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Protecting migratory farmers in rural 
Tanzania using eave ribbons treated 
with the spatial mosquito repellent, 
transfluthrin
Johnson K. Swai1* , Arnold S. Mmbando1, Halfan S. Ngowo1,2, Olukayode G. Odufuwa1, Marceline F. Finda1,3, 
Winifrida Mponzi1, Anna P. Nyoni1, Deogratius Kazimbaya1, Alex J. Limwagu1, Rukiyah M. Njalambaha1, 
Saidi Abbasi1, Sarah J. Moore1,4,5, Joanna Schellenberg6, Lena M. Lorenz1,6 and Fredros O. Okumu1,2,3,7

Abstract 

Background: Many subsistence farmers in rural southeastern Tanzania regularly relocate to distant farms in river val-
leys to tend to crops for several weeks or months each year. While there, they live in makeshift semi-open structures, 
usually far from organized health systems and where insecticide-treated nets (ITNs) do not provide adequate protec-
tion. This study evaluated the potential of a recently developed technology, eave ribbons treated with the spatial 
repellent transfluthrin, for protecting migratory rice farmers in rural southeastern Tanzania against indoor-biting and 
outdoor-biting mosquitoes.

Methods: In the first test, eave ribbons (0.1 m × 24 m each) treated with 1.5% transfluthrin solution were compared 
to untreated ribbons in 24 randomly selected huts in three migratory communities over 48 nights. Host-seeking 
mosquitoes indoors and outdoors were monitored nightly (18.00–07.00 h) using CDC light traps and  CO2-baited BG 
malaria traps, respectively. The second test compared efficacies of eave ribbons treated with 1.5% or 2.5% transfluthrin 
in 12 huts over 21 nights. Finally, 286 farmers were interviewed to assess perceptions about eave ribbons, and their 
willingness to pay for them.

Results: In the two experiments, when treated eave ribbons were applied, the reduction in indoor densities ranged 
from 56 to 77% for Anopheles arabiensis, 36 to 60% for Anopheles funestus, 72 to 84% for Culex, and 80 to 98% for Man-
sonia compared to untreated ribbons. Reduction in outdoor densities was 38 to 77% against An. arabiensis, 36 to 64% 
against An. funestus, 63 to 88% against Culex, and 47 to 98% against Mansonia. There was no difference in protection 
between the two transfluthrin doses. In the survey, 58% of participants perceived the ribbons to be effective in reduc-
ing mosquito bites. Ninety per cent were willing to pay for the ribbons, the majority of whom were willing to pay but 
less than US$2.17 (5000 TZS), one-third of the current prototype cost.

Conclusions: Transfluthrin-treated eave ribbons can protect migratory rice farmers, living in semi-open makeshift 
houses in remote farms, against indoor-biting and outdoor-biting mosquitoes. The technology is acceptable to users 
and could potentially complement ITNs. Further studies should investigate durability and epidemiological impact of 
eave ribbons, and the opportunities for improving affordability to users.
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Background
Malaria control has gained significant momentum in the 
past decade due to key interventions, including insecti-
cide-treated nets (ITNs), indoor residual spraying (IRS), 
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prompt diagnosis, improved chemotherapy and chemo-
prophylaxis, and health education [1–3]. However, the 
progress observed since 2000 has begun stagnating. The 
2018 World Health Organization (WHO) Report indi-
cated an increase in malaria cases in several African 
countries compared to the previous year [4]. This situ-
ation has been attributed to multiple challenges, such 
as increased propensity of malaria mosquitoes to bite 
outdoors and in early evenings, as well as resistance to 
common public health insecticides, notably pyrethroids 
[5–8]. Other challenges include high costs of alternative 
protective measures and sub-optimal user compliance. 
Complementary technologies are therefore required to 
ensure that current gains are maintained [9], but also to 
accelerate efforts towards set global targets [10].

Evidence suggests that improving house designs 
reduces the burden of vector-borne diseases [11–14]. 
Since 2000, economic transitions have led to rapid 
improvement of housing in Africa, including the doubling 
of families living in houses made of finished materials 

and with proper sanitation [15]. An increasing number of 
African houses now have concrete or brick walls, corru-
gated iron or tiled roofs, as well as screened windows and 
eave spaces [15]. Unfortunately, many migratory com-
munities, such as pastoralists and seasonal rice farmers, 
have not benefitted from these house improvements due 
to low income levels and competing priorities.

In rural southeastern Tanzania where subsistence rice 
cultivation is a common economic activity, families often 
relocate to their farms in distant river valleys for weeks 
or months (usually between January and June), to tend 
to their crops, only returning to their main residential 
homes at the end of the farming season. In most cases, 
parents bring with them their children below school age. 
While at the farms, these families usually dwell in tempo-
rary structures (Fig.  1), leaving them disproportionately 
more exposed to mosquito bites than the rest of the pop-
ulation [16]. In some of these structures, use of stand-
ard prevention tools, such as ITNs, is also compromised 
[16]. Affordable alternatives are therefore necessary to 

Fig. 1 Examples of makeshift housing structures that the migratory farmers use when they go to the farms in the distant river valleys
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sustainably protect these communities from potential 
infectious and nuisance arthropod bites.

Interventions, such as larval source management, 
insecticide-treated clothes, blankets and hammocks, 
as well as topical repellents, may constitute alternatives 
for such communities [9], but could be affected by poor 
regular compliance, high costs and poor access [17–22]. 
Passive spatial repellent products may offer a practical 
alternative. Examples include hessian materials treated 
with the spatial repellent, transfluthrin, which can pro-
vide long-lasting protection due to high retention of 
transfluthrin by the hessian fabric [23–26]. Such prod-
ucts typically protect more than one individual by deter-
ring mosquitoes, inhibiting blood-feeding and killing 
vectors [27–31], without requiring any external energy 
sources or re-application of active ingredient [23, 32–34]. 
They can also be delivered in a variety of formats for use 
both indoors and outdoors. Recent studies in Tanza-
nia used the same fabric to create transfluthrin-treated 

eave ribbons, which when fitted along open eave spaces 
of houses can effectively prevent mosquito bites both 
indoors and outdoors [35, 36].

This current study evaluated efficacy of transfluthrin-
treated eave ribbons in protecting rural migratory farm-
ers in their semi-open hut structures in distant rice fields 
in the Kilombero Valley, southeastern Tanzania. The 
study also assessed perceptions and willingness to pay for 
this tool by farmers.

Methods
Study area
The study was conducted in three rice farm areas: 
Igumbiro, Kikwachu and Kilisa, in Ulanga district, 
southeastern Tanzania (Fig.  2), from March to July 
2018. Annual rainfall and mean daily temperatures 
in the area range from 1200 to 1800  mm and 20 to 
32.6 °C, respectively. The main malaria vectors include 
Anopheles arabiensis and Anopheles funestus, both of 

Fig. 2 Map showing the study villages and locations of the migratory farming households that participated in the study
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which are resistant to pyrethroids [37–40], and the lat-
ter mediating most of the transmission. ITNs are the 
main vector control tool in the region, and are often 
distributed by the Government to the main residential 
communities [41]. Although compliance to ITN use 
in farmhouses is high [42], these rice farmers remain 
at risk of nuisance and potential infective bites before 
going under a bed net due to the poor housing struc-
tures that allow easy entry of mosquitoes.

A recent cross-sectional survey across residential vil-
lages in Kilombero and Ulanga found the prevalence 
varies between < 1% in peri-urban and > 40% in rural vil-
lages that are ~ 20 km away from the rice farms where the 
study was conducted (Swai et al., unpublished).

Transfluthrin‑treated eave ribbons
The eave ribbons were prepared as described by 
Mmbando et al. [35] and cut to size of 0.1 m wide and 
24  m long, so that they could fit all around the farm 
huts (Fig.  3). Treatment of the eave ribbons also fol-
lowed published procedures [23, 25, 35]. To achieve 
1.5 and 2.5% transfluthrin concentrations, 22.5 ml and 
37.5  ml of technical grade transfluthrin stock solu-
tion were dissolved in 127.5 ml and 112.5 ml of liquid 
detergent  (Axion®), respectively, and 1350 ml of water 
added, so that the total volume was always 1500  ml. 
The control eave ribbons were prepared by soaking the 
ribbons in a mixture of 150 ml  Axion® liquid detergent 
and 1350 ml water, without any transfluthrin. Thus, for 
the 1.5 and 2.5% concentrations, the amount of trans-
fluthrin per surface area was 13.73  g/m2 and 22.89  g/
m2, respectively.

Assessing efficacy of 1.5% transfluthrin‑treated eave 
ribbons
Using a randomized cross-over design with a wash period 
of 2  days between treatments, entomological efficacy of 
eave ribbons treated with 1.5% transfluthrin solution was 
evaluated as follows: from each of the three rice farms, 8 
huts from consenting rice farmers were recruited, so that 
there was a total of 24 huts. Of the 8 huts in each village, 
4 huts were randomly allocated the transfluthrin-treated 
eave ribbons, while the remaining 4 received untreated 
eave ribbons (controls). The eave ribbons were fitted 
along the eave spaces every evening by trained techni-
cians and removed each morning (Fig. 3). The treatment 
arms were rotated after every 4 consecutive nights of 
trapping. The experiment was conducted over a total of 
16 nights in each village, during which each hut received 
both the transfluthrin-treated and control eave ribbons 
twice.

To minimize cross contamination between the treated 
and control ribbons, the ribbons were fitted in such a 
way as to ensure no physical contact with the walls or 
roof of the hut. In addition, a wash out period of 2 days 
was implemented between rotations, during which no 
ribbons were fitted to the huts and no experiments were 
done. All households participating in the study were pro-
vided with a new ITN, i.e.,  Olyset® net (A to Z Textiles, 
Arusha, Tanzania), as basic protection during sleeping 
hours.

Each night, indoor and outdoor mosquito collections 
were done between 18.00 and 07.00 h using  CDC® light 
traps (CDC-LT) [43] and carbon dioxide-baited  BG® 
malaria traps (BGM) [44, 45], respectively. Each morn-
ing, the collected mosquitoes were sorted by sex, and all 

Fig. 3 Selected structures for evaluating the use of transfluthrin-treated eave ribbons installed along the eaves spaces of farm huts for preventing 
mosquito bites indoors and outdoors
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female mosquitoes were morphologically identified into 
taxa following taxonomic keys [46, 47], and grouped as 
blood-fed, unfed or gravid. The female Anopheles were 
preserved in silica-filled microcentrifuge tubes then pro-
cessed by polymerase chain reaction (PCR) and enzyme-
linked immunosorbent assays (ELISA) to respectively 
distinguish between sibling species [48–50] and detect 
any Plasmodium infections in the salivary glands [51]. 
Outdoor temperature and humidity were recorded using 
Tiny  tag® data recorders that were hung away from direct 
sunlight and rain.

Assessing efficacy of 2.5% transfluthrin‑treated eave 
ribbons
Entomological efficacy of 2.5% transfluthrin-treated 
eave ribbons was evaluated using a three-by-three 
Latin-square experimental design with a wash out 
period of 2  days between treatments. Twelve farm huts 
from consenting migratory rice farmers in Kilisa village 
were recruited. Four of the huts received eave ribbons 
treated with 1.5% transfluthrin solution, another 4 huts 
received ribbons with 2.5% transfluthrin solution and 
the remaining 4 were fitted with untreated ribbons (i.e., 
controls). The ribbons were fitted along the eave spaces 
as described above, and all huts were provided with new 
 Olyset® nets for basic protection. The treatments were 
rotated between the huts every week. Unfortunately, due 
to a government directive for the farmers to vacate the 
fields, the experiment was terminated after 21 nights 
only. Mosquitoes were processed and environmental data 
were collected as described above.

Identification of sibling species, blood meals 
and Plasmodium infections in malaria vectors
The PCR assays for sibling species of Anopheles gambiae 
sensu lato (s.l.) were performed as described by Scott 
et al. [48], while those for An. funestus group were done 
following Koekemoer et  al. [49] and Cohuet et  al. [50] 
techniques. All blood-fed Anopheles mosquitoes were 
screened for human, bovine, chicken, goat, and dog blood 
using ELISA [51]. Additionally, all female Anopheles were 
assessed for Plasmodium circumsporozoite proteins 
using ELISA (csp-ELISA). To eliminate false positives, 
which are heat labile, all csp-ELISA positive lysates were 
boiled for 10 min at 100 °C and re-tested [52].

Assessing community perceptions and their willingness 
to pay for transfluthrin‑treated eave ribbons
A quantitative survey was conducted after completion of 
the entomological efficacy assays to examine the farmers’ 
perceptions and willingness to pay for the transfluthrin-
treated eave ribbons. A total of 286 individuals from 
the 3 rice farms were recruited. The actual number of 

individuals from each farm area was proportional to the 
population size of the area, thus 10, 114 and 162 individ-
uals were recruited from Igumbiro, Kilisa and Kikwachu, 
respectively. A list of names of farmers was sought from 
respective local administrative leaders in the rice farms. 
These were then entered into Excel, random number gen-
erated for each farmer and, following systematic sample 
selection procedures, farmers were randomly selected 
and recruited. Since most farmers had already vacated 
their fields at the time of this survey, the interviews were 
conducted with the respondents at their main residential 
homes rather than the farms.

A structured questionnaire was administered to collect 
information on basic demographic and socio-economic 
traits. Participants were also asked about the current 
mosquito control tools used while at the rice farms, 
how much they spent on mosquito control the previous 
year, their perceptions of eave ribbons as a control tool, 
and their willingness to pay for the transfluthrin-treated 
eave ribbons. Willingness to pay was assessed by asking 
whether participants were willing to purchase the treated 
eave ribbons, and amount of money they were willing to 
spend in Tanzanian shillings (TZS). Before asking these 
questions, the interviewers showed samples of untreated 
eave ribbons, and explained to the participants how the 
eave ribbons function.

Data analysis
Mosquito count data were analysed using  Stata® 13 
(College Station, TX, USA). The effects of treatment on 
indoor and outdoor mosquito densities in different study 
arms were examined using generalized linear mixed 
effects models (GLMMs) with a negative binomial distri-
bution and log-link function to account for overdisper-
sion of the data. Mosquito densities were modelled as a 
function of treatment with household ID, day and village 
as random factors. Protective efficacy of the eave ribbons 
with different transfluthrin concentrations were calcu-
lated from the relative risk (RR) values for the control (C) 
and treatment (T) arms in the no-intercept model, using 
the formula (C-T)/C*100. Blood meal sources and Plas-
modium infections rates were calculated as percentages 
of total mosquitoes assayed.

Entomological inoculation rates (EIR), i.e., number of 
malaria infectious bites per person per given period, were 
determined by multiplying average nightly biting rates 
and the proportion of sporozoite positive mosquitoes. 
The nightly biting rate was calculated by dividing total 
mosquitoes caught by product of number of households 
and trap nights. To estimate annual EIR, the daily EIR val-
ues were multiplied by 365 nights (annual EIR = nightly 
biting rate × sporozoite rate × 365). Adjusted EIR were 
calculated by multiplying estimated EIR by correction 



Page 6 of 13Swai et al. Malar J          (2019) 18:414 

factors from previous evaluations comparing CDC-LT 
and BGM trap catches to actual number of mosquitoes 
that bite unprotected human volunteers, i.e., in human 
landing catches [53, 54]. A power calculation with GLM 
simulation modelling using R statistical software [55, 
56] confirmed that both experiments were adequately 
powered (> 80%) despite the second one running for just 
21 days.

The perceptions and willingness to pay for the eave 
ribbon data was analysed as follows: socio-economic 
status of individuals was first estimated using princi-
pal component analysis (PCA), where household assets, 
structure, energy and water sources were used to classify 
individuals among the study population into five quin-
tiles. The purchasing amounts mentioned by the partici-
pants were grouped into two categories US$ < 2.17 and 
≥ 2.17 [(< 5000 and ≥ 5000 TZS) as per exchange rates 
of January 2019]. Descriptive analysis was conducted 
to determine the respondent’s perception of effective-
ness, willingness to pay by gender, socio-economic sta-
tus, education levels, and marital status. Perception of 
effectiveness was summarized using percentages. Pear-
son’s Chi square test and Chi square test for trend were 
used to assess association between socio-economic sta-
tus, frequencies of willingness to pay and the purchasing 
amount quoted by the respondents. Finally, associations 
between socio-economic status and quoted purchasing 
amount was assessed using multivariate logistic regres-
sion analysis controlling for age, education and amount 
of money spent on malaria control the previous year.

Results
Protective efficacy of eave ribbons treated with 1.5% 
transfluthrin
A total of 3872 An. arabiensis, 1232 An. funestus, 495 
Anopheles coustani, 1200 Anopheles pharoensis, 3780 
Culex spp. 2234 Mansonia spp. and 97 Aedes spp. female 
mosquitoes were caught in the 3 rice farms. Igumbiro vil-
lage had the highest densities of An. funestus and Culex 
spp. while Kikwachu and Kilisa had the highest densities 
of An. arabiensis and Mansonia spp. Kilisa also had the 
highest densities of Anopheles coustani and Anopheles 
pharoensis (Table 1).

Eave ribbons treated with 1.5% transfluthrin reduced 
indoor densities of An. arabiensis by 56% (p < 0.001), An. 
funestus by 36% (p < 0.001), Culex spp. by 72% (p < 0.001) 
and Mansonia spp. by 80% (p < 0.001). The ribbons 
also reduced outdoor biting for An. arabiensis by 38% 
(p = 0.034), Culex spp. by 64% (p < 0.001) and Mansonia 
spp. 47% (p < 0.001), respectively (Table  2). There was 
no observable protection against An. funestus outdoors. 
Over the duration of the experiment, the nightly temper-
atures ranged from 22.5 to 31.9 °C, averaging at 25.2 °C, 

while percentage relative humidity ranged from 65.6 to 
100%, averaging at 91.9%.

Protective efficacy of eave ribbons treated with 2.5% 
transfluthrin
In tests comparing the eave ribbons treated with either 
1.5 or 2.5% transfluthrin, 899 An. arabiensis, 4781 An. 
funestus, 379 Culex, 748 Mansonia, and 25 Aedes mos-
quitoes were caught. Both 1.5 and 2.5% transfluthrin-
treated eave ribbons conferred substantial protection 
indoors and outdoors against all mosquito taxa. The 
highest protection was 76 to 98% against Mansonia spp. 
followed by 63 to 88% protection against Culex spp. 72 
to 77% against An. arabiensis, and 59 to 64% against 
An. funestus, compared to untreated control ribbons 
(Table  3). There was no significant difference in protec-
tion offered by the two doses. The nightly temperatures 
ranged between 18.8 and 30.8  °C, averaging at 23.2  °C, 
while relative humidity ranged between 53.8 and 100%, 
averaging at 87.4%.

Malaria vector sibling species and blood meal sources
A total of 4771 An. gambiae s.l. and 6013 An. funestus 
s.l. mosquitoes underwent species identification by PCR, 
and blood meal analysis and circumsporozoite protein 
ELISA assays. All An. gambiae s.l were found to be An. 
arabiensis (100%), while the An. funestus group consisted 
of 91.4% An. funestus sensu stricto (s.s.), 2.9% Anopheles 
rivolurum, 0.9% Anopheles leesoni, and 5.8% unampli-
fied samples. Twenty-three mosquitoes blood-fed were 
caught (14 An. arabiensis and 9 An. funestus s.s.). Blood 
meal ELISA revealed that 2 (14%), 5 (36%) and 7 (50%) 
of the An. arabiensis had fed on human, bovine and 
goat, respectively, while all An. funestus s.s. had fed on 
humans.

Table 1 Biting densities of  different mosquito species 
caught in  the  three study rice farms during  the  study 
period

Mosquito species Igumbiro, n (%) Kikwachu, n (%) Kilisa, n (%)

Anopheles arabiensis 447 (11) 1876 (39) 2448 (18)

Anopheles funestus 901 (21) 87 (2) 5025 (38)

Anopheles coustani 31 (1) 82 (2) 761 (6)

Anopheles phar-
oensis

_ 186 (4) 1762 (13)

Culex species 2255 (53) 643 (13) 993 (8)

Mansonia species 570 (13) 1869 (39) 2219 (16)

Aedes species 32 (1) 60 (1) 30 (1)

Total 4236 (100) 4803 (100) 13,238 (100)
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Plasmodium sporozoite infection rates and malaria 
transmission intensities
Overall, malaria transmission in the rice farms was low; 
14 mosquitoes were found with Plasmodium sporozoites 
(one An. arabiensis, 13 An. funestus s.s.). Four of the An. 
funestus were caught outdoors while the rest, including 
the An. arabiensis, were caught indoors. EIR for An. ara-
biensis and An. funestus were estimated separately for 

both indoor and outdoor environments, from the CDC-
LT and BGM trap catches, respectively (Table 4). Infec-
tion rates were higher in An. funestus than An. arabiensis 
both indoors and outdoors, and An. funestus was respon-
sible for more than 90% of all transmission occurring in 
the area. Most transmission occurred indoors, where An. 
funestus had an annual EIR estimate of 2.33 infectious 
bites per person per year (ib/p/y) indoors compared to 

Table 2 Protection conferred indoors and  outdoors against  anopheline and  culicine species in  all three rice farms 
when 1.5% transfluthrin-treated eave ribbons were fitted along the eaves of rice farm huts

Each treatment arm had 48 nights of sampling. Percentage protective efficacy is estimated for each treatment relative to the respective controls

LCI lower confidence interval, UCI upper confidence interval, p value Walds p value

Mosquito 
species

Treatment Indoors Outdoors

Total number Geometric 
mean (LCI‑UCI)

% 
protection 
(LCI‑UCI)

p value Total number Geometric 
mean (LCI‑
UCI)

% 
Protection 
(LCI‑UCI)

p value

Anopheles arabi-
ensis

Untreated 2526 9.4 (8.0–11.0) – < 0.001 135 1.7 (1.4–2.0) – 0.034

1.5% trans-
fluthrin

1131 4.8 (4.2–5.5) 56 (47–64) 80 1.3 (1.1–1.6) 38 (3–60)

Anopheles 
funestus

Untreated 751 3.0 (2.5–3.6) – 0.001 21 1.2 (1.0–1.5) – 0.413

1.5% trans-
fluthrin

445 2.4 (2.1–2.8) 36 (16–50) 15 1.2 (1.0–1.5) –

Culex species Untreated 2986 7.8 (6.5–9.3) – < 0.001 100 2.0 (1.6–2.5) – 0.003

1.5% trans-
fluthrin

656 3.2 (2.8–3.7) 72 (65–77) 38 1.3 (1.1–1.5) 62 (29–80)

Mansonia spe-
cies

Untreated 3510 12.9 (10.8–15.5) – < 0.001 290 2.3 (1.9–2.7) – 0.001

1.5% trans-
fluthrin

628 3.8 (3.2–4.4) 80 (75–85) 150 1.8 (1.5–2.2) 49 (24–66)

Table 3 Protection conferred indoors and outdoors against anopheline and culicine species in Kilisa rice farms when 1.5 
and 2.5% transfluthrin-treated eave ribbons were fitted along the eaves of rice farm huts

Each treatment arm had 21 nights of sampling. Percentage protective efficacy is estimated for each treatment relative to the respective controls

n number of nights, LCI lower confidence interval, UCI upper confidence interval, p value Wald’s p value

Mosquito species Treatment Indoors Outdoors

Total Geometric mean 
(LCI‑UCI)

% 
protection 
(LCI‑UCI)

p values Total Geometric mean 
(LCI‑UCI)

% 
protection 
(LCI‑UCI)

p values

Anopheles arabiensis Untreated 497 5.00 (4.20–5.94) _ _ 58 1.57 (1.31–1.90) _ _

1.5% transfluthrin 148 2.12 (1.70–2.64) 77 (64–85) < 0.001 16 1.10 (0.95–1.28) 77 (48–90) < 0.001

2.5% transfluthrin 163 2.20 (1.74–2.78) 74 (59–84) < 0.001 17 1.30 (1.00–1.69) 72 (37–88) 0.002

Anopheles funestus Untreated 2093 20.71 (17.96–23.89) _ _ 479 4.30 (3.44–5.39) _ _

1.5% transfluthrin 868 9.84 (8.47–11.44) 60 (49–68) < 0.001 184 2.18 (1.82–2.60) 56 (39–68) < 0.001

2.5% transfluthrin 988 10.85 (9.14–12.89) 60 (49–68) < 0.001 169 2.25 (1.90–2.66) 59 (44–71) < 0.001

Culex species Untreated 282 3.09 (2.54–3.75) _ _ 12 1.22 (0.89–1.67) _ _

1.5% transfluthrin 44 1.55 (1.23–1.96) 84 (73–90) < 0.001 4 1 (1–1) 63 (0 –91) 0.187

2.5% transfluthrin 32 1.55 (1.20–1.99) 88 (79–93) < 0.001 5 1.44 (0.30–6.97) 69 (0–94) 0.124

Mansonia species Untreated 664 7.51 (6.31–8.94) _ – 25 1.70 (1.26–2.31) _ _

1.5% transfluthrin 14 1.36 (0.92–2.00) 98 (96–99) < 0.001 10 1.51 (0.92–2.50) 76 (0–97) 0.145

2.5% transfluthrin 29 2.22 (1.29–3.83) 97 (93–98) < 0.001 6 1.32 (0.55–3.15) 90 (25–99) 0.026
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0.79 ib/p/y outdoors. However, since farmers typically 
spend no more than half a year in the farms, actual infec-
tion intensities would be less than half of these estimates.

Perception of community members 
regarding the mosquito bites, malaria and eave ribbons
Of the 286 respondents, 92% were subsistence farmers 
engaged in crop cultivation, while the rest engaged in 
multiple activities, such as business and fishing in addi-
tion to farming. Age of respondents ranged between 
18 and 80  years, with the median age being 38. Most 
respondents (82%; n = 235) had primary level education 
and 75% (n = 215) were living with a partner. Only 31% 
(n = 89) of the respondents’ main residential homes had 
screened windows, 77% (n = 220) had brick walls, 69% 
(n = 197) had roofs made of iron sheets, and 27% (n = 78) 
had modern toilet facilities (flush or improved ventilated 
pit latrines). Almost three-quarters (72%; n = 206) of the 
respondents had access to piped water, mostly from com-
munal boreholes.

Over 80% of the respondents reported that malaria is 
a major concern in the rice farms. Most (90%; n = 257) 
used bed nets for protection against mosquito bites when 
at the farms. They also reported using non-residual insec-
ticide sprays (mostly pyrethrum), topical repellents, mos-
quito coils, and smoke from burning wood. Regarding 
cost for malaria prevention and treatment per year, about 

one-quarter of the participants (23%; n = 66) said they 
incurred no cost, 12% (n = 33) spent less than US$2.17 
(5000 TZS), 46% (n = 134) spent between US$2.60 and 
4.33 (6000-10,000 TZS), 12% (n = 32) between US$4.77 
and 8.66 (11,000-20,000 TZS), and 5% spent more than 
US$9.11 (> 21,000 TZS).

Nearly two-thirds of participants (60%; n = 172) 
reported facing challenges in protecting themselves or 
their families against mosquito bites while at the farms. 
The commonest challenges included: (a) bed nets having 
large holes, letting in mosquitoes or mosquitoes biting 
through the nets; (b) high costs and low access of insecti-
cide sprays and topical repellents; (c) lack of effective out-
door protection tools; and, (d) canned insecticide sprays 
not lasting long.

Current expenditures on malaria prevention, and people’s 
willingness to pay for transfluthrin‑treated eave ribbons
More than 90% of participants said that they would use 
and pay for the transfluthrin-treated eave ribbons if avail-
able. When asked how much they were willing to pay, 
70% (n = 200) stated values less than US$2.17 (5000 TZS) 
for the intervention, while 23% (n = 66) were willing to 
pay between US$2.21 and 4.33 (5100–10,000 TZS).

Although there was no evidence for association 
between socio-economic status and willingness to 
pay for the ribbons (Fisher’s exact test p = 0.558), 

Table 4 Infectiousness of Anopheles arabiensis and Anopheles funestus mosquitoes caught indoors and outdoors the rice 
farms

Corrected biting rate indoor = mosquito/household/trap × relative efficacy of CDC-LT to HLC [53], i.e., 0.3 for An. arabiensis and 0.68 for An. funestus Corrected biting 
rate outdoor = mosquito/household/trap × relative efficacy of BGM to HLC [54], i.e., 0.16 for An. arabiensis and 1.2 for An. funestus
a Since farmers typically spend less than half a year in the farms, actual infection intensities would be less than half of these estimates

Indoors Outdoors

Anopheles arabiensis Anopheles funestus Anopheles arabiensis Anopheles 
funestus

Total mosquitoes analysed 4465 5145 306 868

Number of households 24 24 24 24

Number of trapping nights 69 69 69 69

Mosquito/household/night 2.70 3.11 0.18 0.52

Corrected biting rate 3.53 3.29 0.03 0.63

Plasmodium positive mosquitoes 1 10 0 3

Sporozoite rate 0.0002 0.0019 0 0.0035

EIR 0.0006 0.0060 0 0.0018

Annual EIR 0.2204 2.2041 0 0.6612

Corrected EIR 0.0008 0.0064 0 0.0022

Corrected Annual  EIRa 0.2887 2.3363 0 0.7935

EIR contribution indoors and outdoors 9% 91% 0 100%

Corrected EIR contribution indoors and outdoors 4% 96% 0 100%

Overall EIR contribution 7% 71% 0 22%

Overall corrected EIR contribution 3% 64% 0 33%
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socio-economic status strongly influenced whether indi-
viduals were willing to pay more or less than a set cut-
off of US$2.17 (5000 TZS) (Fisher’s exact test p = 0.016). 
The least poor were more than three times more likely 
to be willing to pay above this cut-off [(OR = 3.2; 95% CI 
(1.2–8.3) p = 0.0139]. In addition, individuals who spent 
US$ > 2.17 per year on mosquito prevention tools were 
more likely to pay more for the eave ribbons (Table  5). 
After adjusting for age, education level and amount of 
money generally spent on mosquito prevention tools, 
only individuals who spend US$ > 2.17/year on mosquito 
prevention were willing to pay US$ > 2.17 for the eave rib-
bons (Table 5).

Discussion
In this study, the potential of transfluthrin-treated eave 
ribbons as a protective measure against disease-trans-
mitting and nuisance-biting mosquitoes was evaluated 
in rice farms of southeastern Tanzania where seasonal 
migrant farmers live in poorly constructed makeshift 
housing. Overall, the study results demonstrate that in 
addition to ITNs, transfluthrin-treated eave ribbons can 
be used to reduce densities of indoor-biting and outdoor-
biting mosquitoes. Since the experimental controls had 
untreated eave ribbons, the observed reduction may be 
attributed to the transfluthrin-treatment, rather than any 

physical barrier from the hessian fabric. Earlier tests by 
Mmbando et al. demonstrated that eave ribbons work by 
both repelling host-seeking mosquitoes and directly kill-
ing those that come in contact with the vapours [35].

In particular, the reduction of mosquito bites recorded 
outdoors show that there is a protective radius offered by 
the transfluthrin-treated eave ribbons beyond the physi-
cal house structure itself [24]. Many Tanzanian families 
spend long periods of time outdoors in the evenings 
doing various activities, such as cooking, story-telling 
or playing (children), which exposes them to potentially 
infectious bites [57–59]. It is evident that transfluthrin-
treated eave ribbons offer additional protection in such 
spaces, thereby complementing ITNs. The observed 
effects were apparent against the malaria vectors, An. 
arabiensis and An. funestus, but also non-malaria mos-
quitoes such as Culex and Mansonia spp. both indoors 
and outdoors.

The protection against An. funestus, which now domi-
nates malaria transmission in the area, was modest in 
the first experiment but substantial in the second experi-
ment. This is particularly interesting since both An. funes-
tus and An. arabiensis are also known to be resistant to 
common public health pesticides including pyrethroids 
[37–40, 46]. The farms in Kilisa village in particular had 
very high densities of An. funestus, most likely because 

Table 5 Factors affecting the amount individuals are willing to pay for the transfluthrin-treated eave ribbons

Italics: Factors with evidence (p < 0.05) that they influence amount individuals are willing to pay

Characteristic Level Unadjusted OR (LCI‑
UCI)

p value Adjusted OR (LCI‑UCI) p value

Socio-economic status Poorest _ _ _ _

Poor 1.3 (0.5–3.7) 0.564 1.0 (0.3–3.2) 0.932

Middle 1.1 (0.4–3.2) 0.825 0.9 (0.3–2.8) 0.847

Less poor 3.1 (1.2–7.9) 0.019 2.7 (0.9–7.7) 0.066

Least poor 3.2 (1.2–8.1) 0.016 2.5 (0.9–7.3) 0.089

Age (in years) 18–24 _ _ _ _

25–29 1.1 (0.4–3.4) 0.811 1.5 (0.4–5.7) 0.523

30–34 0.4 (0.1–1.5) 0.200 0.5 (0.1–2.2) 0.367

35–39 1.0 (0.3–3.0) 1.000 1.1 (0.3–4.2) 0.861

40–44 1.4 (0.4–4.1) 0.600 1.6 (0.4–6.8) 0.495

45–49 0.8 (0.2–3.2) 0.711 1.7 (0.3–9.0) 0.557

50–54 0.3 (0.1–1.5) 0.163 0.5 (0.1–2.8) 0.405

55–59 0.7 (0.2–3.0) 0.629 0.7 (0.1–3.8) 0.640

60–64 0.5 (0.1–3.0) 0.453 1.4 (0.2–10.7) 0.771

65+ 0.5 (0.1–2.1) 0.343 0.7 (0.1–3.7) 0.630

Education None/primary _ _ _ _

Secondary/higher 1.1 (0.5–2.6) 0.8477 0.8 (0.3–2.5) 0.745

Malaria control expenses (previ-
ous year)

None _ _ _ _

< 2.17 USD 1.6 (0.6–4.5) 0.3337 2.0 (0.7–5.9) 0.223

> 2.17 USD 6.2 (3.1–12.3) < 0.001 6.9 (3.4–14.0) < 0.001
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of the more permanent water sources in the area, which 
favour proliferation of this species [60, 61]. It is here too 
where efficacy of eave ribbons was highest against this 
species. The transfluthrin-treated eave ribbons were 
even more protective against culicines than anophelines 
(Tables  2 and 3). Considering that culicine species are 
usually more abundant in the area, resistant to most of 
the public health chemicals (Matowo et al. unpublished) 
and regularly enter the house via windows and doors [62], 
the level of nuisance biting and pathogens transmitted by 
culicines, such as filarial worms, could be greatly reduced 
by using transfluthrin-treated eave ribbons. Such applica-
tions could certainly extend beyond migratory farming 
communities. It is however particularly important that 
this technology is used in addition to, not as a replace-
ment of existing interventions such as ITNs. The lack of 
evidence of a difference in protection conferred by 1.5 
and 2.5% transfluthrin treatments suggest that the lower 
dose would be preferable. Similar treatment doses have 
previously shown field efficacy against bites by these vec-
tor species in experimental huts built in rural southeast-
ern Tanzania [35].

More than 90% of the indoor and outdoor malaria 
transmission occurring in the rice farms was mediated by 
An. funestus. These findings match those of a recent ento-
mological surveillance across villages in Ulanga district, 
Tanzania, which showed that despite their low numbers, 
An. funestus mediated more than four-fifths of malaria 
transmission [41]. The EIR observed in the rice farms was 
however lower than those observed in residential homes 
in the same district [41]. This is most probably because 
the small and transient human population in such migra-
tory farming communities is inadequate to sustain higher 
malaria transmission intensities, even when environmen-
tal conditions in the rice farms support the proliferation 
of mosquitoes.

The risk of malaria transmission in the rice farms 
was also higher indoors than outdoors. EIR estimates 
indoors were 2.33  ib/p/y compared to 0.79  ib/p/y out-
doors (for An. funestus). Similar observations that 
transmission is still mostly indoors despite increasing 
propensity of outdoor biting is also widely reported 
elsewhere in southeastern Tanzania [41] and western 
Kenya [63] where An. funestus and An. arabiensis are 
the most predominant vector species. Though the num-
ber of blood-fed specimen were few, An. funestus had 
higher human blood index than An. arabiensis, suggest-
ing that even in remote areas where human presence is 
seasonal, An. funestus remains highly anthropophagic. 
This not only highlights the importance of improving 
the use of home-based interventions such as ITNs, but 
also the need to design better tools to protect such dis-
franchised communities from infectious bites, thereby 

accelerating the overall goal of malaria elimination. 
Given the protective efficacy observed during this 
study, transfluthrin treated eave ribbons can potentially 
be used as a complimentary intervention in such set-
tings to protect against mosquito bites occurring inside 
and within peri-domestic areas when people are not 
under a bed net.

The majority of rice farmers highlighted malaria as a 
major health concern, especially while they are in their 
distant farms. Although bed nets are common, the 
farmers also used locally available insecticide sprays, 
topical repellent, mosquito coils, and smoke from 
burning wood. Mmbando et al. reported that the initial 
prototypes of the eave ribbons cost about US$7 (16,157 
TZS) from production to installation [35]. However, 
more than two-thirds of participants were willing to 
purchase the product at less than or equal to US$2.17 
(5000 TZS), which is just under one-third of the cost, 
and only individuals from the upper two socio-eco-
nomic quintiles were willing to pay more than US$2.17 
(5000 TZS). Interestingly, nearly all respondents said 
they would use the technology if produced and mar-
keted to them. Considering that mass production of 
the transfluthrin-treated eaves ribbons would lower the 
price, it is possible that the technology could be made 
more affordable and therefore accessible for these com-
munities. One limitation of this specific aspect of the 
study was that the method used for determining com-
munity members’ willingness to pay was focused only 
on prices, thus ignoring other key attributes such as 
aesthetic concerns and user compliance. It therefore 
captured only the hypothetical purchasing behaviour, 
and could be prone to response bias [64].

Future studies should evaluate additional effects of the 
product, including 24-h mortality of wild pyrethroid-
resistant mosquitoes as they enter and leave the human 
dwellings fitted with the eave ribbons. Such additional 
benefits could magnify the overall protective efficacy 
of the technology, and potentially extend it to commu-
nity benefits, as recently demonstrated in semi-field set-
tings [36]. Additional research questions that should be 
addressed include: (a) whether such products can divert 
mosquitoes to non-users as previously demonstrated 
in areas of sub-optimal coverage [65]; (b) the duration 
of efficacy, which according to semi-field studies is up 
to 6  months [23], and could therefore effectively cover 
the entire farming season; (c) opportunities for engag-
ing local communities to accelerate the adoption of this 
or other similar interventions to complement ITNs; and, 
(d) community-wide impact on malaria transmission and 
burden, when the eave ribbons are used alongside ITNs 
or other interventions. Fortunately, many of these studies 
are already planned or are ongoing.
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Conclusion
Transfluthrin-treated eave ribbons could be used in 
addition to ITNs to protect seasonal migratory farmers 
against both indoor and outdoor infectious and nuisance-
biting mosquitoes, while they are at their distant farms. 
The technology is simple, portable, easy to use, widely 
acceptable, and can be readily fitted onto the makeshift 
huts that the farmers construct and use when at their 
farms. Most importantly, it does not require daily com-
pliance as for bed nets or topical repellents. Most of the 
malaria transmission in the rice farms occurred indoors 
and was mediated by An. funestus. Rice farmers in the 
region showed willingness to use and purchase the eave 
ribbons as a control measure. There is a need to conduct 
further studies on longevity of protection conferred by 
the eave ribbons, epidemiological impacts on malaria and 
its transmission, as well as appropriate financing models 
for scale-up.
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