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RESEARCH ARTICLE Open Access

Development of a healthy ageing index in
Latin American countries - a 10/66
dementia research group population-based
study
Christina Daskalopoulou1* , Kia-Chong Chua1, Artemis Koukounari2, Francisco Félix Caballero3,4,5,
Martin Prince1 and A. Matthew Prina1

Abstract

Background: Our population is ageing and in 2050 more than one out of five people will be 60 years or older; 80%
of whom will be living in a low-and-middle income country. Living longer does not entail living healthier; however,
there is not a widely accepted measure of healthy ageing hampering policy and research. The World Health Organization
defines healthy ageing as the process of developing and maintaining functional ability that will enable well-being in older
age. We aimed to create a healthy ageing index (HAI) in a subset of six low-and-middle income countries, part of the 10/
66 study, by using items of functional ability and intrinsic capacity.

Methods: The study sample included residents 65-years old and over (n = 12,865) from catchment area sites in Cuba,
Dominican Republic, Peru, Venezuela, Mexico and Puerto Rico. Items were collected by interviewing participants or key
informants between 2003 and 2010. Two-stage factor analysis was employed and we compared one-factor, second-order
and bifactor models. The psychometric properties of the index, including reliability, replicability, unidimensionality and
concurrent convergent validity as well as measurement invariance per ethnic group and gender were further examined
in the best fit model.

Results: The bifactor model displayed superior model fit statistics supporting that a general factor underlies the various
items but other subdomain factors are also needed. The HAI indicated excellent reliability (ω= 0.96, ωΗ = 0.84), replicability
(H = 0.96), some support for unidimensionality (Explained Common Variance= 0.65) and some concurrent convergent
validity with self-rated health. Scalar measurement invariance per ethnic group and gender was supported.

Conclusions: A HAI with excellent psychometric properties was created by using items of functional ability and intrinsic
capacity in a subset of six low-and-middle income countries. Further research is needed to explore sub-population
differences and to validate this index to other cultural settings.
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Background
Globally, life expectancy has increased by an average of 5
years between 2000 and 2015 [1]. The number of people
aged 60 and over is expected to double by 2050 and Latin
American countries are to experience the fastest growth
over the next 15 years [2]. Risk of disability and noncom-
municable chronic diseases increases with age as well [3].
Despite technological and medical advances people are
likely to experience multimorbidity in later life, living with
multiple chronic conditions [3]. This growing population
of frail older people will lead to higher health and societal
costs. There is, therefore, an imperative need to examine
the ageing process and most importantly the elements that
will enable people to live longer and in a healthy way.
Systematic reviews indicate that till now there is neither a

unanimous definition nor a standardised metric of healthy
ageing and the percentage of healthy or successful agers
differs considerably among studies mainly due to lack of
common definition and measurement procedures [4, 5].
However, the need for an aggregated metric of health status
that would permit valid comparisons among populations
and over time is well recognised [6, 7]. Constant monitor-
ing of the health status of older people will enable us to
identify key determinants and implement comprehensive
healthy ageing policies. According to the latest report of
ageing and health from the World Health Organization
(WHO), healthy ageing is defined as the process of develop-
ing and maintaining the functional ability that will enable
well-being in older people [3].
In this study, our key objective is the creation of a healthy

ageing index (HAI) based on the WHO conceptual frame-
work in a subset of Latin American countries. We also aim
to examine this index for various psychometric properties
(i.e. omega reliability coefficients, explained common vari-
ance measure of unidimensionality, index H of construct
replicability and concurrent convergent validity) and meas-
urement invariance for ethnic groups and gender.

Methods
10/66 study
Data were collected from specific urban and rural catch-
ment areas in Latin America (Cuba, Dominican Republic,
Peru, Venezuela, Mexico and Puerto Rico); part of the 10/
66 Dementia Research Group (10/66 DRG) survey. 10/66
DRG is a multicentre study on ageing and dementia per-
formed in low-and-middle income countries. Baseline face-
to-face interviews of residents 65 years old and over were
carried out between 2003 and 2007 in all areas, other than
Puerto Rico where baseline data were collected between
2007 and 2010. Catchment areas were selected to be
broadly representative of the source community and 2000
target participants per country (with the exemption of 3000
in Cuba) were chosen a priori; response rate was excellent
ranging from 80 to 95%. Participant and informant

interviews as well as physical examination were part of the
10/66 study protocol. In cases where the participant’s cap-
acity to provide reliable information was in doubt, the in-
formation was corroborated by an informant (usually a
relative or a caregiver). A more detailed description is avail-
able at www.alz.co.uk/1066 and elsewhere [8, 9].

Healthy ageing indicators
Questions measuring health and disability according to the
International Classification of Functioning, Disability and
Health (ICF) [10] were used as healthy ageing indicators/
items to build the index. A total of 26 health questions,
which were either self-reported by the participants or
provided by key informants, were identified from various
questionnaires and operationalised as described below.
Difficulties with: household responsibilities, walking a kilo-
metre, washing whole body, getting dressed, carrying out
work and everyday activities, making decisions, using the
toilet, handling money, finding the right word, completing
chores, routine (assessed as: ‘feeling of not coping properly
with everyday routine’), sleep (assessed as: ‘trouble with
sleep or recent change in pattern’), orientation (assessed as:
‘forgets where he/she is’); hearing and eye problems, change
in daily activities, exhaustion (assessed as: ‘gets worn out or
exhausted during daytime or evening’) and speed test
(assessed by the time in seconds taken to walk 10m). Fi-
nally, cognitive assessment included the following items: in-
stant recall (a 10 word list learning assessed for three times;
we considered one value: the maximum number of words
among the three trials), delayed recall (assessed as: ‘do you
remember the three words I told you a few minutes ago’),
long term memory item (correctly remembering the name
of a well-known person linked to a historical event), imme-
diate recall (assessed by repeating three words that previ-
ously were mentioned by the interviewer), verbal fluency
(assessed by the number of animals that the participant
could recall in 1 minute), time orientation (day, month,
year, season), story recall (repeat a story that just heard
from the interviewer), and praxis (fold a piece of paper,
following instructions). Most items were categorical and in
some cases where a continuous outcome was reported (i.e.
instant recall, verbal fluency, speed test, story recall), we di-
vided the whole sample in three groups according to the
lower and upper quartiles of each distribution; values below
the 25th percentile, between the 25th and 75th and above
the 75th indicated high, moderate and low performance, re-
spectively. Higher values indicated worse health outcomes.
Table 1 provides more details on items origin (i.e. partici-
pant or informant interview; initial questionnaire from the
10/66 interview from which they were extracted).

Data analyses
We used SPSS version 22 for data management and Mplus
7.4 software for any statistical analyses. Mean and variance-

Daskalopoulou et al. BMC Medical Research Methodology          (2019) 19:226 Page 2 of 11

http://www.alz.co.uk/1066


adjusted weighted least-squares (WLSMV) estimator, suit-
able for the analysis of categorical data, polychoric correla-
tions and theta parameterisation -in which residual
variances of observed categorical outcome variables are
allowed to be parameters in the models- were employed
[11]. A pairwise present approach to missing data was used
as it is the default in Mplus with WLSMV estimator [12].
Model accuracy was routinely reported by chi-square

value with degrees of freedom (df); however, given the
sensitivity of chi-square to large sample sizes, we used
goodness-of-fit indices to make decisions about the global
fit of the models and we inspected discrepancies between
predicted and observed correlations to assess local fit [13].
We reported the comparative fit index (CFI) and root mean
square error of approximation (RMSEA) with 90% confi-
dence intervals (CI). We considered a model to have an ac-
ceptable fit when CFI ≥ 0.90 and RMSEA values close or
less than 0.06 [14]. Nested models were compared by using
the DIFFTEST command of MPLUS (an adjusted chi-

square test when the WLSMV estimator is employed)
[11, 13].

Exploratory factor analysis
To identify the appropriate number of factors and the
pattern of relationships between items and factors the
data-driven methodology of exploratory factor analysis
(EFA) was employed [15]. For the EFA, a 30% stratified
by gender and country random sample of our initial
sample was used and the remaining 70% was used as our
validation sample in the confirmatory factor analyses
(CFA). Parsimax (oblique) rotation, allowing for factor
correlation and for minimum variable complexity, was
employed to foster factor interpretability [16]. Factor
loadings equal or higher than 0.20, in absolute value
term, were considered as factor loading cut-off point.
Response categories with less than 4% of the sample
were merged with the adjacent higher category to avoid
computational issues in the model fitting.

Table 1 Healthy Ageing Indicators Origin

Items/Indicators Origin Questionnaire

Household responsibilities difficulty Participant WHO-DAS II

Walking a km difficulty Participant WHO-DAS II

Washing whole body difficulty Participant WHO-DAS II

Getting dressed difficulty Participant WHO-DAS II

Carrying out work & everyday activities difficulty Participant WHO-DAS II

Making decisions difficulty Informant CSI’D’-RELSCORE

Using the toilet difficulty Informant CSI’D’-RELSCORE

Handling money difficulty Informant CSI’D’-RELSCORE

Hearing problem Participant & informant Health (including pain and impairments)

Eye problem Participant & informant Health (including pain and impairments)

Finding right word difficulty Informant CSI’D’-RELSCORE

Change in daily activities Informant CSI’D’-RELSCORE

Forgets where he/she is Informant CSI’D’-RELSCORE

Difficulty completing chores Informant CSI’D’-RELSCORE

Sleep trouble or recent change in pattern Participant Mental Health (GMS-version B3)

Feeling of not coping properly with everyday routine Participant Mental Health (GMS-version B3)

Gets worn out or exhausted during daytime or evening Participant Mental Health (GMS-version B3)

Time in seconds taken to walk 10 m Clinical examination neurological assessment (NEUROEX)

Learn test Participant 10 word list learning

Delayed recall Participant CSI’D’

Long memory test Participant CSI’D’

Immediate recall Participant CSI’D’

Verbal fluency Participant CSI’D’

Time orientation Participant CSI’D’

Praxis-fold a piece of paper Participant CSI’D’

Story recall difficulty Participant CSI’D’

WHO-DAS II World Health Organization. Disabilty Assessment Schedule 2.0; CSI’D’-RELSCORE Community Screening Interview for Dementia-Informant Scale, GMS
Geriatric Mental State Interview, NEUROEX Neurological Examination, CSI’D’ Community Screening Interview for Dementia
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Confirmatory factor analysis
As our objective was to build an index which would repre-
sent the multifaceted concept of healthy ageing, CFA
framework was employed to identify the best measurement
model representing healthy ageing as a single general con-
struct. A second-order model and a bifactor model were
considered, recognising the multidimensionality of healthy
ageing but also focusing on an overall target construct; a
one-factor model was also examined. Multidimensional
measurement models without a general factor (i.e. first-
order correlated-factors model) were not considered.
Figure 1 shows a simplified example of the structural

difference among a one-factor, a second-order and a
bifactor model. The main difference between a bifactor
structure and a second-order model is that in the bifac-
tor structure the general factor explains the covariance
among all observed items, and not within first-order fac-
tors as is the case of the second-order model. Further-
more, a bifactor structure simultaneously allows to have
other subdomain factors, which account for the variabil-
ity not explained by the general factor [17].
Both the second-order and the bifactor model were set

up by using the number and the item structure onto
first-order and subdomain factors as suggested by the
EFA. Hence, the second-order model was constituted by
a second-order factor onto which the first-order factors
of the EFA were loaded; the bifactor model was consti-
tuted by a general factor onto which all items were
loaded and a number of orthogonal subdomain factors
onto which items were loaded as suggested by the EFA.

As a one-factor model and a second-order model are
nested within the bifactor model the DIFFTEST com-
mand was used for model comparison [11, 18, 19].

Measurement invariance
Since our data were collected from different populations, it
was crucial to establish that our latent construct measured
the same thing and in the same way across the different eth-
nic groups and across men and women. We assessed meas-
urement invariance among the six countries and between
men and women by performing multi-group confirmatory
factor analyses (MGCFA) and creating nested models with
increasing parameter constraints [20]. Measurement invari-
ance within the factor analytic framework can be tested by
examining the statistical fit of models that differ in the pa-
rameters that have been set to equal or not across groups
[21]. A lack of invariance could indicate differences in the
way a group interprets and replies to a measure. Measure-
ment invariance was assessed in the model that was selected
as superior in the fit by the confirmatory factor analyses.
The analysis was carried out in three steps:

1) We checked if our model structure was the same
across the different groups, meaning that our
suggested model fitted the data well in all six
countries and men and women separately.

2) We assessed configural invariance; a baseline multiple-
group model was created in which all factor loadings
and thresholds were freely estimated across groups
(for identification purposes we set one item loading

Fig. 1 Graphical representation of a. one factor model; b. second-order; c. bifactor model
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per factor fixed to 1 -referent indicator-, one threshold
per item and one additional threshold for the referent
indicator equal across groups, factor means fixed to
zero to all groups and residual variances to one to the
reference group) [21, 22]. This model constituted our
baseline model for subsequent tests.

3) We assessed scalar invariance; all factor loadings
and thresholds were constrained to equality across
groups (for identification purposes factor means
were fixed to zero and residual variances were fixed
to one in the first group only). We did not assess
metric invariance since in the invariance testing of
ordinal items, loadings and thresholds cannot be
tested separately [23]. (See Additional file 1 for
MPLUS code).

To compare the models, the DIFFTEST command was
used; however, the dependence of chi-square statistic on
sample size makes it also a non-appropriate indicator for
decrement fit evaluation between nested models [13].
For this reason we also examined the change in CFI
(ΔCFI) and in the RMSEA (ΔRMSEA) goodness-of-fit. A
change in CFI values less than or equal to 0.010 supple-
mented by a change of less than or equal to 0.015 in
RMSEA would provide evidence for not rejecting the hy-
pothesis of measurement invariance [19, 24].

Psychometric coefficients
Omega (ω) and omega hierarchical (ωH) coefficients
were calculated as they provide better estimates of meas-
urement precision (reliability) than the traditional Cron-
bach’s alpha [25]. Omega coefficients estimate the
proportion of variance in unit-weighted total score at-
tributable to all sources of common variance and to the
general factor within the bifactor framework [26–28]. A
high ω value indicates a highly reliable multidimensional
composite and a high ωH value (> 0.80) in the bifactor
structure indicates that the general factor is the domin-
ant source of systematic variance with subdomain fac-
tors having less influence. We also calculated coefficient
omega hierarchical subscales (ωΗS) to estimate the
strength of influence of subdomain factors. Coefficient
ωΗS represents the proportion of reliable systematic vari-
ance of a subscale score after partitioning out general
factor variability [29]. We also judged the unidimension-
ality of the index by calculating the Explained Common
Variance index (ECV) [17, 30]. Higher values of ECV in-
dicate a strong general factor allowing us to fit a unidi-
mensional model even to multidimensional data. Finally,
we checked for construct replicability (i.e. how well a set
of items represents a latent variable) with the index H,
which provides the proportion of variability in a latent
construct explainable by its own indicators [31]. High
values of H (> 0.80) indicate a well-defined latent

variable which can be considered stable across settings.
This index is of high importance in the structural equa-
tion model (SEM) framework as it assists in understand-
ing the feasibility of a measurement model [28].

Concurrent convergent validity
To examine the concurrent convergent validity of our
index we estimated its association with the self-rated
health (SRH) of the participants in the past 30 days.
Multiple-indicators multiple-causes model (MIMIC) with
latent variables was employed to eliminate any measure-
ment unreliability from our conclusion [32]. Even though
the SRH measure is quite subjective, since it is based on
individuals’ opinion about their health status, research
shows that it has strong predictive validity for mortality in
general [33] and in the 10/66 cohort [34]. As a conse-
quence, we estimated the associations of SRH with the
healthy ageing latent construct, adjusted for age and sex,
in the best fit measurement model.

Results
Sample study characteristics
Descriptive statistics of the study population are pro-
vided in Table 2.

Exploratory factor analysis
After examination of the eigenvalues (eigenvalues: 10.87,
2.44, 1.57, 1.24, 1.13), goodness-of-fit statistics and inter-
pretability of factor structure, the four factor solution
was the best solution (χ2 = 786.05, df = 227, RMSEA =
0.025; 90%CI = 0.023–0.027, CFI = 0.991) [35]. Neverthe-
less, a strong major factor (indicated by the high ratio of
the first two eigenvalues) was also suggested [17]. There
were two items (“household responsibilities difficulty”,
“carrying out work and everyday activities difficulty”)
that seem to be non-congeneric as they exhibited salient
loadings (> 0.40) on two factors [15]; and two others
(“immediate recall”, “fold a piece of paper”) that showed
similar loadings onto two factors. However, we allowed
all items to load on one factor according to their high-
est loading. In the first factor, items of disabilities of
daily living loaded and their loadings ranged from 0.496
to 0.888. The second factor included items of general
difficulties in everyday life with loadings ranging from
0.607 to 0.749. The third factor comprised items of
impairments and mental health with loadings from
0.310 to 0.670. Finally, factor four was a factor of cogni-
tion as cognitive items loaded on this (0.243–0.649)
(Table 3).

Confirmatory factor analysis
Three different CFA models were tested and com-
pared for the construction of the index; a one-factor
model, a second-order model and a bifactor model
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(Table 4). The one-factor model exhibited acceptable
fit based on the CFI (0.902), but had a poorer RMSEA
fit (0.073). Hence, the one-factor solution did not
seem to be appropriate. Both the second-order factor
and the bifactor model exhibited good fit (CFI ≥ 0.90
and RMSEA≤0.06) but the bifactor model exhibited
higher CFI and lower RMSEA indexes (Bifactor: CFI =
0.972, RMSEA = 0.041; Second-order: CFI = 0.962,
RMSEA = 0.045). In addition, the adjusted chi-square
test for model comparison supported as superior the
bifactor model as its value was significant when com-
pared to the one-factor (χ2 = 5679.77, df = 26, p <
0.001) and the second-order model (χ2 = 1089.78, df =
22, p < 0.001). Local fit assessment revealed that the
bifactor model was the one with the fewest (both in
number and in amount) discrepancies between pre-
dicted and observed correlations (Additional file 2). As
a consequence, for the subsequent analyses the bifac-
tor model was employed Fig. 2. (Additional file 3 pre-
sents the item loadings onto the general and the
subdomain factors).

Measurement invariance
Firstly, we checked if the bifactor model fitted well the
empirical data from each country. When we run the
model in each country the correlation of the items
“washing whole body difficulty” and “getting dressed
difficulty” for Puerto Rico was close to 1 (r = 0.989); to
avoid multicollinearity only one item was kept to the
measurement invariance tests. The bifactor model had
acceptable fit in each country (RMSEA values range
from 0.030 to 0.052; CFI values range from 0.923–
0.976) (Table 5). As acceptable fit was established per
country we would expect that configural invariance
would also be supported. Goodness-of-fit statistics pro-
vided evidence for configural invariance (χ2 = 6277.08,
df = 1510, RMSEA = 0.046; 90%CI = 0.045–0.047, CFI =
0.958). The hypothesis of scalar invariance (similar
loadings and thresholds) was also supported (χ2 =
7668.201, df = 1750, RMSEA = 0.047; 90%CI = 0.046–
0.049, CFI = 0.948). In addition, the change of CFI and
RMSEA was within the predetermined limits
(ΔRMSEA = 0.010, ΔCFI = -0.010).

Table 2 Characteristics of the 10/66 Cohort

Country Total (%) Cuba (%) Dominican Republic (%) Peru (%) Venezuela (%) Mexico (%) Puerto Rico (%)

Total 12,865 2944 2011 1933 1965 2003 2009

Women 8288 (64%) 1913 (65%) 1325 (66%) 1183 (61%) 1252 (64%) 1268 (63%) 1347 (67%)

Men 4568 (36%) 1031 (35%) 684 (34%) 750 (39%) 713 (36%) 735 (37%) 655 (33%)

Age (years)

65–69 3644 (28%) 760 (26%) 533 (27%) 554 (29%) 839 (43%) 544 (27%) 414 (21%)

70–74 3308 (26%) 789 (27%) 520 (26%) 493 (26%) 469 (24%) 581 (29%) 456 (23%)

75–79 2689 (21%) 639 (22%) 397 (20%) 399 (21%) 345 (18%) 426 (21%) 483 (24%)

80+ 3211 (25%) 749 (25%) 561 (28%) 486 (25%) 308 (16%) 451 (23%) 656 (33%)

Marital Status

Never married 1044 (8%) 275 (9%) 139 (7%) 213 (11%) 189 (10%) 105 (5%) 123 (6%)

Married/ cohabiting 5845 (45%) 1271 (43%) 586 (29%) 1092 (56%) 921 (47%) 1008 (50%) 967 (48%)

Widowed 4245 (33%) 928 (32%) 806 (40%) 524 (27%) 549 (28%) 766 (38%) 672 (33%)

Divorced/ separated 1644 (13%) 462 (16%) 465 (23%) 93 (5%) 261 (13%) 123 (6%) 240 (12%)

Education

None 1370 (11%) 75 (3%) 392 (19%) 121 (6%) 156 (8%) 554 (28%) 72 (4%)

Some, did not complete primary 3606 (28%) 655 (22%) 1022 (51%) 231 (12%) 445 (23%) 864 (43%) 389 (19%)

Completed primary 3807 (30%) 979 (33%) 370 (18%) 727 (38%) 965 (49%) 351 (18%) 415 (21%)

Completed secondary 2483 (19%) 728 (25%) 135 (7%) 517 (27%) 266 (14%) 124 (6%) 713 (35%)

Tertiary (college) 1504 (12%) 499 (17%) 73 (4%) 321 (17%) 93 (5%) 108 (5%) 410 (20%)

Self-rated health in past 30 days

Very good 1819 (14%) 301 (10%) 272 (14%) 409 (21%) 288 (15%) 392 (20%) 157 (8%)

Good 5058 (39%) 1250 (42%) 699 (35%) 687 (36%) 847 (43%) 639 (32%) 936 (47%)

Moderate 4958 (39%) 1113 (38%) 852 (42%) 748 (39%) 697 (35%) 800 (40%) 748 (37%)

Bad 775 (6%) 228 (8%) 145 (7%) 66 (3%) 70 (4%) 142 (7%) 124 (6%)

Very bad 182 (1%) 43 (1%) 41 (2%) 15 (1%) 17 (1%) 29 (1%) 37 (2%)
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We also assessed the measurement invariance
across men and women separately, applying the same
steps as above. Goodness-of-fit statistics supported
configural invariance (χ2 = 3700.29, df = 502,
RMSEA = 0.038; 90%CI = 0.036–0.039, CFI = 0.967) as
well as scalar invariance (χ2 = 4160.82, df = 558,
RMSEA = 0.038; 90%CI = 0.037–0.039, CFI = 0.963). In
addition, the change of CFI and RMSEA was within
the predetermined limits (ΔRMSEA = 0.000, ΔCFI = -
0.004) (Table 5).

Psychometric coefficients
The general HAI showed excellent reliability (ω = 0.96)
and based on our bifactor model, ωH indicated a pre-
dominant general factor (ωH = 0.84). A comparison of
ωH with ω (0.84/0.96 = 0.88) showed that most of the re-
liable variance in total scores could be attributed to the
general factor. 12% (0.96–0.84) could be attributed to
the multidimensionality caused by the subdomain factors
and only 4% was estimated to be random error. Omega
hierarchical subscale coefficients were very small (ωΗS1 =

Table 3 Exploratory factor analysis standardised loadings-Parsimax Rotation

Items/Indicators Factor 1 Factor 2 Factor 3 Factor 4

Household responsibilities difficulty 0.562 0.192 0.490 −0.146

Walking a km difficulty 0.573 0.050 0.392 −0.033

Washing whole body difficulty 0.851 0.003 0.106 0.182

Getting dressed difficulty 0.888 0.014 0.048 0.193

Carrying out work & everyday activities difficulty 0.564 0.230 0.447 −0.128

Making decisions difficulty 0.057 0.715 0.077 0.221

Using the toilet difficulty 0.496 0.301 0.109 0.341

Handling money difficulty 0.136 0.698 0.062 0.199

Hearing problem −0.057 0.060 0.310 0.084

Eye problem 0.005 0.051 0.395 −0.060

Finding right word difficulty −0.106 0.749 0.128 0.100

Change in daily activities 0.037 0.607 0.202 0.049

Forgets where he/she is 0.145 0.644 0.085 0.290

Difficulty completing chores 0.114 0.621 −0.004 0.264

Sleep trouble or recent change in pattern −0.101 − 0.198 0.624 0.050

Feeling of not coping properly with everyday routine −0.028 0.116 0.582 0.043

Gets worn out or exhausted during daytime or evening −0.229 −0.200 0.670 0.122

Time in seconds taken to walk 10 m 0.410 0.008 0.030 − 0.063

Learn test 0.074 0.113 0.054 0.601

Delayed recall 0.130 0.002 0.072 0.401

Long memory test −0.083 0.062 0.092 0.642

Immediate recall 0.118 0.242 0.070 0.243

Verbal fluency 0.149 0.126 0.031 0.556

Time orientation 0.118 0.146 0.096 0.649

Praxis-fold a piece of paper 0.130 0.202 0.038 0.266

Story recall difficulty 0.041 −0.002 0.070 0.617

Table 4 Fit statistics for confirmatory factor analysis models

Model Chi-square df CFI RMSEA 90%CI Difftest (chi-square, df)

One factor 14,497.44 299 0.902 0.073 0.072–0.074 (5679.77, 26)***

Second-order 5770.29 295 0.962 0.045 0.044–0.046 (1089.78, 22)***

Bifactor 4327.95 273 0.972 0.041 0.040–0.042 –

Difftest: an adjusted chi-square difference test; df: degrees of freedom; RMSEA Root Mean Square Error of Approximation, CFI Comparative Fit Index
*** p < 0.001
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0.06, ωΗS2 = 0.02, ωΗS3 = 0.03, ωΗS4 = 0.02), showing that
little common variance remained after we accounted for
the general factor. ECV was 0.65 also indicating a quite
strong general factor accounting for well over half the
common variance; however not exceeding the 0.80
benchmark indicated that part of the variance was also
explained by the subdomain factors. H value equalled
0.96 indicating that the general factor was a well-defined
latent variable [28, 36].

Concurrent convergent validity
The association between the general factor of healthy
ageing and the self-rated health measure, adjusted for
age and sex, was significant (standardised estimate =
0.373; bootstrap 95%CI: 0.352–0.394, p < 0.001, χ2 =
8238.22, df = 348, RMSEA = 0.050; 90%CI = 0.049–
0.051, CFI = 0.922) indicating that a one unit increase
in the SRH (deterioration of self-rated health) was asso-
ciated with a 0.373 standardised score increase in the

Fig. 2 Healthy ageing index bifactor model graphical representation. HAI: Healthy Ageing Index; i1: household responsibilities difficulty; i2:
walking a km difficulty; i3: washing whole body difficulty; i4: getting dressed difficulty; i5: carrying out work & everyday activities difficulty; i6:
using the toilet difficulty; i7: time in seconds taken to walk 10m; i8: making decisions difficulty; i9: handling money difficulty; i10: finding right
word difficulty; i11: change in daily activities; i12: forgets where he/she is; i13: difficulty completing chores; i14: hearing problem; i15: eye problem;
i16: sleep trouble or recent change in pattern; i17: feeling of not coping properly with everyday routine; i18: gets worn out or exhausted during
daytime or evening; i19: learn test; i20: delayed recall; i21: long memory test; i22: immediate recall; i23: verbal fluency; i24: time orientation; i25:
praxis-fold a piece of paper; i26: story recall difficulty; F1: factor 1; F2: factor 2; F3: factor 3; F4: factor 4

Table 5 Model fit for subgroup analyses and for measurement invariance test across countries and gender

Model Chi-square df RMSEA 90%CI CFI

Country Cuba 1188.83 260 0.042 0.039–0.044 0.972

Dominican Republic 1166.40 260 0.050 0.047–0.053 0.924

Peru 649.06 260 0.033 0.030–0.036 0.976

Venezuela 1235.53 260 0.052 0.049–0.055 0.923

Mexico 584.66 260 0.030 0.027–0.033 0.964

Puerto Rico 1049.99 260 0.046 0.044–0.049 0.971

Configural 6277.08 1510 0.046 0.045–0.047 0.958

Scalar 7668.20 1750 0.047 0.046–0.049 0.948

Difftest*** 1641.51 240 0.010 −0.010

Gender Females 3077.07 260 0.040 0.039–0.042 0.964

Males 1244.39 260 0.031 0.030–0.033 0.975

Configural 3700.29 502 0.038 0.036–0.039 0.967

Scalar 4160.82 558 0.038 0.037–0.039 0.963

Difftest*** 590.81 56 0.000 −0.004

Difftest: an adjusted chi-square difference test; df Degrees of freedom, RMSEA Root Mean Square Error of Approximation, CI Confidence Intervals, CFI Comparative
Fit Index
*** p < 0.001
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healthy ageing index (higher values indicate worse
health).

Discussion
We showed that a healthy ageing index can be com-
prised by indicators of intrinsic capacity and functional
ability available in different questionnaires. To the best
of our knowledge, this the first study creating a healthy
ageing index which was tested for various psychometric
properties and for measurement invariance. Even though
in the literature, there are other successful or healthy
ageing indexes [37–39], the novelty of our study lies in
the fact that the multifaceted concept of healthy ageing
was built by a latent model. Using latent variable model-
ling to create the healthy ageing index contributes to the
creation of a more sensitive measure. Future research on
this index will assist in the identification of the most im-
portant indicators across the whole range of the latent
construct (from the lowest to the highest level of healthy
ageing) and of those that are more relevant to people
who are in most need. As a consequence, our index will
further contribute to person-centered services to the
older population.
Regarding the factorial validity of our construct, one-

factor model and second-order factor were compared to
the bifactor model. We opted for the bifactor structure
based on its superior model fit and on its interpretation
utility, as there is an ‘inherent statistical bias’ in favour
of bifactor models when tested with second-order model
[40]. In our study, healthy ageing is conceptualised as
the general factor and four subdomain factors, as identi-
fied by the EFA. Those subdomain factors are consid-
ered common factors as they explain variance above the
general construct [41]. A bifactor structure will enable
future SEM research to examine the influence of key ex-
ternal covariates both onto the general factor and the
subdomain factors; something that is trickier to do in
the second-order factor where first- and second-order
factors overlap [13].
Measurement invariance, which is fundamental to com-

paring data among different populations and over time
[42] especially when self-reported questionnaires have
been employed, was also examined. Our index exhibited
excellent measurement invariance properties (configural
and scalar invariance) both across ethnic groups and gen-
der, making it possible to meaningfully compare the
healthy ageing level of these subpopulations in future re-
search. Furthermore, to assess the concurrent convergent
validity of this index with other health measures, we
checked its association with the SRH measure adjusted for
age and sex to limit any potential moderating effect [43].
The association was moderately strong providing some
evidence of our index concurrent convergent validity.

As recommended when a bifactor model is used, we also
calculated psychometrically informative bifactor-derived
statistics [28, 44]. We calculated ω and ωΗ which indicated
that a strong percentage of total score variance is attribut-
able to a single general factor. Hence, we can conclude
that raw scores can essentially be assumed as indicators of
the healthy ageing general factor and are not affected by
the multidimensionality of the four subdomain factors. A
strong general factor was also indicated from the ECV
value (ECV = 0.65), but as it is less than 0.80 subscale
scores should also be considered. However, as the ωΗS re-
liability subscale estimates are low (ωΗS1 = 0.06, ωΗS2 =
0.02, ωΗS3 = 0.03, ωΗS4 = 0.02) once we account for the
general factor, subscale scores have limited added value
[45]. We concluded that despite the multidimensionality
of the healthy ageing construct, raw scores of the general
factor can be interpreted as an essentially unidimensional
concept of healthy ageing. Regarding H index, its high
value (H = 0.96) provided support that our general factor
is a well-defined latent construct appropriate to be used in
future SEM research.
A potential limitation of this study is that only selected

catchment urban and rural areas of the countries involved
were considered. As a consequence, the generalisability of
the findings beyond the specific study sites could have
been affected. Moreover, the baseline sample included
only people 65 years old and over. Thus, it is possible that
our results may not be generalisable to a younger sample.
In addition, in our study we included data from Latin

America only, even though 10/66 survey has collected
data to catchment areas of China and India as well; the
reason behind this decision was that we wanted to ini-
tially create a common metric of healthy ageing and
examine its properties to a multi-country setting but still
culturally and geographically homogeneous sample. In
addition, knowing that the Chinese and Indian centres
collected data by using English language whereas the
Hispanic centres of Latin America used Spanish lan-
guage also contributed to our selecting of a sub-sample
of the whole 10/66 cohort. Future research should focus
on the creation of this index to all countries participated
in the 10/66 cohort and to the follow-up survey dataset.
Another limitation of this study is that some could

argue that our cut-off point considered for factor load-
ings (±0.20) is not stringent enough [46, 47] or that
there were indicators with substantial cross-loadings. As
a consequence, these problematic items should not be
included in the index. However, for content validity pur-
poses we did not exclude any of the initially employed
indicators as all questions seem to be representative and
meaningful for measuring health status in an older
population [13]. Moreover, to capture various domains
of health and create an index representing health status
at later years we considered as many indicators as
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possible from different questionnaires, but with no over-
lapping [48].
Finally, we assessed the concurrent convergent validity

of our index by examining its association with a subjective
measurement of health; the self-rated health. Future re-
search should focus on the predictive validity of our index
by comparing it with the mortality outcome, which is a
more objective measure of an individual’s general health
[49] or other indexes related with adverse health outcomes
in older people, for instance the frailty index [50].

Conclusions
There is an emerging need of further empirical work on
the scope, construct development and validity of a com-
mon healthy ageing metric. Our findings showed that a
healthy ageing index with excellent psychometric and
measurement invariance properties can be created in a
subset of six low-and-middle income countries. As the
challenge of global population ageing is constantly grow-
ing, especially in low-and-middle income countries [2],
replication of our index to other cultural settings and to
longitudinal designs will contribute to a more compre-
hensive understanding of the ageing process. Future re-
search will allow us to validly explore subpopulation
differences and key-determinants that could offer new
strategies for policy interventions.
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