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SUMMARY

Group testing, introduced by Dorfman (1943), has been used to reduce costs when estimating
the prevalence of a binary characteristic based on a screening test of k groups that include
n independent individuals in total. If the unknown prevalence is low and the screening test
suffers from misclassification, it is also possible to obtain more precise prevalence estimates
than those obtained from testing all n samples separately (Tu et al., 1994). In some applications,
the individual binary response corresponds to whether an underlying time-to-event variable T
is less than an observed screening time C, a data structure known as current status data. Given
sufficient variation in the observed C values, it is possible to estimate the distribution function F
of T nonparametrically, at least at some points in its support, using the pool-adjacent-violators
algorithm (Ayer et al., 1955). Here, we consider nonparametric estimation of F based on group-
tested current status data for groups of size k where the group tests positive if and only if
any individual’s unobserved T is less than the corresponding observed C. We investigate the
performance of the group-based estimator as compared to the individual test nonparametric
maximum likelihood estimator, and show that the former can be more precise in the presence of
misclassification for low values of F(t). Potential applications include testing for the presence
of various diseases in pooled samples where interest focuses on the age-at-incidence distribution
rather than overall prevalence.We apply this estimator to the age-at-incidence curve for hepatitis C
infection in a sample of U.S. women who gave birth to a child in 2014, where group assignment is
done at random and based on maternal age. We discuss connections to other work in the literature,
as well as potential extensions.

Some key words: Current status data; Expectation-maximization algorithm; Group testing; Pool-adjacent-violators
algorithm.

1. INTRODUCTION

In the past decade, group testing of a binary response has once again become a topic of great
interest (Remlinger et al., 2006; Wahed et al., 2006; Dhand et al., 2010). The idea was first
introduced in 1943 as a potential cost-saving measure for the detection of syphilis in U.S. army
recruits (Dorfman, 1943). Group testing reduces the number of tests by allocating, randomly or
otherwise, n individuals into J groups of equal size k and testing each pooled group only once,
in order to provide an estimate of the prevalence of a binary characteristic in a population.

More recent work has considered potential issues with group testing, such as dilution effects,
non-random group assignment, and misclassification (Hwang, 1976; Wein & Zenios, 1996;
Delaigle & Hall, 2012; Liu et al., 2012). Tu et al. (1995) suggested that if the unknown prevalence
of a binary characteristic is sufficiently low and the screening test suffers from misclassification,
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more precise estimates of the prevalence can be obtained from J group tests than by testing all n
individuals separately. The intuition behind this finding is complex. When a test has a rate of mis-
classification independent of the number of individuals in the pooled sample, performing fewer
tests could increase the precision of the prevalence estimate due to fewer tests being performed,
thereby leading to less noise in the observations. This is particularly the case when the prevalence
is sufficiently small, making it uncommon that two positives will occur in the same group.

The data structure where an individual’s binary response corresponds to an underlying time-
to-event variable T occurring before an observed screening time C is known as current status
data, or interval censoring type I (Jewell & van der Laan, 2003; Jewell & Emerson, 2013). The
nonparametric maximum likelihood estimator of the distribution function, F , of T for current sta-
tus data is the pool-adjacent-violators algorithm, although it is only possible to use this estimator
if there is sufficient variation in the observed screening times C (Ayer et al., 1955).

In this paper, we develop a simple algorithm to compute a nonparametric maximum likelihood
estimator of F for group-tested current status data, and extend it to settings where the test is
subject to misclassification. When misclassification is present, we hypothesize that there will
sometimes be substantial gains in precision for values of T at which the prevalence is sufficiently
small, as described by Tu et al. (1995) in the case of estimating a single fixed prevalence.

2. NOTATION AND LIKELIHOOD FUNCTION

We assume that the underlying data, prior to grouping, arise from n independent realizations
of a bivariate random variable, � = (1(T < C), C), where the survival random variable T and
screening random variable C follow distribution functions F and G, respectively. Throughout, we
assume that T and C are independent. The observed data are based on grouping these realizations
at random into blocks of size k , where for convenience we assume that n/k is an integer. It is trivial
to extend all the results below to situations where the block sizes may vary. Thus each original
unit corresponds to the jth individual in the ith group, where i = 1, . . . , n/k and j = 1, . . . , k .
The group-tested result from the ith group, �i, is the only test result available, whereas individual
screening times, Cij, are observed for all participants. Specifically, �i = 0 if and only if �ij = 0
for all j = 1, . . . , k , and �i = 1 otherwise. The group test detects the presence of one or more
positives in the group, but cannot distinguish between a single, or several, positive �ij. The
immediate goal is to estimate the distribution function F .

Owing to the assumed independence of T and C, we can focus on the conditional likelihood
of the data given the observed screening times {Cij : i = 1, . . . , n/k; j = 1, . . . , k}. Since
pr(�i = 0 | Cij : j = 1, . . . , k) = ∏k

j=1 pr(�ij = 0 | Cij), this conditional likelihood is

CL =
n/k∏
i=1

{
S(ci1) × · · · × S(cik)

}1−δi
{
1 − S(ci1) × · · · × S(cik)

}δi , (1)

where S = 1 − F is the survival function of T . This conditional likelihood applies to various
methods of selecting the screening times C and assigning the observations to groups for testing.
At one extreme, the C values in each group are selected completely at random; at the other end
of the spectrum, individuals with a common value of C are assigned to the same group. The
latter sampling scheme is only fully feasible if the distribution function G is discrete. While the
estimation strategy pursued here applies generally, estimation is much simpler with a common
C value in each group, and asymptotic properties of the estimator are more easily derived in
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that case. For example, with a common value of C in each grouping of fixed group size k , the
likelihood (1) simplifies to that for the standard current status data problem with underlying
survival function Sk(ci) = S(ci)

k . Estimates and inference regarding Sk can then be immediately
translated to corresponding statements regarding S itself. In practice, with a continuous G, it may
be advantageous to group together individuals with approximately the same value of C.

This development assumes a perfect screening test of whether or not the true group test result
was positive, �i = 1. We can extend these ideas to permit misclassification of the test results, and
we now use the notation Y to distinguish the potentially misclassified test result from the true result
�. Assume that the test has known sensitivity and specificity, independent of both the screening
time C and the group size, given by α = pr(Y = 1 | � = 1) and β = pr(Y = 0 | � = 0) with
the assumption that α + β > 1. Then the conditional likelihood of the potentially misclassified
data, given the observed screening times {Cij : i = 1, . . . , n/k; j = 1, . . . , k}, can be written as

CL(α, β) =
n/k∏
i=1

{
1 − α + γ S(ci1) × · · · × S(cik)

}1−yi
{
α − γ S(ci1) × · · · × S(cik)

}yi ,

where γ = α + β − 1.

3. AN EXPECTATION-MAXIMIZATION POOL-ADJACENT-VIOLATORS ALGORITHM

3·1. Development of the algorithm

Group-tested current status data can be formulated as a missing data problem. First, con-
sider the setting without misclassification of test results. While the full set of screening times
Cij is observed, only group-tested results �i are available, whereas a complete dataset would
include all individual test results, �ij. This missing information setting naturally allows use of
the expectation-maximization algorithm (Dempster et al., 1977).

To implement the expectation-maximization algorithm, we calculate the expected value of the
true individual test result, �ij, given the observed value of the group-tested result, �i, based on a
current estimate of F . These calculations are straightforward when there is no misclassification:

E(�ij | �i = 0, Ci1 = ci1, . . . , Cik = cik) = 0, (2)

E(�ij | �i = 1, Ci1 = ci1, . . . , Cik = cik) = F(cij){1 − S(ci1) × · · · × S(cik)}−1. (3)

For misclassified data with sensitivity α and specificity β, computing the expected value of an
individual true disease status �ij given the potentially misclassified observed group-test result Yi
becomes slightly more complicated; see the Supplementary Material. Letting γ = α + β − 1,
this step becomes

E(�ij | Yi = 1, Ci1 = ci1, . . . , Cik = cik) = αF(cij){α − γ S(ci1) × · · · × S(cik)}−1,

E(�ij | Yi = 0, Ci1 = ci1, . . . , Cik = cik) = (1 − α)F(cij)

(1 − α) + γ S(ci1) × · · · × S(cik)
·

For the maximization step, we simply use a weighted version of the pool-adjacent-violators
algorithm on the full dataset {φij : i = 1, . . . , n/k; j = 1, . . . , k}, where φij = 0 with weight 1 if
δi = 0, per (2). On the other hand, according to (3), if δi = 1, then φij = 1 with weight given by
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the right-hand side of (3), and additional observations φij = 0 have weight given by 1 minus the
right-hand side of (3). The complete algorithm is thus described as follows.

Step 1. Initialize values of f (0)
ij = F̂ (0)(cij) for each individual and set a threshold τ for

convergence.

Step 2 (Expectation). For each individual j ∈ {1, . . . , k} in group i, calculate the probability f ∗
ij

that the individual tested positive, given their group’s test result. For perfectly classified results,
δi, use

f ∗
ij =

⎧⎪⎨
⎪⎩

f (0)
ij

{
1 −

k∏
J=1

(1 − f (0)
iJ )

}−1

, δi = 1,

0, δi = 0.

(4)

For group-tested results subject to misclassification, yi, with sensitivity α and specificity β such
that γ = α + β − 1, use

f ∗
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αf (0)
ij

{
α − γ

k∏
J=1

(1 − f (0)
iJ )

}−1

, yi = 1,

(1 − α)f (0)
ij

{
1 − α + γ

k∏
J=1

(1 − f (0)
iJ )

}−1

, yi = 0.

(5)

Step 3 (Maximization). Use the group-tested results, δi or yi, as the observations for each
individual, and the probabilities from Step 2 as the weights in the weighted pool-adjacent-violators
algorithm to calculate updated estimates of f (1)

ij = F̂ (1)(cij).

Step 4. Repeat Steps 2 and 3, using the estimate of F̂ from Step 3 as the initial value for Step 2,
until convergence, for example until

n/k∑
i=1

k∑
j=1

{
F̂ (t+1)(cij) − F̂ (t)(cij)

}2
< τ .

It is important to run the algorithm with several choices of starting values, not only to reduce
the possibility of converging to a local extrema, but also to discover possible different nonunique
versions of the nonparametric maximum likelihood estimator. We recommend choosing a large
set of random starting values of F at the observed set of Cij by generating random Un(0, 1) values
ordered so that the starting values are monotonically increasing with Cij.

3·2. Comments regarding asymptotics

Asymptotic results for standard current status data are nonstandard. The nonparametric max-
imum likelihood estimator is known to be consistent, although converging only at the rate n1/3,
but has a non-Gaussian limiting distribution known as Chernoff’s distribution (Groeneboom &
Wellner, 1992) in situations where the monitoring time distribution, G, is continuous; Baner-
jee (2012) provides a concise discussion of this result. Rather than using Wald-type pointwise
confidence intervals derived from this limit, Banerjee & Wellner (2001, 2005) suggest using a
likelihood ratio approach to construct confidence bands.
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On the other hand, when G has finite support, the likelihood is parametric, since F can then be
estimated only at this finite number of support points, namely the observed censoring times. As
expected from this observation, the nonparametric maximum likelihood estimator now converges
to a Gaussian limit at rate n1/2, with the asymptotic variance at a specific monitoring time C0
given simply by F(C0){1 − F(C0)}{g(C0)}−1, which is straightforward to estimate using the
obvious plug-in estimators (Yu et al., 1998; Maathuis & Hudgens, 2011). The hybrid problem
where the number of support points grows with the sample size is discussed beautifully in Tang
et al. (2012). Sal y Rosas & Hughes (2010) proposed the inversion of a likelihood ratio test to
obtain pointwise confidence intervals for F when the data are subject to misclassification.

These results can be applied directly to the group-testing scenario only in the simplest situa-
tions. For the extreme situation of only one monitoring time, estimation of F(C0) reduces to the
simple estimation of prevalence. This scenario has been studied extensively in the literature on
group testing with misclassification; for example, Tu et al. (1994) provided asymptotically normal
confidence intervals with convergence rate n1/2. Generalizing slightly, the situation with finite
support for C, and with no misclassification, simplifies to the case considered byYu et al. (1998) if
individuals within a group all share a common value of C. In this case, pr(� = 1 | C) = 1−S(C)k ,
so that asymptotic results for the nonparametric maximum likelihood estimator applied to the
group-tested data immediately follow through for the plug-in estimator of S, or F , at the finite
number of screening times C by using the delta method.We anticipate that this will extend straight-
forwardly in the presence of misclassification, and we also suggest that use of the bootstrap will
be effective here.

Even with a finite number of monitoring times, the situation becomes more complex when
screening times are randomly assigned to the groups. This is clear even in the case of only two
monitoring times and with pair groupings done at random. Further, there are as yet no known
asymptotic results for the nonparametric maximum likelihood estimator of § 3·1 with a continuous
screening time distribution, although we anticipate that convergence will remain at a n1/3 rate.

4. ELEMENTARY EXAMPLE

4·1. An analytic solution

For illustration, consider a simple example in a setting without misclassified test results, where
there are two groups each containing two individuals; that is, n = 4 and k = 2. There are twelve
possible combinations of group assignments and test results, corresponding to three different
possible pair assignments with each pair having two possible test outcomes. Consideration of the
conditional likelihood (1) reveals a simple solution in all but one of these cases; we focus on the
remaining case, which has the grouping shown in Fig. 1, with �1 = 1 and �2 = 0.

The conditional likelihood (1) in this setting is

CL4 = {1 − S(c1)S(c3)}S(c2)S(c4).

It is immediate that the nonparametric maximum likelihood estimator must have Ŝ(c1) = Ŝ(c2)

and Ŝ(c3) = Ŝ(c4). Hence, the nonparametric maximum likelihood estimator is not unique but is
achieved by any set of {Ŝ(c1), . . . , Ŝ(c4)} with Ŝ(c1) = Ŝ(c2), Ŝ(c3) = Ŝ(c4) and Ŝ(c2)Ŝ(c3) =
0·5. We show how the expectation-maximization pool-adjacent-violators algorithm converges to
one such solution, with the specific value depending directly on the starting values for F̂ (0)(ci) =
1 − Ŝ(0)(ci).
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Fig. 1. Elementary example of data configuration with two groups, each of size 2,
where the first group has tested positive and the second group has tested negative.

Given an initial set of probabilities F̂ (0)(C1) = f1, F̂ (0)(C2) = f2, F̂ (0)(C3) = f3 and
F̂ (0)(C4) = f4 such that f1 � f2 � f3 � f4, the first step of the algorithm calculates the
expectation of each of the initial conditional probabilities, f ∗

i (i = 1, . . . , 4), as given in (4) and
(5), i.e., the probability that each individual was positive given the known group-tested result.
For two of these probabilities, in a setting without misclassification, this calculation is trivial: the
pair tested negative, so neither of the individuals was positive. Hence we can set f ∗

2 = f ∗
4 = 0.

For the pair that tested positive, this calculation follows directly from (4):

f ∗
1 = pr(T1 � C1 | �1 = 1) = f1{1 − (1 − f1)(1 − f3)}−1 = f1{f1 + f3 − f1f3}−1,

f ∗
3 = pr(T3 � C3 | �1 = 1) = f3{1 − (1 − f1)(1 − f3)}−1 = f3{f1 + f3 − f1f3}−1.

The next step of the algorithm is to make these f ∗
j monotonic, recalling that f ∗

2 = f ∗
4 = 0, by

using the pool-adjacent-violators algorithm. This yields the following updated estimates of F :

F̂ (1)(C1) = F̂ (1)(C2) = f ∗
1 /2 = f1{2(f1 + f3 − f1f3)}−1, (6)

F̂ (1)(C3) = F̂ (1)(C4) = f ∗
3 /2 = f3{2(f1 + f3 − f1f3)}−1. (7)

These steps are then iterated until a determination of convergence based on comparing, say,
the sum of the squared differences between F̂ (m) and F̂ (m+1) at each observed C to a prespecified
threshold τ .

4·2. Multiple convergence values

As we demonstrated in § 4·1, the initial values for the pair that tested negative, f2 = F̂ (0)(C2)

and f4 = F̂ (0)(C4), are not relevant to the update step in our expectation-maximization pool-
adjacent-violators algorithm. Therefore, when discussing convergence of the algorithm, we will
only consider initial values for F̂ (0)(C1) = f1 and F̂ (0)(C3) = f3.

In all settings where f1 = f3 = f , the update step given by (6) and (7) becomes

F̂ (1)(C1) = F̂ (1)(C3) = f̂ = 1{2(2 − f )}−1.

Therefore, at convergence, f = {2(2−f )}−1 so that the algorithm converges to f = 1−2−1/2, the
only solution in [0, 1]. This can, of course, also be expressed as Ŝ(Cj) = 2−1/2 for j = 1, . . . , 4.

For any other set of starting values, the ratio f1/f2 remains unchanged by the iterations. We
can therefore write f1 = rf3, where 0 < r < 1 and r stays fixed, as determined by the starting
values for f1 and f3 . At convergence, (6) then simplifies to

f3 = f3{2(rf3 + f3 − rf 2
3 )}−1.
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Thus, convergence occurs when rf3 + f3 − rf 2
3 = 1/2. After an application of the quadratic

formula, this simplifies to

f3 = {
r + 1 − (r2 + 1)1/2}(2r)−1,

the only feasible solution. It immediately follows that at convergence, f1 = {r+1−(r2+1)1/2}/2
so that the condition (1 − f1)(1 − f3) = 0·5 holds, as noted in § 4·1.

This simple example demonstrates the nonuniqueness of the nonparametric maximum like-
lihood estimator, with the algorithm converging to a specific solution for F̂ determined by the
ratio of the starting values of F at C1 and C3. When using this algorithm in an applied setting,
we suggest repeating it many times, using a different set of randomly drawn starting values each
time, and then computing the likelihood function to identify as many different unique solutions
to the optimization as possible.

5. SIMULATIONS

5·1. Design of simulations

We carry out two series of simulations to examine the behaviour of the expectation-
maximization pool-adjacent-violators algorithm for group-tested data, as compared to the
pool-adjacent-violators algorithm, which is the nonparametric maximum likelihood estimator
for individual-level current status data (Barlow et al., 1972). We consider two scenarios, one
where the tests are subject to no misclassification, and another where the test is subject to mis-
classification with known, constant error rates. In the latter case, the comparative estimator for
misclassified individual-level current status data was derived by McKeown & Jewell (2010). We
consider both continuous and discrete independent screening times. The former are described
and discussed below, and the latter in the Supplementary Material.

Each simulation is characterized by a set of fixed parameters: n, the number of individuals;
k , the group size; and α and β, the sensitivity and specificity of the screening test, respectively.
We set α = β = 1 in scenarios without misclassification. We first simulate traditional current
status data for each individual from the distribution of the true event times, F , and the censoring
distribution, G. Each run of the simulations begins with simulating data of sample size n at the
individual level, followed by assigning individuals to groups randomly.

The distribution F of the event times T is Weibull with shape and scale parameters 4 and 25,
respectively; here F has mean 22·7 and variance 40·4. For the perfectly classified test simulations,
the screening distribution G for C is Un(0, 36), allowing almost all of the distribution F to be
identified. The necessary binary datum � is then determined from the generated individual values
of T and C. The values of �, the group-tested results, follow immediately from the values of �

from each individual in the group, as described in § 2. Each simulation is performed 1000 times
in six different settings, given by n ∈ {1000, 5000} and groupings of sizes k ∈ {2, 5, 10}.

For misclassified test results, we are most interested in examining performance of the
expectation-maximization pool-adjacent-violators estimator in the left tail of F , where false
positive test results could have the largest effect on the estimate of F (Tu et al., 1994). Hence,
while F remains the same Weibull distribution, we now take C to be Un(0, 14) to ensure that
F(t) � 10%. Here we select a single sample size n = 5000 in 12 different settings with group
sizes k ∈ {2, 5, 10} and misclassification rates of α = β ∈ {0·8, 0·9, 0·95, 0·99}. In these simula-
tions, the observed misclassified data are obtained by, first, subjecting each individual test result
� to misclassification under the specified test characteristics and, second, generating the group-
tested outcome Y separately by misclassifying the corresponding group-test result �. Here we
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have used the same test classification probabilities, assuming independence between the group
size and the error rates of the testing procedure.

In each run of the two sets of simulations, for perfectly classified data and misclassified data,
we compute both the appropriate expectation-maximization pool-adjacent-violators algorithm for
the group-tested data and the appropriate pool-adjacent-violators algorithm for individual data.
To select initial values for the expectation-maximization pool-adjacent-violators algorithm, we
first draw n values uniformly from the range [0, 1] and sort them from smallest to largest; we then
order the observations so that the C values are monotonically increasing, and match the ordered
initial probabilities to the ordered data. Although, as noted earlier, for a specific application we
recommend choosing multiple starting values, here we opt to randomly select only one set of
initial values for each simulated dataset, thereby achieving only one of potentially many possible
nonparametric maximum likelihood estimates.

The averages of the estimates of F obtained from each algorithm over the 1000 runs are
calculated for each t in the support of G. To calculate the estimate of F at a value of C not observed
in a specific simulation, we assume left-continuity of both estimators in situations where this is
not imposed by monotonicity. To provide a sense of the variability of each estimator, we also
calculate the 2·5th and 97·5th quantiles of the estimates over the 1000 simulations. For the second
set of simulations, we use these quantities to compute a measure of pseudo-relative efficiency, the
ratio of the widths of these 95% Monte Carlo quantile intervals: {(q97·5 − q2·5)group}/{(q97·5 −
q2·5)individual}. The variances of the simulated estimates are less relevant, since we hypothesize
that this estimator does not converge to a Gaussian distribution, nor at a n1/2 rate.

The Supplementary Material contains results from two simulations in samples of size n =
10 000, with 10 fixed, equal-frequency screening times C, and with true event probabilities at
each screening time fixed at 0·005, 0·01, . . . , 0·05. In the first simulation, we randomly group
individuals by values of C to allow for the presentation of asymptotically normal confidence
intervals, as described in § 3·2; in the second, we group across screening times and again present
the widths of the 95% Monte Carlo quantile intervals.

5·2. Results: perfectly classified data

Figure 2 displays the results from applying the expectation-maximization pool-adjacent-
violators algorithm and the pool-adjacent-violators algorithm to data generated in the six
simulations where there is no misclassification of the test results. These simulations show that the
finite-sample bias is small, except perhaps when the group size is large, e.g., k = 10, and F(t) is
small. Even then, this bias declines systematically as the sample size increases. As anticipated, in
all situations, the bias is also smaller for the estimator based on individual test results. Similarly,
and also to be expected, the latter is more precise, although the gain in precision decreases for
larger sample sizes and smaller k . This being said, the group-tested estimator stands up remark-
ably well given that the screening costs are reduced by 50%, 80% and 90% when k = 2, 5 and
10, respectively, assuming that costs are proportional to the number of tests.

Because the asymptotic properties of the expectation-maximization pool-adjacent-violators
algorithm are currently unknown, to demonstrate variability in the estimates we delineate the
95% Monte Carlo quantile interval by dashed and dotted lines in Fig. 2. The width of this interval
for the pool-adjacent-violators algorithm from individual data is always smaller than that for the
expectation-maximization pool-adjacent-violators algorithm applied to group-tested data. This is
to be expected, as there is no misclassification in these simulations. Smaller group sizes k in the
expectation-maximization pool-adjacent-violators algorithm provide 95% quantile intervals more
similar to those estimated from individual data, and as n increases for fixed k , the width of the 95%
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Fig. 2. Results from six simulations of the estimation of F , with 1000 runs each, for different sample sizes n and
group sizes k . In each panel, the black lines are the average estimates of F̂(t) over the 1000 simulations, with the solid
line representing the true cumulative distribution function Wei(4, 25) and the dashed and dotted lines representing,
respectively, the estimates from the pool-adjacent-violators algorithm and the expectation-maximization pool-adjacent-
violators algorithm; the grey lines are the 2·5th and 97·5th quantiles from the simulation runs for each estimator, using

the same line types.

quantile interval decreases. Overall, Fig. 2 demonstrates that the expectation-maximization pool-
adjacent-violators algorithm provides an unbiased estimate of the true underlying distribution, F .

5·3. Results: misclassified data

Figures 3 and 4 present results from the twelve simulations in settings with n = 5000 individu-
als and varying group sizes and misclassification rates. Figure 3 shows that the percentage relative
bias of both estimators in these finite samples is large, e.g., greater than 100%, for estimates of
F(t) that are very small, e.g., less than 0·002, and is very close to zero for estimates of F(t) that
are greater than 0·02, even at large group sizes with high misclassification rates. Although the
individual-based estimator is less biased at small group sizes and low misclassification rates, we
do see similar or lower amounts of bias from the group-testing estimator at higher misclassifica-
tion rates, e.g., α = β = 0·8 or 0·9, particularly with the larger grouping sizes k = 5, 10 and at
lower values of T . Ultimately, the shapes of the finite-sample relative bias curves for these two
estimators are very similar, so, at the very least, grouping does not introduce substantial amounts
of additional bias.

With regard to variability, a comparison of the widths of the 95% Monte Carlo quantile intervals
associated with both estimators, as shown in Fig. 4, demonstrates a considerable advantage of
our estimator from group-tested data at low t and high levels of misclassification. For example,
T = 10 corresponds to a true prevalence of 2·5%. If a test is subject to 10% misclassification,
i.e., α = β = 0·9, then test results from data grouped into pools of size 10 will provide a more or
equally precise estimate of F(t) for T < 10 than data from individual tests. This implies that if
the cumulative failure rate in question is less than 2·5%, a testing procedure that involves groups
of size 10 will cost 90% less than testing everyone individually, and will result in a less biased
and more precise estimate of F(t) in this range. In general, the specific threshold t below which
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Fig. 3. Graphical representation of the finite-sample percentage relative bias from 12 simulations repeated 1000 times
with 5000 individuals each, based on different group sizes k and misclassification rates (α, β), with values of the latter
noted along the right-hand side. In each plot, the solid black line represents results obtained from the expectation-
maximization pool-adjacent-violators algorithm for group tests, and the short-dashed black line represents results from
the pool-adjacent-violators algorithm for misclassified individual test data; the long-dashed black line represents the

reference level of 0% bias.

such precision gains can be expected depends on both the group size and the misclassification
rate, as suggested by Tu et al. (1994) for estimation of a single fixed prevalence.

The Supplementary Material includes results from simulations of group-tested current status
data on a grid, with grouping done solely according to common observation times, which more
easily ensures a sufficiently small maximum value of F . As seen in Tu et al. (1994), we observe
a reduction in the size of 95% confidence intervals as the group size increases, and separately
a reduction in the size of the 95% confidence intervals as the misclassification rates decrease.
Additionally, there appears to be no substantial increase in bias as group size increases.

6. APPLICATION TO HEPATITIS C DATA

To investigate the performance of our estimator in a practical setting, we use publicly available
data from the 2014 U.S. Birth Data File, created by the National Center for Health Statistics,
to investigate the age-at-incidence distribution for hepatitis C in non-Hispanic white women of
child-bearing age. The dataset includes all such women of ages 13–40 who gave birth in 2014. We
are therefore making the tacit assumption that women who gave birth are a representative sample
of women of the same ages that could have given birth in terms of their risk of infection with
hepatitis C. This is not exactly correct but seems to be a reasonable approximation, at least for
sexually active women. Of the 1 981 521 eligible women, we randomly sampled 10%, creating
a sample of N = 197 840 observations, for greater ease of illustration and computation. The
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Fig. 4. Logarithm of the pseudo-relative efficiency of the expectation-maximization pool-adjacent-violators algorithm
and the adjusted pool-adjacent-violators algorithm from 12 simulations of 1000 runs with 5000 individuals each, based
on different group sizes k and misclassification rates (α, β), with values of the latter noted along the right-hand side. In
each plot, the solid black line is a lowess curve showing the overall trend in pseudo-relative efficiency as t increases;
the dashed black line represents equal-width 95% Monte Carlo quantile intervals for reference: if the solid black line
is below zero, the width of the expectation-maximization pool-adjacent-violators 95% Monte Carlo quantile interval

is smaller than that obtained from the individual test pool-adjacent-violators algorithm.

data include the mother’s age in years and her hepatitis C status at the birth of her child. Of the
N = 197 840 women in our investigation, only 901 tested positive for hepatitis C, a cumulative
incidence of 0·46%. When accounting for potential misclassification of these test results, we used
the sensitivity, α = 0·987, and specificity, β = 0·999, associated with the most commonly used
test for hepatitis C: an enzyme immunoassay test. Although hepatitis C can be spread via sexual
contact, it is primarily transmitted through blood, and an increase in the incidence of hepatitis
C after age 25 would imply that people are beginning or continuing to engage in risky drug
behaviour.

These data are based on individual blood testing for each mother separately. To illustrate our
proposed methods, we consider group testing of pooled blood samples, representing potentially
enormous savings in test costs depending on the size of the grouping used. These savings persist
even if specific infected individuals need to be identified. As discussed above, given the low
misclassification rates, we anticipate some loss of accuracy in estimating the prevalence, but
this may nonetheless be worth the considerable cost reduction. We created artificial group-test
results in two ways: (i) by assigning the data to groups of sizes 2, 5 and 10 according to age
(gridded group assignment), and (ii) by randomly assigning the data to groups of sizes 2, 5
and 10. Then, each group test was assigned a positive result if at least one individual test was
positive. For gridded group assignments, we computed point estimates and 95% confidence
intervals adjusted for misclassification using the method described in § 3·2. For random group
assignments, we applied the adjusted pool-adjacent-violators algorithm to the individual test
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Fig. 5. Four estimates of the cumulative incidence of hepatitis C in non-Hispanic white child-bearing U.S. women
of ages 13–40 in 2014 when grouping is assigned according to common values of age. Group sizes considered were
k = 1, 2, 5 and 10. In each panel, the solid line is the estimate from the individual or group-tested results, and

the dashed lines represent the upper and lower bounds of 95% confidence intervals.

results and, for comparison, the expectation-maximization pool-adjacent-violators algorithm to
the group-tested results.

Figure 5 displays estimates obtained from individual and group-tested results with groups of
sizes 2, 5 and 10 in a setting where group assignment is done by common age. The results are
satisfying, as they lead to the same public health implications. Although the estimates are slightly
different, they increase with group size, and the major jumps in the estimates occur at ages 19
and 21 for each of the group sizes considered. From these results, we can be fairly certain that
any intervention to potentially reduce the public health burden due to hepatitis C infection would
best occur during adolescence, ideally before risky behaviours such as drug use and unprotected
sexual activity begin. In this example, major cost reductions could be achieved by decreasing
the number of tests performed, assuming costs are proportional to the number of tests, without
changing the conclusions of the analysis.

Figure 6 displays estimates obtained from individual and group-tested results with groups of
sizes 2, 5 and 10 in a setting where group assignment is done completely at random. Unlike the
estimates in Fig. 5 obtained from data grouped according to the women’s age, here the estimates
from data in groups of different sizes yield different implications. The results from the individual
tests suggest an essentially flat cumulative incidence of hepatitis C after age 21, having reached
a cumulative incidence of approximately 0·38%. This has significant implications for a public
health intervention: it potentially indicates, for example, that any future hepatitis C vaccination
would be most effective if implemented during late adolescence. No vaccine currently exists,
although several candidates are under development. The group-tested results from groups of size
2 support the same conclusion, although they suggest that the cumulative incidence does not
increase after age 19. However, the results from groups of sizes 5 and 10 tell a slightly different
story: while these estimates increase to a cumulative incidence of roughly 0·4% before age 20,
they then both continue to increase with age to somewhere in the range of 0·45–0·55% by age
40, suggesting that a substantial fraction of hepatitis C infections occur post-adolescence.
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Fig. 6. Four estimates of the cumulative incidence of hepatitis C in non-Hispanic white child-bearing U.S. women of
ages 13–40 in 2014 when group testing with random group assignments. The solid line is the pool-adjacent-violators
estimate from the individual test results, and the dotted, short-dashed and long-dashed lines are the estimates obtained
from the expectation-maximization pool-adjacent-violators algorithm with the individual test results artificially

assigned to groups of sizes 2, 5 and 10, respectively.

Because these estimates seem to imply public health interventions at different times in life,
it is important to consider which estimate is most reliable in this particular setting. As noted
earlier, there is very little misclassification in the testing procedure, so we would expect that the
results from the adjusted pool-adjacent-violators algorithm based on individual data would be
more accurate, albeit obtained at significantly higher cost. However, the pool-adjacent-violators
algorithm adjusted for misclassification has a limitation: it automatically estimates cumulative
incidences that are less than 1 − β as 0; because the cumulative incidences at the early ages are
less than 0·5%, if we had set β � 0·995 in this application, our estimate from the individual data
adjusted for misclassification would have been zero at all ages. This suggests a potential issue
with individual test results that may not be as much of a problem with group-tested results.

7. DISCUSSION

In this paper we have proposed a modified expectation-maximization algorithm to estimate
a distribution function from data obtained by group-tested current status screening with test
misclassification. Simulations show that the estimator based on group-tested data adds relatively
little extra small-sample bias compared to an estimator based on individual data, but has a far lower
cost, although this conclusion necessarily requires a larger n as the grouping size k increases.
Additionally, when substantial misclassification is present, and F(t) is low, estimates obtained
from the expectation-maximization pool-adjacent-violators algorithm with groups of size 5 or
larger may be less biased and have improved precision, although inferential properties for this
procedure need further development. This offers the possibility that a significantly less expensive
testing procedure might yield a less biased and more precise estimate for the left tail of F .

In the presence of misclassification, these observations suggest possible hybrid grouping strate-
gies that may improve precision at low values of F(t) and maintain performance at higher levels,
all in comparison to individual tests whose costs are far greater. That is, where possible, if the
screening times are known in advance of pooling, it will likely be advantageous to first group
individuals according to the observed C values, and then use larger group sizes at the smaller



814 L. C. PETITO AND N. P. JEWELL

values of C and decrease the group size as C increases, even down to individual tests. Simula-
tions to examine variations of these possibilities are currently under way. As noted earlier, when
individuals in a group have similar C values, it is possible to also use an approximate individual
group-tested current status estimator by treating all C values in the group as being the same.

There are a number of important extensions to these results. As noted, the pool-adjacent-
violators estimator for classic current status data converges at a rate of n1/3 with a nonstandard
asymptotic limit, see a 1987 technical report by P. Groeneboom from the University ofAmsterdam.
We conjecture that the same asymptotics will hold for the group-tested estimator, although this
remains to be established. In practice, in a setting with misclassified individual current status data,
the m-out-of-n bootstrap (McKeown & Jewell, 2010) has been shown to provide one method of
obtaining valid inference procedures. We look forward to further theoretical progress in this area.

It is natural to anticipate that misclassification rates may depend on group size. This may
occur, for example, if the screening test is more sensitive to detecting a positive group when
there are more individual positives in the pool, related to the so-called dilution effect (Hwang,
1976; McMahan et al., 2013). Second, covariate-adjusted regression analysis has been a primary
focus of the statistical literature on group testing (Vansteelandt et al., 2000; Xie, 2001; Chen et
al., 2009; Delaigle & Meister, 2011). In addition, in many applications, interest is focused on
regression effects or group comparisons of time-to-event properties rather than on estimation of
the underlying distribution function itself, often through use of standard multiplicative or additive
regression models. Such regression models have been widely studied for individual current status
data (Jewell & Emerson, 2013). Future work will investigate the use of additive hazard regression
models for group-tested current status data.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online contains a derivation of the expectation
step of our expectation-maximization pool-adjacent-violators algorithm in the presence of mis-
classification, results from both sets of simulations with fixed censoring times, and code needed
to replicate the simulations outlined in § 5·1.
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