced with Assumption 5.1 and we let µ(u) = K5u
(2+r)/2

and h(∆) = ∆−ϵ for some ϵ ∈ (0, 1/4].

We can now state our stronger result under the stronger conditions.

Theorem 5.3. Let Assumptions 2.1 - 2.3 and 5.1 hold and assume that p̄ > r+2.
Let µ(u) = K5u

(2+r)/2 and h(∆) = ∆−ϵ for some ϵ ∈ (0, 1/4]. Then, for every
∆ ∈ (0, 1],

E
(

sup
0≤t≤T

|x(t)− x∆(t)|2
)
≤ C∆2γ∧(1−2ϵ). (5.4)

Proof. We will use the same notation as in the proof of Theorem 3.6. The Itô
formula shows that

|e∆(t)|2 ≤ H3(t) +H4(t), 0 ≤ t ≤ T, (5.5)

where

H3(t) :=

∫ t

0

(
2eT∆(s)[f(x(s), x(s− τ))− f∆(x̄∆(s), x̄∆(s− τ))]

+ |g(x(s), x(s− τ))− g∆(x̄∆(s), x̄∆(s− τ))|2
)
ds

and

H4(t) :=

∫ t

0

2eT∆(s)
[
g(x(s), x(s− τ))− g∆(x̄∆(s), x̄∆(s− τ))

]
dB(s).

In the same way as in the proof of Theorem 3.6, we can show that

H3(t) ≤ (1 + 4K3)

∫ t

0

|e∆(s)|2ds

+

∫ t

0

(
|f(x∆(s), x∆(s− τ))− f∆(x̄∆(s), x̄∆(s− τ))|2

+ (1 + α−1)|g(x∆(s), x∆(s− τ))− g∆(x̄∆(s), x̄∆(s− τ))|2
)
ds.

Recalling (3.14), we then get

E
(

sup
0≤t≤T

H3(t)
)
≤ (1 + 4K3)

∫ T

0

E|e∆(s)|2ds+H21 +H22.

By Theorem 3.6 and Remark 5.2 as well as (3.15) and (3.16), we get

E
(

sup
0≤t≤T

H3(t)
)
≤ C∆2γ∧(1−2ϵ). (5.6)
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On the other hand, by the Burkholder-Davis-Gundy inequality (see, e.g., [DZ92]),
we derive

E
(

sup
0≤t≤T

H4(t)
)

≤6E
(∫ T

0

|e∆(s)|2|g(x(s), x(s− τ))− g∆(x̄∆(s), x̄∆(s− τ))|2ds
)1/2

≤6E
([

sup
0≤t≤T

|e∆(s)|2
] ∫ T

0

|g(x(s), x(s− τ))− g∆(x̄∆(s), x̄∆(s− τ))|2ds
)1/2

≤0.5E
[

sup
0≤t≤T

|e∆(s)|2
]
+ 9E

∫ T

0

|g(x(s), x(s− τ))− g∆(x̄∆(s), x̄∆(s− τ))|2ds.
(5.7)

But

E
∫ T

0

|g(x(s), x(s− τ))− g∆(x̄∆(s), x̄∆(s− τ))|2ds

≤2E
∫ T

0

|g(x(s), x(s− τ))− g(x∆(s), x∆(s− τ))|2ds

+2E
∫ T

0

|g(x∆(s), x∆(s− τ))− g∆(x̄∆(s), x̄∆(s− τ))|2ds.

Recalling the estimate on H2 in the proof of Theorem 3.6 as well as Remark 5.2,
we see that

E
∫ T

0

|g(x∆(s), x∆(s− τ))− g∆(x̄∆(s), x̄∆(s− τ))|2ds ≤ C∆2γ∧(1−2ϵ).

Moreover, by Assumption 5.1,

E
∫ T

0

|g(x(s), x(s− τ))− g(x∆(s), x∆(s− τ))|2ds

≤
∫ T

0

(
E|x(s)− x∆(s)|2 + E|x(s− τ)− x∆(s− τ)|2

)
ds

≤C∆2γ∧(1−2ϵ).

It therefore follows from (5.7)that

E
(

sup
0≤t≤T

H4(t)
)
≤ C∆2γ∧(1−2ϵ) + 0.5E

[
sup

0≤t≤T
|e∆(s)|2

]
. (5.8)

Hence the required assertion (5.4) follows from (5.5) along with (5.6) and (5.8). The
proof is complete. �

As pointed out in Section 3, x̄∆(t) is computable, but x∆(t) is not in general.
It would therefore be very useful to have a convergence result like (5.4) but x∆(t)
there is replaced by x̄∆(t). For this purpose, let us present a lemma.
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Lemma 5.4. Let ∆ ∈ (0, 1] and ϵ ∈ (0, 1/4]. Let ν be a sufficiently large integer
for which

2ν

2ν − 1
(T + 1)1/ν ≤ 2 and

1

ν
< ϵ. (5.9)

We then have

E
(

sup
0≤t≤T

|x∆(t)− x̄∆(t)|2
)
≤ 2(2ν + 1)(h(∆))2∆1−ϵ. (5.10)

Proof. Let κ be the integer part of T/∆, namely κ = ⌊T/∆⌋. Recalling (2.7), we
derive

E
(

sup
0≤t≤T

|x∆(t)− x̄∆(t)|2
)

≤ E
(

max
0≤k≤κ

sup
tk≤t≤tk+1

|f∆(x̄∆(tk))(t− tk) + g∆(x̄∆(tk))(B(t)−B(tk))|2
)

≤ 2E
(

max
0≤k≤κ

sup
tk≤t≤tk+1

|f∆(x̄∆(tk))|2(t− tk)
2 + |g∆(x̄∆(tk))|2|B(t)−B(tk)|2

)
≤ 2(h(∆))2

[
∆2 + E

(
max
0≤k≤κ

sup
tk≤t≤tk+1

|B(t)−B(tk)|2
)]

. (5.11)

By the Hölder inequality and the Doob martingale inequality, we then derive that

E
(

max
0≤k≤κ

sup
tk≤t≤tk+1

|B(t)−B(tk)|2
)

≤
[
E
(

max
0≤k≤κ

sup
tk≤t≤tk+1

|B(t)−B(tk)|2ν
)]1/ν

≤
[ κ∑
k=0

E
(

sup
tk≤t≤tk+1

|B(t)−B(tk)|2ν
)]1/ν

≤
[ κ∑
k=0

( 2ν

2ν − 1

)2ν

E|B(tk+1)−B(tk)|2ν
]1/ν

≤
[ κ∑
k=0

( 2ν

2ν − 1

)2ν

(2ν − 1)!!∆ν
]1/ν

≤
[( 2ν

2ν − 1

)2ν

(T + 1)(2ν − 1)!!∆ν−1
]1/ν

, (5.12)

where (2ν − 1)!! = (2ν − 1)× (2ν − 3)× · · · × 3× 1. But

[(2ν − 1)!!]1/ν ≤ 1

ν

ν∑
i=1

(2i− 1) = ν.

Hence

E
(

max
0≤k≤κ

sup
tk≤t≤tk+1

|B(t)−B(tk)|2
)
≤ 2ν

2ν − 1
(T + 1)1/νν∆(ν−1)/ν ≤ 2ν∆1−ϵ.

(5.13)
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Substituting this into (5.11) yields the required assertion (5.9). The proof is com-
plete. �

The following more useful theorem follows from Theorem 5.3 and Lemma 5.4
immediately.

Theorem 5.5. Let Assumptions 2.1 - 2.3 and 5.1 hold and assume that p̄ > r+2.
Let µ(u) = K5u

(2+r)/2 and h(∆) = ∆−ϵ for some ϵ ∈ (0, 1/4]. Then, for every
∆ ∈ (0, 1],

E
(

sup
0≤t≤T

|x(t)− x̄∆(t)|2
)
≤ C∆2γ∧(1−3ϵ). (5.14)

6 Examples. Let us discuss more examples in this section to illustrate our theory.

Example 6.1. Let us first return to the SDDE (2.17). In Section 2.5 we have
verified Assumptions 2.1 - 2.4 and, in particular, we have p̄ = 18.5, r = 4 and
γ = 0.5.

First of all, let h(∆) = ∆−1/5 as in Section 2.5. By Corollary 3.7, we can then
conclude that the truncated EM solutions will approximate the true solution x(t)
of the SDDE (2.17) in the sense that

E|x∆(T )− x(T )|2 ∨ E|x̄∆(T )− x(T )|2 ≤ C∆3/5 (6.1)

for all ∆ ∈ (0, 1]. We emphasise that the order ∆3/5 is the same as that in (2.18)
but (6.1) holds for any ∆ ∈ (0, 1] while (2.18) holds only if ∆ ≤ 10−11 which may
be too small in practice.

To improve the convergence order, we next let h(∆) = ∆−1/6 for ∆ ∈ (0, 1].
Then condition (2.14) becomes

∆−1/6 ≥ 10∆−1/8.25, namely, ∆ ≤ 10−22.

By Theorem 2.5, we can only conclude that

E|x∆(T )− x(T )|2 ∨ E|x̄∆(T )− x(T )|2 ≤ C∆2/3 (6.2)

for ∆ ≤ 10−22. But it is almost impossible to use such a small stepsize in practice.
On the other hand, by Corollary 3.7, we can conclude that

E|x∆(T )− x(T )|2 ∨ E|x̄∆(T )− x(T )|2 ≤ C∆2/3 (6.3)

for all ∆ ∈ (0, 1]. In other words, we do not only get the same convergence order
but also allow the stepsize ∆ ∈ (0, 1].

Example 6.2. Consider the scalar SDDE

dx(t) = f(x(t), x(t− τ))dt+ g(x(t), x(t− τ))dB(t), t ≥ 0, (6.4)

with the initial data {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ C([−τ, 0];R) satisfying Assumption
2.2, where

f(x, y) = a1 + a2|y|4/3 − a3x
3 and g(x, y) = a4|x|4/3 + a5y, x, y ∈ R,
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and a1, · · · , a5 are all real numbers with a3 > 0. Clearly, the coefficients f and g
are locally Lipschitz continuous. Moreover, for any p̄ > 2, we have

xf(x, y) +
p̄− 1

2
|g(x, y)|2 ≤ |a1||x|+ |a2||x||y|4/3 − a3|x|4 + (p̄− 1)(a24|x|8/3 + a25|y|2).

But, by the well-known Young inequality,

|x||y|4/3 = (|x|3)1/3(|y|2)2/3 ≤ |x|3 + |y|2.

We therefore have

xf(x, y) +
p̄− 1

2
|g(x, y)|2

≤ |a1||x|+ |a2||x|3 + a24(p̄− 1)|x|8/3 − a3|x|4 + (|a2|+ a25(p̄− 1))|y|2

≤ K1(1 + |y|2),

where K1 = (|a2|+ a25(p̄− 1)) ∨ β1 and

β1 = sup
u≥0

[
|a1|u+ |a2|u3 + a24(p̄− 1))u8/3 − a3u

4
]
< ∞.

That is, Assumption 2.1 is satisfied for any p̄ > 2.
To verify Assumption 2.3, we note that, for x, x̄, y, ȳ ∈ R,

(x− x̄)(f(x, y)− f(x̄, ȳ)) = (x− x̄)
[
− a3(x

3 − x̄3) + a2(|y|4/3 − |ȳ|4/3)
]

≤ −0.5a3|x− x̄|2(x2 + x̄2) + 0.5a22(x− x̄)2 + 0.5a22(|y|4/3 − |ȳ|4/3)2

while
|g(x, y)− g(x̄, ȳ)|2 ≤ 2a24(|x|4/3 − |x̄|4/3)2 + 2a25|y − ȳ|2.

But, by the mean-valued theorem,

(|y|4/3 − |ȳ|4/3)2 ≤ 16

9
|y − ȳ|2(|y|1/3 + |ȳ|1/3)2

≤|y − ȳ|2(|y|2/3 + |ȳ|2/3) ≤ |y − ȳ|2
(
β2 + (a3/2a

2
2)(|y|2 + |ȳ|2)

)
,

where
β2 = sup

u≥0
(2u2/3 − a3u

2/a22) < ∞.

Similarly,

(|x|4/3 − |x̄|4/3)2 ≤ |x− x̄|2
(
β3 + (a3/8a

2
4)(|x|2 + |x̄|2)

)
,

where
β3 = sup

u≥0
(2u2/3 − a3u

2/8a24) < ∞.

Hence, for α = 1,

(x− x̄)(f(x, y)− f(x̄, ȳ)) +
1 + α

2
|g(x, y)− g(x̄, ȳ)|2

≤ K3[|x− x̄|2 + |y − ȳ|2]− U(x, x̄) + U(y, ȳ),
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where K3 = 0.5a22(1 + β2) + 2a24β3 + 2a25 and

U(x, x̄) = 0.5a3|x− x̄|2(x2 + x̄2).

We have hence verified Assumption 2.3. It is also straightforward to show that
Assumption 2.4 is satisfied with r = 4 (and some K4 which is not important).

To apply Theorem 3.6, we still need to design functions µ and h satisfying (2.4)
and (3.1). Note that

sup
|x|≤u

(|f(x)| ∨ |g(x)|) ≤ âu3, ∀u ≥ 1,

where â = (|a1| + |a2| + a3) ∨ (|a4| + |a5|). We can hence have µ(u) = âu3 and
its inverse function µ−1(u) = (u/â)1/3 for u ≥ 0. For ϵ ∈ (0, 1/4], we define
h(∆) = ∆−ϵ for ∆ > 0. By Theorem 3.6, we can then conclude that the truncated
EM solutions will converge to the true solution of the SDE (6.4) in the sense that

E|x∆(T )− x(T )|2 ∨ E|x̄∆(T )− x(T )|2 ≤ C∆2γ∧(1−2ϵ) (6.5)

for all ∆ ∈ (0, 1]. In particular, if γ is close to 0.5 (or bigger than half), this shows
that the order of convergence is close to 0.5.

Example 6.3. Let us still consider the scalar SDDE (6.4) but change the diffusion
coefficient into g(x, y) = a4x + a5y. We see clearly Assumptions 2.1 - 2.3 and 5.1
hold. We also let µ(u) = âu3 for u ≥ 0 and h(∆) = ∆−ϵ for ϵ ∈ (0, 1/4]. Then, by
Theorem 5.5, we can conclude that for every ∆ ∈ (0, 1],

E
(

sup
0≤t≤T

|x(t)− x̄∆(t)|2
)
≤ C∆2γ∧(1−3ϵ). (6.6)

7 Conclusion. In this paper, we reviewed one of the main results of [GMY17]
and pointed out a restrictive condition imposed there via an example. We then
successfully established the strong convergence theory without this restrictive con-
dition. We compared our new result with the one in [GMY17] and highlighted our
significant contribution in this paper. We also established a new strong convergence
theory for the solutions over a finite time interval, and this was not discussed in
[GMY17]. Examples were used to motivate our paper and to illustrate our new
theory.
Acknowledgments. The authors would like to thank the referees for their very
helpful comments and suggestions.
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