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Abstract  30 

Biomechanical motion data involving impacts are not adequately represented using 31 

conventional low-pass filters (CF). Time-frequency filters (TFF) are a viable alternative, but 32 

have been largely overlooked by movement scientists. We modified Georgakis and 33 

Subramaniam’s (2009) fractional Fourier filter (MFrFF) and demonstrated it performed better 34 

than CFs for obtaining lower leg accelerations during football instep kicking. The MFrFF 35 

displayed peak marker accelerations comparable to a reference accelerometer during foot-to-36 

ball impact (peak % error = -5.0 ± 11.4%), whereas CFs severely underestimated these peaks 37 

(30 - 70% error). During the non-impact phases, the MFrFF performed comparably to CFs 38 

using an appropriate (12 - 20Hz) cut-off frequency (RMSE = 37.3 ± 7.6 m/s2 vs. 42.1 ± 11.4 39 

m/s2, respectively). Since accuracy of segmental kinematics is fundamental for understanding 40 

human movement, the MFrFF should be applied to a range of biomechanical impact scenarios 41 

(e.g. locomotion, landing and striking motions) to enhance the efficacy of study in these areas.  42 
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Introduction 54 

Accurate quantification of velocities and accelerations using camera-based motion analysis is 55 

essential for understanding human movement. To minimise high frequency error from soft 56 

tissue artefact and system limitations, marker displacements are low-pass filtered prior to 57 

calculation of such parameters (Giakas et al., 2000; Robertson and Dowling, 2003). However, 58 

conventional low-pass filters (CFs) (e.g. digital filters) have been criticised for their inability to 59 

treat motions involving impacts (Giakas et al., 2000). Since impacts amplify the frequency 60 

content of the motion of the impacting body (i.e. causes sudden deceleration) (Georgakis et 61 

al., 2002a,b), yet CFs use a constant cut-off frequency for the entire signal time-series (Figure 62 

1), they cannot optimally remove high frequency error from impact and non-impact phases 63 

concurrently. This may lead to distortion of variables near to impact and erroneous 64 

interpretation of the movement in question (Knudson and Bahamonde, 2001; Nunome et al., 65 

2006). For example, lower limb kinematics have been used to predict injury during foot-to-66 

ground contact in locomotion (Milner et al., 2006; Pohl et al., 2008) and landing motions 67 

(Hewett et al., 2005), and distal endpoint kinematics as performance indicators in striking 68 

sports (Joyce et al., 2011; Marshall and Elliott, 2000). Use of CFs may ultimately restrict our 69 

ability to understand injury risk or performance in these scenarios. 70 

One alternative is to use a filter with a time-varying cut-off frequency, or time-frequency filter 71 

(TFF) (Giakas et al., 2000). When the impact induces expansion of the frequency content of 72 

a marker, the TFF increases the cut-off value so signal to noise ratios are optimised. TFFs 73 

have been used extensively in optics, speech and music processing, and biomedical 74 

engineering (Ozaktas et al., 1996), but have been largely ignored by biomechanists. This is 75 

despite evidence TFFs outperform CFs during aforementioned activities (e.g. running, Alonso 76 

et al., 2005; landing, Georgakis et al., 2002a; and ball kicking, Nunome et al., 2006). Georgakis 77 

and Subramaniam’s (2009) fractional Fourier filter (FrFF) is one TFF that has been designed 78 

for use with marker displacement data, but has not been widely implemented. The FrFF 79 

processes marker trajectories in consecutive fractional Fourier domains, and the current study 80 



modified the algorithm (MFrFF) (i.e. filter parameter selection) for use during ball kicking 81 

motions. Since accurate determination of lower leg kinematics is key for understanding ball 82 

kicking performance (Nunome et al., 2006), the aim of this study was therefore to determine if 83 

the MFrFF performed better than CF methods for obtaining lower leg accelerations during 84 

impact and non-impact phases of football instep kicking. 85 

Methods 86 

Fractional Fourier Filter Parameter Selection and Implementation 87 

Georgakis and Subramaniam (2009) described the design and operation of the FrFF. The 88 

algorithm uses a ‘triangular’ filter boundary which raises the cut-off frequency to retain the 89 

time-dependent expansions in frequency content during an impact and determines the 90 

appropriate fractional domains with cut-off values based on triangular boundary parameters 91 

(Figure 1).  92 

**Figure 1 near here** 93 

Filter boundary parameters were determined as follows. Non-impact phase cut-off frequencies 94 

(𝑋1), were determined by residual analysis (Winter, 2009). The time of maximum acceleration 95 

during impact (𝑡𝐼) was determined as the instance of peak acceleration (2nd derivative of 96 

unfiltered marker displacement) ± 10 ms of the temporal midpoint of impact. Impact width 97 

(𝑊) and height (𝐻) were optimised by selecting the filter solution that minimised: a) absolute 98 

error (m/s2) between peak accelerations obtained from MFrFF filtered and unfiltered marker 99 

trajectories (i.e. maintaining peak acceleration during impact) and b) mean square error 100 

between accelerations from the MFrFF and CF filtered marker trajectory (4th order, dual pass, 101 

Butterworth filter, 18 Hz cut-off) ± 10 - 50 ms either side of impact (i.e. reducing high frequency 102 

content during pre and post non-impact phases). Iterative implementation of the MFrFF using 103 

the ‘fminsearch’ optimisation function within Matlab (2017a, Natick, USA) determined the 104 

magnitudes of, and ratio between 𝑊 and 𝐻 that best satisfied a) and b) for a given marker 105 

trajectory. The starting point for calculations was a 𝑊 to 𝐻 ratio of 1:11000 (if 𝑊 = 0.01s, 𝐻 = 106 



110 Hz) and initial 𝑊 was manually determined by acceleration of the ball above and below 107 

200 m/s2 (i.e. ball contact start and end; Nunome et al., 2006). Custom Matlab scripts 108 

implemented these routines on individual marker trajectories (i.e. separate X, Y and Z 109 

components). 110 

Experiment, Data Collection and Analysis 111 

Football instep kicking induces a considerable impact as the foot contacts the ball (Nunome 112 

et al., 2006). If a CF is used to filter ‘through’ the impact phase, kinematic variables near the 113 

time of impact will contain considerable error (Knudson and Bahamonde, 2001). Thus, 114 

accelerations from marker trajectories filtered by each MFrFF and five variations of a CF were 115 

compared to those from a reference accelerometer (1000 Hz, 14 x 13 x 14 mm, 8 g; ± 1000 116 

G; S3-1000GHA, Biometrics Ltd, Newport, UK). CFs were variations of a 4th order, dual pass, 117 

zero lag Butterworth digital filter (chosen as the most commonly used methods in ball kicking 118 

literature; Table 1).  119 

**Table 1 near here** 120 

Following institutional ethical approval and written informed consent, eight semi-professional 121 

male footballers (77.3 ± 4.1 kg, 1.78 ± 0.05 m, 25.8 ± 2.9 years) performed ten maximal kicks 122 

with a size 5 ball. The accelerometer was attached to the lateral side of the kicking leg 5 cm 123 

above the malleolus on a line towards the femoral epicondyle, and tape was wrapped around 124 

the leg to ensure it was stationary relative to the shank. Accelerations were filtered on-board 125 

by an elliptical filter (cut-off = 312 Hz). The synchronised motion of a reflective marker (12.6 126 

mm) placed on the accelerometer was recorded by a 10-camera, motion analysis system 127 

(1000Hz; Vicon T40S, Vicon Motion Systems, Oxford, UK). Trajectories were exported to 128 

Visual 3D (V6, Rockville, USA), replicated and filtered in the six filter conditions. Dependent 129 

variables were root mean square error (between initiation of final stride to end of follow 130 

through; RMSE) and percent peak error during impact (%PE) of resultant accelerations 131 



(magnitude of X, Y, Z components) between the accelerometer and motion analysis data (2nd 132 

derivative of marker trajectory calculated by finite differences). 133 

One-way repeated measures ANOVAs determined differences in RMSE and %PE between 134 

the six filter conditions, compared to accelerometer. If sphericity was violated (Mauchly’s = P 135 

< 0.05), the Greenhouse-Geisser adjustment was used. Alpha for main effects was Bonferroni 136 

adjusted to α = 0.025. Bonferroni adjusted contrasts determined pairwise differences between 137 

each CF and the MFrFF to further control Type-I error (α = 0.005). Effect sizes were calculated 138 

as per Cohen (1988). The 95% limits of agreement (LOA; Bland and Altman, 1999) between 139 

accelerometer and motion analysis were also calculated for peak values at impact (N = 80 140 

trials). All statistical tests were conducted using SPSS (V23, IBM, New York, USA).  141 

Results 142 

Both RMSE and %PE were different between filter conditions (p < 0.001). The MFrFF 143 

produced smaller %PE (-5.0 ± 11.4%) compared to the reference accelerometer than each 144 

CF (p < 0.001; Table 2), with large effect sizes (d > 0.8). The BW-250 and BW-DS (228.8 ± 145 

75.4 and 49.1 ± 7.9 m/s2, respectively) produced larger RMSE values than MFrFF (p < 0.001; 146 

Table 2), whereas BW-REF (25.4 ± 10.8 m/s2) produced smaller RMSE values than MFrFF 147 

(37.3 ± 7.6 m/s2; p < 0.001). Effect sizes were moderate to large (d > 0.5 or d > 0.8).  148 

In absolute terms, the MFrFF produced peak accelerations that were 41.6 m/s2 larger than the 149 

accelerometer, but might produce accelerations 133.2 m/s2 less than (95% CI = 108.3 – 158 150 

m/s2) or 233.3 m/s2 greater than (95% CI = 208.2 – 258.2 m/s2) the accelerometer (Table 2). 151 

The BW-12, BW-20, BW-REF and BW-DS displayed 95% LOA that were exclusively lower 152 

than the accelerometer (upper limits ratio < 1) and the BW-250 displayed excessively wide 153 

LOA. A representative comparison of time-series accelerations obtained from each filter 154 

condition is shown in Figure 2. 155 

**Table 2 and Figure 2 near here** 156 

 157 



Discussion 158 

Filter Performance 159 

The MFrFF accurately detected rapid decelerations at the lower leg during foot-to-ball contact, 160 

whereas CFs could not. The MFrFF thus retained most high frequency marker content owing 161 

to physical sources, while the majority of high frequency noise was attenuated. This supports 162 

research that used TFFs to accurately represent landing (Georgakis and Subramaniam, 2009) 163 

and ball kicking impact kinematics (Nunome et al., 2006). The BW-250 also retained high-164 

frequency content during impact, but these values were likely indicative of noise that was 165 

evident throughout the kick (Figure 2). Conversely, CFs that filtered through impact using a 166 

low-cut off frequency severely underestimated marker accelerations during impact. All high 167 

frequency content was removed and the sudden deceleration owing to impact was not evident. 168 

BW-12 and BW-DS also showed decelerations occurring before impact, which is known to be 169 

a result of over filtering (Knudson and Bahamonde, 2001; Nunome et al., 2006). Finally, the 170 

BW-REF accurately produced marker accelerations up until ball impact, but was unable to 171 

detect changes during and after the impact (Knudson and Bahamonde, 2001). This condition 172 

also produced significantly lower RMSE values than the MFrFF, but this was due to the error 173 

introduced during and post impact that was included for the MFrFF and missing for the BW-174 

REF.  175 

As well as performing better during impact, the MFrFF also adequately removed high 176 

frequency noise from the pre and post impact swing phases. RMSE values were comparable 177 

to CFs that used a high sampling rate (1000Hz) and low cut-off frequency (i.e. BW-12 and 178 

BW-20) and these methods are known to produce valid accelerations during motions without 179 

an impact (Giakas et al., 2000; Robertson and Dowling, 2003). Furthermore, the BW-250 180 

condition was unable to adequately attenuate high-frequency noise during the non-impact 181 

phase, and displayed inadequately large RMSE values. Ultimately, the MFrFF maintained 182 

good signal to noise ratios during both impact and non-impact phases of the kick, whereas 183 

CFs could not. 184 



Practical Implications 185 

The current study modified the FrFF (Georgakis and Subramaniam, 2009) to accurately 186 

quantify kinematics during football instep kicking (Nunome et al., 2006). The MFrFF could thus 187 

be used to enhance the efficacy of future study involving ball kicking.  Furthermore, while this 188 

is only one example of MFrFF application, the method has potential to enhance understanding 189 

of other human motion involving impacts (e.g. landing and running motions). Since CFs may 190 

result in flawed velocities and accelerations near to impact (Knudson and Bahamonde, 2001), 191 

researchers should carefully consider the effect that filter choice has on practical interpretation 192 

of their data. Interactions occur between the body and the external environment in almost all 193 

examples of human motion, and these invariably induce marker displacements that 194 

necessitate use of a TFF. It is therefore important TFF methods become widely implemented, 195 

and future research should assess the efficacy of TFFs for quantifying kinematic variables 196 

during other human movement scenarios. 197 

The MFrFF also addressed some of the barriers that have prevented widespread application 198 

of TFFs. First, MFrFF parameter selection was almost entirely automated. The only user input 199 

required was to determine the temporal start and end of the impact (Alonso et al., 2005). The 200 

chances of manually selecting erroneous parameters and obtaining a non-optimal filter 201 

solution were thus minimised. Second, the optimisation process selected filter parameters 202 

exclusively from the physical characteristics of marker displacements. While this is not 203 

necessarily a novel feature of the FrFF, this study showed the original method can be readily 204 

adapted for different impact scenarios. Third, while it is acknowledged the MFrFF required 205 

higher sampling rates than commonly used in ball kicking studies (~100 - 500 Hz; Kellis and 206 

Katis, 2007), this is typically possible in most well-equipped laboratories. Higher sampling 207 

rates are necessary to ensure enough data points are included during the short duration of 208 

impact (~10 ms) to allow the FrFF to function correctly. Finally, to date, only the theoretical 209 

and computational details of TFFs are available (Georgakis et al., 2002a,b; Georgakis and 210 

Subramaniam, 2009). Since these are often complex, it is difficult for researchers to use TFFs 211 



without designing their own parameter selection and implementation algorithms. To be useful, 212 

future research should present TFFs in formats that are readily integrated with software tools 213 

commonly used by motion scientists. 214 
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Tables 281 

Table 1. Description of conventional filter conditions. Filter cut-offs of ‘filtered through’ 282 
conditions were chosen to represent studies that have focussed on swing phase (BW-12 and 283 
BW-20; e.g. Dorge et al., 2002) or ball impact kinematics (BW-250; e.g. Shinkai et al., 2009). 284 
The BW-REF was chosen to show the influence of truncating data before the onset of impact 285 
(e.g. Ball, 2008) and BW-DS the effect of down sampling data to a rate comparable to the 286 
majority of ball kicking literature (~100 - 400Hz; Kellis and Katis, 2007).   287 

 Filter 
Name 

Filter Type 
Sample 

Rate (Hz) 

Cut-Off 
Frequency 

(Hz) 
Impact Phase 

Start and End Endpoint 
Extrapolation 

BW-12 
4th order, dual 

pass Butterworth 
1000 12 Filtered through 

One-hundred frames 
reflection, removed following 

filter application 

BW-20 
4th order, dual 

pass Butterworth 
1000 20 Filtered through 

One-hundred frames 
reflection, removed following 

filter application 

BW-250 
4th order, dual 

pass Butterworth 
1000 250 Filtered through 

One-hundred frames 
reflection, removed following 

filter application 

BW-REF 
4th order, dual 

pass Butterworth 
1000 20 

Truncated one frame 
before ball contact 

initiated 

One-hundred frames 
reflection, removed following 

filter application 

BW-DS 
4th order, dual 

pass Butterworth 
250  12 Filtered through 

Twenty-five frames 
reflection, removed following 

filter application 

 288 
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Table 2. Mean ± s.d. percent peak error (%PE) and root mean square error (RMSE) values of 302 
each filter condition compared to accelerometer data, pairwise comparisons of each 303 
conventional filter technique with the MFrFF, and ratio 95% limits of agreement between peak 304 
resultant accelerations obtained at ball impact from each filter condition and the reference 305 
accelerometer (N = 80 trials).  306 

    MFrFF BW-12 BW-20 BW-250 BW-REF BW-DS  

%PE 
(%) 

Mean ± 
s.d. 

-5.0 ± 
11.4 

66.7 ± 
       7.1 

54.1± 
9.1 

-25.4 ± 
18.3 

36.1 ±  
24.2 

64.9 ±   
10.7 

 

 

p-value  <0.001* <0.001* <0.001* 0.001* <0.001*  

Effect 
size (d) 

  7.6 5.7 -1.3 2.2 6.5 
 

        
 

RMSE 
(m/s2) 

Mean ± 
s.d. 

37.3 ± 
7.6 

45.4 ±  42.1 ±  
11.4 

228.8 ± 
75.4 

25.4 ± 49.1 ±   

10.8 10.8 7.9  
p -

value 
 0.023 0.152 <0.001* 0.001* <0.001* 

 

Effect 
size (d) 

  0.8 0.4 3.6 -1.3 1.5 
 

  
        

      
Ratio differences with 
accelerometer 

Ratio 95% limits of agreement with accelerometer 
 

   Mean  SD 
Lower 
Limit 

[95% CI] Upper Limit [95% CI] 
 

MFrFF 1.05 0.11 0.84 
[0.81-
0.87] 

1.28 
[1.25-
1.31]  

BW-12 0.33 0.24 0.22 
[0.16-
0.27] 

0.50 
[0.45-
0.55]  

BW-20 0.46 0.15 0.37 
[0.33-
0.40] 

0.63 
[0.60-
0.67]  

BW-250 1.26 0.25 0.75 
[0.70-
0.81] 

1.78 
[1.72-
1.84]  

BW-REF 0.64 0.19 0.42 
[0.38-
0.46] 

0.81 
[0.77-
0.85]  

BW-DS 0.33 0.24 0.21 
[0.16-
0.27] 

0.50 
[0.44-
0.55]  

* denotes significantly different to FrFF condition (P < 0.005).  
  

d = 0 - 0.2 trivial effect, 0.2 - 0.5 small effect, 0.5 - 0.8 = medium effect, > 0.8 large effect.  

Positive values show peak value from accelerometer was greater than from motion analysis, and vice versa.  

Ratio > 1.00 indicates that motion analysis gave a higher acceleration than the accelerometer. 
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Figure Captions 315 

Figure 1. Example showing constant cut-off frequency (fc) of conventional filter (left) and time-316 

varying fc boundary of the fractional Fourier domain filter (right).  X1 = cut-off of non-impact 317 

phase, W = width of impact, H = height of impact, ti = time of impact centre. 318 

Figure 2. Representative trial showing time-series resultant accelerations (magnitude of X, Y 319 

and Z components) obtained from accelerometer (red line) and the six filter conditions (black 320 

lines) between the events of initiation of final stride (0.6 s) and end of follow through (0.7 s). 321 

The respective filter condition is shown above each plot. Vertical dashed lines indicate the 322 

start and end of ball impact, respectively.  323 
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