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ABSTRACT 

 

Use of hyperspectral imaging (HSI) for automated 

characterisation of plants in a high-throughput plant 

phenotyping setup (HTPPS) is a challenging task. A 

challenge arises when the same plant is being monitored 

automatically during the experiment as it might not be in the 

same orientation as it was imaged last time. Such changes in 

orientation result in variations in illumination, which affects 

the signals recorded by the HSI setup. In addition, there are 

challenges with the use of threshold-based segmentation 

approaches such as normalised difference vegetation index 

(NDVI) for distinguishing between old and dead leaves, 

which might be observed in the later stages of experiments, 

from the soil background. Therefore, the potential of 

spectral normalisation for homogenising HS images and the 

use of supervised spectral set for plant segmentation is 

presented. Further, the effects of testing chemicals on plants 

were visualised using PCA of the HS images.  

 

Index Terms— visible-near infrared, standard normal 

variate, high-throughput plant phenotyping setup, automated 

 

1. INTRODUCTION 

 

HSI integrated to a HTPPS is emerging as a potential tool 

for early detection of stress-related symptoms in plant 

phenotyping related studies [1]. A major benefit of HSI 

compared to other imaging sensors is that it provides 

complementary spectroscopic and imaging information [2]. 

The visible region provides access to the pigments’ 

concentration and the near-infrared region provides 

information related to the moisture and internal structure of 

leaves [3]. However, implementing HSI for automated 

characterisation of plants in a HTPPS is a challenging task; 

different issues arise starting from handling and imaging 

plants to the processing of the huge volume of data 

generated by phenotyping experiments. 

A challenge with the monitoring of plants in an automated 

setup arises from the mechanical movement of the plant to 

the imaging part of the setup; the orientation of the plant 

with respect to the camera varies. Such a change in 

orientation causes differences in the illumination of the 

surface of the plant leaves, which gives rise to differences in 

the spectra. These differences can bias the modelling and 

therefore need to be homogenised.  

Another challenge comes from segmentation of images 

where threshold-based methods such as those based on 

NDVI estimations are commonly used in close range HSI 

[1]. NDVI threshold-based segmentation is sufficient when 

the plant is green and very distinct compared to the 

background. However, in the later stages of experiments 

when plants are old and leaves start to turn brown or in 

experiments testing chemicals or other stress inducers where 

part of the plant starts to die, then selection of the NDVI 

threshold is a difficult task. In such cases, the NDVI for the 

background soil is similar to that for the old and dead leaves 

of the plant, and hence NDVI threshold-based segmentation 

will remove the contributions from the old and dead plants 

together with the soil from the image. However, retention of 

data from these old plants is important for modelling to 

capture the complete image change over time. 

A challenge also exists from a data visualisation point of 

view as the HS image typically consist of hundreds of bands 

and information can be extracted directly from the 

experiments. Visualising individual wavelengths or 

calculation of indices can provide an image with enhanced 

contrast. However, as the indices are usually calculated 

independently for each image, it is difficult to deduce how 

they relate to the next time point or other images within the 

same experiment. In such a case, identifying the main 

sources of variability in HS images and then using this 

information to understand the evolution of the system can be 

a solution. Principal component analysis (PCA) can support 

this task as the extracted principal components (PCs) can 

explain the sources of variability during experiments, which 
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can subsequently be used to generate contrast maps 

supporting visualisation of 3D HSI cubes as 2D score maps. 

The objective of this work is to show the potential of a 

spectral normalisation technique, standard normal variate 

(SNV), to homogenise HS images acquired of plants in a 

HTPPS. Further, the study presents a spectral similarity-

based segmentation approach utilising a supervised set. 

Finally, the study presents an application of PCA for 

visualising the testing of chemicals on plants in a 

phenotype study. 
 

2. MATERIAL AND METHODS 

 

2.1. Image acquisition 

 

Images were recorded with a HTPPS at Bayer Crop Science, 

Frankfurt, Germany. To record the images, the setup utilises 

a push broom line-scan hyperspectral camera from 

Headwall Photonics, Massachusetts, USA. The camera 

recorded the image with a spectral range of 400 – 1000 nm 

recording 270 spectral bands with 640 spatial pixels. The 

number of spatial pixels recorded in each scan was 1600  

1600. The illumination was provided with two halogen 

bulbs aligned at 45 to the field of view (FOV) of the 

camera. The plant was automatically brought to the camera 

and imaging of the plant was performed by keeping the 

plant still at the FOV and moving the camera, using a 

motorised stage, to record the plant and the white reference 

standard (spectralon). For the evaluation of the 

homogenisation and segmentation methodologies, images 

were acquired of two plants, of the same type, at different 

growth stages with the plants measured at four different 

orientations relative to the camera. The images acquired for 

chemical testing were of 7 plants where 1 plant was 

untreated and 6 were treated with different chemicals. 

 

2.2. Samples description 

 

2.3. Data processing 

 

2.3.1. Radiometric calibration 

Radiometric calibration utilising dark and white reference 

images was performed for every pixel in the HS image 

according to equation (1):  

  (1) 

where, IR is the calibrated reflectance, Iraw is the raw 

intensity measured from the test sample, Idark is the intensity 

of the dark response, Iwhite is the intensity of the uniform 

white reference, and i and j are spatial coordinates and k is 

the wavelength of the image.  

2.3.2. Smoothing and Normalisation 

The spectral range of the hypercube was reduced to 450 – 

900 nm to remove the noisy part of the spectrum. Further, a 

moving window Savitzky-Golay filter [4] (15-point width 

and second order polynomial) was applied to each pixel of 

the image to remove random noise, e.g. spikes, from spectra. 

Further, to reduce light scattering effects arising from 

inhomogeneity of the leaf surface, the spectra were 

normalised using the SNV transformation [1,5]. 

 

2.3.3. Segmentation 

The segmentation approach used in this work involved 

comparing a set of supervised spectra with each pixel in a 

HS image and then assigning the pixel to a class; with 1 and 

0 denoting membership and non-membership of a class, 

respectively. The spectral similarity was measured utilising 

the Euclidean Distance (ED) and the pixels were assigned to 

a class on the basis of the minimum distance to a spectral 

set. For comparison with the methodologies presented here, 

NDVI was also calculated for the HS images of plants using 

equation (2): 

 

  (2) 

where, i and j are spatial coordinates and the values of 670 

and 740 are wavelengths (in nm).  

2.3.4. Principal component analysis 

PCA transforms a set of observations containing correlated 

variables to observations containing linearly uncorrelated 

variables defined as principal components (PCs) [6]. The 

basic consideration used for implementing PCA is that the 

transformation is performed to retain the maximum amount 

of variability in the dataset. Furthermore, the extraction of 

PCs is carried out in such a way that the first PCs retain the 

maximum amount of variability, and the subsequent PCs 

contain the highest amount of variation but orthogonal to the 

variability explained by the PCs previously extracted. In this 

way, the PCs define a new orthonormal basis set which can 

be used to transform the data from a high dimension space 

to the lower space explained by the PCs. In present work, a 

global PCA was performed over all the images to present 

explainable differences. PCA was performed by unfolding 

the 3D cubes to 2D matrices and later refolding the scores to 

generate false color images. 

3. RESULTS 

 

Figure 1 presents images acquired of the two plants at 

different growth stages and at four different orientations 

relative to the HSI camera. Plant 1 was mature compared to 



plant 2 as can be see with the canopy area visually. The red 

circles in Figure 1 show how the orientation of the plant was 

tracked. The orientation was denoted 0, 90, 180 and 270.  

 

 

Figure 1: Two plants at different growth stage acquired 

at different orientations relative to the camera. The red 

circles were used to track the orientation of the plant 

relative to the camera. 

The mean reflectance spectra (without and with 

normalisation) extracted from the images of plant 1 and 2 

can be seen in Figures 2 and 3, respectively. It can be seen 

clearly in Figures 2(a) and 3(a) that when the same plant is 

imaged at different orientations, the reflectance spectra are 

different owing to variations in the illumination of the plant. 

However, it can be seen that normalisation using the SNV 

transformation removes these differences as shown in 

Figures 2(b) and 3(b). 

 

 

Figure 2: Mean spectra from plant 1 at 4 different 

orientations. (a) Reflectance spectra and (b) normalised 

spectra. 

 

Figure 3: Mean spectra from plant 2 at 4 different 

orientations. (a) Reflectance spectra and (b) normalised 

spectra. 

Figures 4 and 5 presents the results of segmentation with 

NDVI and similarity, respectively, based on a supervised 

spectral dataset. It can be seen that it is difficult to segment 

the dead leaves using the NDVI (Figure 4), whereas the 

similarity-based method (Figure 5) provides a better 

segmentation of the plants. Increasing the NDVI threshold 

removed the old/dead parts of the plant along with the soil 

and background, whereas choosing a low NDVI retained 

features in the image that do not belong to the plants. 

 

 

Figure 4: Masks generated from NDVI threshold. 

 

 

Figure 5: Segmentation performed utilising similarity to 

a supervised dataset. 

 



 

Figure 6: Score 1 vs Score 2 samples used in chemical 

testing. UT denotes the untreated plant while T1 to T6 

denote the six plants that were treated. 

Figure 6 presents the results of PCA performed on the image 

set presented in Figure 7 related to chemical analysis. It can 

be seen in Figure 6 that the scores of the untreated plant lie 

mainly in the center of the PC biplot. However, after 

treatment with the chemical the PC1 scores for the plant 

increases. The increase in score gives an indication of the 

potency of the different chemicals, with plants having much 

higher PC1 scores being more damaged by the treatment of 

the plant with a chemical (e.g. T3). The score maps obtained 

from PCA of the HS images are presented in Figure 7. 

 

 

Figure 7: False colour images, generated from PC1 

scores, of the untreated plant and the 6 plants treated 

with different chemicals. 

The scores maps presented in Figure 7 show similar changes 

caused by the application of chemicals to the plants. It can 

be seen from Figure 7 that the PC scores for the untreated 

plant are similar over most of the plant (primarily blue), 

whereas differences (indicated by the yellow regions) are 

apparent in those plants treated with chemicals. The 

brightest yellow region represents the most damaged part of 

the plant, whereas the greenish yellow region represents 

intermediate damage. It can be concluded from Figures 6 

and 7 that treatment 3 seems to be the most potent, which 

gives rise to the highest PC1 scores. 

 

4. CONCLUSIONS 

 

In the present work, a HTPPS setup was utilised to perform 

HSI imaging of plants. The results showed that 

normalisation can homogenise the HS images, which can 

eliminate spectral variability arising from differences in 

illumination that can occur in continuous automated 

measurements. In addition, it has been shown that plant 

segmentation utilising a supervised spectral dataset based on 

similarity is a practical solution for segmenting plants, 

which have older and/or dead parts. Further, it has been 

shown that for an initial understanding of the data, variance 

capturing analysis such as PCA can be used and 3D HS 

images can be visualised as 2D false colour maps. Future 

work will include developing metrics to quantify the 

changes in the PC space which can be used for decision 

making. 
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